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Abstract
I characterize sharp bounds on treatment effects under data combination with in-

strumental variables. Data combination in this paper refers to having multiple samples
drawn from the same population in which observations cannot be linked across samples.
I allow for subsets of the outcome, treatment, instrument and covariates to be observed
across these samples. The parameters I can bound include the average treatment ef-
fect and certain policy relevant treatment effects. The sharp identified upper and lower
bounds for the parameter of interest can each be expressed as the optimal value of the
objective function in a linear programming problem where the coefficients are proba-
bilities identified from the samples, under certain conditions. These conditions include
standard instrumental variables assumptions allowing for heterogeneous effects, finite
range of random variables, and a condition regulating which combinations of variables
can be observed across samples. This identification strategy forms the basis for es-
timation, although estimation is not as simple as replacing the identified coefficients
with sample estimates. The application to algorithmic bail reform in Philadelphia sug-
gests that, if a freely available algorithm were used to determine pretrial release, the
incarceration rate would decrease under the commonly used monotonicity assumption.
The results of this application are dependent on the choice of shape restrictions one is
willing to make.
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1 Introduction

Suppose a researcher is interested in the effect of a treatment on an outcome. It is com-

mon in empirical settings for this treatment not to be randomly assigned. Therefore, an

instrumental variable is used to identify a local average treatment effect, which turns out

to be equal to the instrumental variables estimand under some conditions. This estimand

equals the covariance of the outcome with the instrument divided by the covariance of treat-

ment with the instrument. It is immediately clear that it is not necessary to observe all

three variables in the same sample to identify this ratio. If one sample contains the out-

come, another sample contains the treatment, and both samples contain the instrument,

then both of the covariances are identified and can be estimated using two-sample instru-

mental variables. This realization from Klevmarken (1982), Angrist and Krueger (1992),

and Arellano and Meghir (1992), has allowed for empirical research when two samples are

drawn from the population and for which the observations cannot be linked across samples

and the observations in each sample are as just described. Here I focus on this type of data

combination, where different subsets of variables are observed in multiple samples and the

observations cannot be linked across samples.

In addition to two-sample instrumental variables, what else can be said about treatment

effects under this type of data combination? For example, one sample has observations of

the outcome and treatment and the second sample has observations of the treatment and

instrument. Or, the second sample could contain observations of the outcome and the in-

strument. These two scenarios, although similar to the two-sample instrumental variables

setting described previously, are different because the instrument is not observed in both

samples. I develop general identification and estimation results for which the settings pre-

viously mentioned, including two-sample instrumental variables, are specific cases. Given

the prevalence of two-sample instrumental variables in empirical settings, it is likely that

researchers often encounter, and are impeded by, these settings with no identification or

estimation results to apply.

Consider the following simplified1 setting where the treatment, D, and instrument, Z,

are in {0, 1} and the outcome, Y , takes finitely many values in R. The following equations

relate the potential outcomes, Y1 and Y0, the potential treatments, D1 and D0, and the

instrument to the outcome and treatment:

Y =DY1 + (1−D)Y0

D =ZD1 + (1− Z)D0.

1I consider a more general setting in Section 2 and further generalizations in the appendix.
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Under a standard independence assumption of instrumental variables that (Y1, Y0, D1, D0) ⊥⊥
Z in, for example, Imbens and Angrist (1994) and under rather unrestrictive conditions about

which variables are observed in each of the samples, I first characterize the sharp identified

set of the distribution of (Y1, Y0, D1, D0). Notice that it is equivalent to characterize the sharp

set for the vector of all probability masses of points in the range of (Y1, Y0, D1, D0). Theorem

1 characterizes the sharp identified set for this vector as the set of vectors satisfying a system

of linear equalities and inequalities where the coefficients are either known or identified. This

is the first step in showing that sharp identified upper and lower bounds for parameters, such

as the average treatment effect, can each be expressed as the optimal value of the objective

function in a linear programming problem.

The main contribution of this paper is to show when the possible distributions of

(Y1, Y0, D1, D0) can be characterized as a system of linear equations with identified coef-

ficients. In doing so, I allow for subsets of Y , D, and Z to be observed in multiple samples.

This identification is a generalization of Balke and Pearl (1997). In the case where Y , D, and

Z are all observed in the same sample, implying the joint distribution of (Y,D,Z) is identi-

fied, Balke and Pearl (1997) characterize the set of possible distributions of (Y1, Y0, D1, D0)

as a system of linear equations and identify sharp bounds on the average treatment effect

with a linear programming problem.

I base estimation on the identification result. Since all coefficients in the linear program-

ming problem are known or identified, it seems natural to replace identified coefficients with

sample estimates and use this new uninformed linear programming problem to estimate the

parameter of interest. This approach would be problematic in important scenarios. In par-

ticular, I want to allow for the samples to have overlap in the variables observed in each

sample. Since I assume that the samples are drawn from the same population, the identified

marginal of the subset of variables in this overlap must be the same in both samples. It

turns out that the empirical distributions of this subset of variables must also be identical

across samples for this uninformed linear program to have a feasible solution. If the samples

are independent, this occurs with probability going to zero. My solution is a simple two

step procedure. The first step is to solve a quadratic programming problem and perform one

matrix multiplication. The second step is to find the optimal value of the objective function

in a new linear programming problem. I then demonstrate the consistency of this estimate.

I apply the econometric results to estimate bounds on the change in incarceration rate

if felony defendants in Philadelphia were released pretrial via a freely available algorithm

as opposed to the status quo of allowing for judicial discretion. This stands in contrast to

recent research that estimates the effect of pretrial detention on case and future outcomes.

Research on this issue typically estimates a local average treatment effect. However, if a
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policy is implemented that changes how individuals are allocated to treatment, the subpop-

ulation of individuals who are included in the local average treatment effect are not the same

as those whom the policy adds to/subtracts from treatment. Therefore, the point identified

parameter is not necessarily indicative of how average outcomes would change under a new

policy. To assess this bail reform policy, I use court records from Philadelphia similar to

Dobbie et al. (2018) and Stevenson (2018), which contain information on whether the indi-

vidual is sentenced to incarceration (the outcome), whether the individual was released or

detained pretrial (the treatment), and to which bail judge the defendant was quasi-randomly

assigned (the instrument). In contrast to other research, I also use the State Court Process-

ing Statistics. Observations in this sample likewise include the outcome and treatment, but

not the instrument. The observations include additional covariates that are inputs to the

algorithm that are not observed in the court records. The State Court Processing Statistics

are anonymized to protect individuals’ identities, are prohibited from being linked to other

data sources, and the felony cases in the samples do not overlap.2 I use an additional policy

invariance assumption for the policy relevant treatment effect to satisfy the assumption on

the parameter of interest. In simple terms, this states that the only way the policy changes

the incarceration rate is by changing who is treated, not by changing the distribution of

covariates or potential outcomes.

I present results for simulations that illustrate the benefit of using the estimation proce-

dure developed in this paper. I discuss the estimation procedure in a more familiar setting

where Y , D, and Z are all observed in the same sample and in the context of estimating the

local average treatment effect, and so the identification results of this paper are not needed.

However, this is a useful setting for discussing the estimation procedure because it allows

for comparison to the two-stage least squares estimate. This serves not only to compare

my estimation procedure to a procedure that is well understood by the reader, but also to

illustrate that the estimate imposes any shape restrictions that the researcher chooses to

make. For example, the monotonicity assumption P(D1 ≥ D0) = 1 used in Imbens and

Angrist (1994) to identify the local average treatment effect may be imposed if it is credible

in the empirical setting. The idea is that certain distributions of (Y,D,Z) are not possible

given the instrumental variables assumptions, including the shape restrictions. It is possible,

however, that the empirical distribution of (Y,D,Z) is one such distribution. My estimation

procedure uses this additional information. The simulations suggest the estimation from this

paper improves upon the precision of two-stage least squares.

2I use observations from the SCPS from May 2004, and I use observations from May 2010 in the court
records.

4



The remainder of the paper is structured as follows: In Section 2 I show when the

sharp identified bounds on a parameter of interest can be characterized as optimal values of

objective functions in linear programming problems. In Section 3 I show how to consistently

estimate these sharp identified bounds. In Section 4 I apply the econometrics of Sections 2

and 3 to algorithmic bail reform. In Section 5 I provide simulation evidence for the precision

of the estimates. In Section 6 I conclude.

Literature Review In addition to the two-sample instrumental variables work of Klev-

marken (1982), Angrist and Krueger (1992), and Arellano and Meghir (1992), this paper is

related to the broader literature on data combination wherein there are multiple samples

and the observations are not linked across samples. Most recently, Fan et al. (2014) identify

counterfactual distributions and treatment effects under data combination. They make the

selection on observables assumption and consider a setting with two samples where the treat-

ment is observed in each sample, but the outcome and conditioning covariates are observed

separately in one of two samples. This is done through a monotone rearrangement inequality.

Cross and Manski (2002) are interested in characterizing the “long regression,” the expec-

tation of the outcome given two covariates, when one sample contains observations on the

outcome and one covariate, and the other sample contains observations on both covariates.

Assuming the conditional expectation of the outcome given the covariates is structural, i.e.

the conditional mean function does not change when the distribution of the covariates is

changed, Cross and Manski (2002) discuss characterizing the identified set for a counterfac-

tual mean where the distribution of the covariates is altered. The application in Section 4

of this paper to policy relevant treatment effects does not rely on such an assumption. The

results of Cross and Manski (2002) rely on earlier results from Horowitz and Manski (1995)

for contaminated and corrupted data. For a review of the econometrics of data combination

see Ridder and Moffitt (2007).

This paper is also related to the growing literature in econometrics using linear program-

ming problems for identification and estimation. Most related is the previously mentioned

paper by Balke and Pearl (1997) who characterize the sharp identified set for the average

treatment effect in an instrumental variables setting using linear programming. Recent work

by Mogstad et al. (2018) uses linear programming to characterize and estimate bounds on

parameters, such as policy relevant treatment effects, that can be written as the sum of two

functionals of marginal treatment response functions. Kamat (2018) characterizes parame-

ters related to program access when an instrument exogenously changes choice sets with a

linear fractional program.
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2 Identification

I establish conditions for when a linear programming problem can be used to characterize

the sharp bounds on a parameter, θ, in a heterogeneous effects model with an instrumental

variable under data combination. I allow for data combination where a researcher has mul-

tiple samples each with i.i.d. observations, which cannot be linked across samples. For ease

of notation, in this section I present the identification argument when only one instrument

is available and for two samples. It is possible that more than two samples are observed and

that there are multiple instruments. I discuss these generalizations in Appendix A.

The observable variables in this setting include Y , D, Z, and {Xk}Kk=1, which denote

the outcome, treatment, instrument, and K covariates, respectively. Ideally, a single sample

would have i.i.d. observations of all of these variables. This would imply that their joint

distribution is identified. Then, the researcher would be able to identify the local average

treatment effect or use established procedures to partially identify the average treatment

effect. However, the researcher may be constrained by the data that is available. In par-

ticular, there may be two data sets each containing different subsets of these variables with

no way of linking observations across samples. For example, data could be anonymized to

protect individuals’ identities or sampled in such a way that there are no individuals/units

with observations in both samples. The application in Section 4 falls into both of these cat-

egories. One data source contains anonymized observations for which it is against the data

use agreement to link to observations in other samples. Additionally, the observations in

the samples come from the same city but different years, so the units do not overlap. When

this is the case the marginal distributions of the subsets of variables in each sample are

identified, which can still be informative about a parameter such as the average treatment

effect. I discuss when this type of setting can be used to bound a parameter with a linear

programming problem.

Let D and Z denote the range of D and Z, respectively, each of which is assumed

to be finite. In this heterogeneous effects framework with instrumental variables, for each

value of the treatment there is a variable representing the outcome that would be observed

for an individual had they received that particular value of the treatment; these variables

are the potential outcomes. There is similarly a potential treatment for each value of the

instrumental variable. Let {Yd}d∈D denote the potential outcomes and {Dz}z∈Z denote the

potential treatments. The following two equations relate the potential outcomes, potential
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treatments, and instrument to the treatment and outcome:

Y =
∑
d

Yd1 [D = d]

D =
∑
z

Dz1 [Z = z] .
(1)

Theorem 1 gives conditions under which the possible distributions of potential outcomes,

potential treatments, and covariates can be characterized as the set of vectors satisfying a

system of linear equations with identified coefficients. With this set of linear equations, one

can characterize the identified minimum or maximum of parameters such as the average

treatment effect as the optimal value of the objective function in a linear programming

problem in which the coefficients are identified. In addition to the conditions for Theorem

1, a researcher may want to include other assumptions to improve their bounds. This linear

programming approach can allow for assumptions such as the monotonicity assumption used

to identify a local average treatment effect, but these assumptions are not needed. I now

introduce the assumptions needed for Theorem 1.

Assumption 1. ({Yd}d, {Dz}z, X1,..., XK) ⊥⊥ Z

Assumption 2. Y ∈ Y , D ∈ D, Z ∈ Z, Xk ∈ Xk for each k. |Y|, |D|, |Z|, and |Xk| for

each k are finite.

Assumption 3.

1. (Y,D,Z,X1, ..., XK) is identically distributed across samples.

2. Let φ1 and φ2 be functions of (Y,D,Z,X1, ..., XK) that select a subset of these variables.

Sample 1 is of i.i.d. observations of φ1(Y,D,Z,X1, ..., XK), and Sample 2 is of i.i.d.

observations of φ2(Y,D,Z,X1, ..., XK).

3. Z is observed in at least one sample.

The functions φ1 and φ2 dictate which subsets of variables are observed in each sample.

An example of such a function is φ1 : Y × D × Z × X1 × ... × XK → Y × D × X2 where

φ1(y, d, z, x1, ..., xK) = (y, d, x2).

Assumption 3.3 is the only restriction on which variables are observed in the samples.

This may seem like too weak of an assumption as there is no mention of when Y or D

are observed. It may help to remember that the identification result states when a linear

programming problem can be used to characterize the sharp identified set of a parameter;
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some of the cases this allows for have trivial bounds, i.e. bounds that could be obtained from

the assumptions and knowing the range of the random variables without observing any data.

For example, Assumption 3.3 allows for Z to be the only variable observed. If this were the

case and the parameter of interest is the average treatment effect, the linear programming

characterization is still valid, but yields these trivial bounds. The examples at the end of

this section provide intuition for when this characterization can be useful.

Assumption 1 is a generalization of the standard assumption that ({Yd}d, {Dz}z) ⊥⊥ Z to

additionally include covariates that may be independent of the instruments. Assumption 1 is

more general because K = 0 (the case with no covariates that can be included as independent

of the instrument), ({Yd}d, {Dz}z, X1,..., XK) collapses to ({Yd}d, {Dz}z). In the application

in Section 4 the covariates include inputs to a pretrial risk assessment, such as age and prior

interactions with the criminal justice system. Since the instrument uses the judge that the

individual is assigned to, and the judges serve on a rotating schedule, it is reasonable that

these covariates and the instrument are independent of each other.

Assumptions 3.1 and 3.2 must be carefully interpreted. Assumption 3.1 says that the

samples are drawn from the same population distribution. Assumption 3.2 says that obser-

vations within a sample are i.i.d., but this says nothing of the independence or dependence of

observations across samples. For example, if one sample contains 100 observations of (Y,D)

and one contains 100 observations of (D,Z), then it is possible for all 200 observations to be

mutually independent. However, I allow for dependence of the observations across samples.

For example, the observations in each sample could be from the same 100 individuals, but it

is not known which observations correspond to other observations across samples. Assump-

tion 3.2 allows for each of Y , D, Z, X1,...,XK to be observed or unobserved in each sample.

The same variables are observed for each individual within a sample.

Assumption 3.3 implies that the distribution of Z is identified. This is the main re-

quirement to pay attention to when moving from one to multiple instruments. With one

instrument this assumption is innocuous. With multiple instruments the joint distribution of

all instruments must be identified. Appendix A includes a discussion for cases with multiple

instruments. In Appendix A I allow for an arbitrary number of samples and an arbitrary

number of instruments across those samples.

An instrument relevance assumption about the covariance of the treatment with the

instrument being positive is not needed. The linear programming characterization will be

valid without this type of assumption, but how the instrument varies with the treatment

affects the bounds.
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Theorem 1. [Linearity] If assumptions 1, 2, 3.1, 3.2 and 3.3 are satisfied, then the sharp

identified set for the vector of probabilities masses P({Yd=yd}d,{Dz=dz}z,X1=x1,...,XK=xK)

are the vectors p satisfying

A1p = b1

1′p = 1

p ≥ 0

where A1 is a matrix, b1 is a vector and the entries of each are identified probabilities.

In Theorem 1 I state that there exists A1 and b1 that are identified and do not specify

exactly what their entries are. This is because I am allowing for various combinations of

variables to be observed in each of the samples and do not specify the range of any of the

random variables. The dimension and entries of A1 and b1 vary based on this. In general,

b1 is the vector which includes all identified probability masses from each of the samples.

For example, if one sample contains observations of (Y,D) and one contains observations of

(Y, Z), b1 is a vector of all probability masses of (Y,D) followed by all probability masses

of (Y, Z). To understand what any row of A1 is, first note that any subset of Y , D, Z and

the covariates is a function of Z and ({Yd}d, {Dz}z, X1, ..., XK). Clearly, the instrument and

covariates can be written as the identity function of themselves. Y and D are each a function

of {Yd}d, {Dz}z and Z using (1). A row of b1 represents a probability of a point and the same

row of A1p represents the probability of the preimage of that point. The probability of this

preimage can be written as the sum of probability masses and the independence assumption

implies P(Z=z,{Yd=yd}d,{Dz=dz}z,X1=x1,...,XK =xK) = P(Z = z)P({Yd = yd}d, {Dz =

dz}z, X1 = x1, ..., XK = xK). Therefore, the elements of A1 are in terms of the probabilities

P(Z = z). Following the proof, I give an example of such A1 and b1.

The set {p : A1p = b1,1
′p = 1, p ≥ 0} is the sharp set for p. Fixing a p in this set and

the identified distribution of Z, the independence assumption implies the joint distribution

of Z and ({Yd}d, {Dz}z, X1, ..., XK). Using (1), this must imply the marginal distributions

that are identified from each of the samples. This is by constructions of A1 and b1.

Proof. (of Theorem 1) The distributions of φ1(Y,D,Z,X1,..., XK) and φ2(Y,D,Z,X1,..., XK)

are identified because i.i.d. samples of each are observed. Let v be a point in the range of φ1.

9



Let φ−1
1 (v) denote the preimage of v. As φ1 is not one-to-one, φ−1

1 (v) is a set.

P
(
φ1(Y,D,Z,X1,..., XK)=v

)
︸ ︷︷ ︸

a coefficient in b1

=
∑

y,d,z,x1,...,xk

1

[
(y, d, z, x1,..., xK) ∈φ−1

1 (v)
]
P(Y =y,D=d, Z=z,X1 =x1,..., XK =xK)

=
∑

y,d,z,x1,...,xk

1

[
(y, d, z, x1,..., xK) ∈φ−1

1 (v)
]
P(Yd =y,Dz =d, Z=z,X1 =x1,..., XK =xK)

=
∑

y,d,z,x1,...,xk

P (Z=z)1
[
(y, d, z, x1,..., xK)∈φ−1

1 (v)
]
P(Yd =y,Dz =d,X1 =x1,..., XK =xK)

=
∑

{yd′ }d′ ,{dz′ }z′ ,y,d,z,x1,...,xk

P (Z=z)1
[
(yd, dz) = (y, d) & (y, d, z, x1,..., xK)∈φ−1

1 (v)
]

︸ ︷︷ ︸
coefficients in A1

×P({Yd′ =yd′}d′ , {Dz′ =dz′}z′ , X1 =x1,..., XK =xK)︸ ︷︷ ︸
element of the vector p

The second equality holds because (Yd = y,Dz = d, Z = z) ⇐⇒ (Y = y,D = d, Z =

z), the third equality holds by independence ({Yd}d, {Dz}z, X1,..., XK) ⊥⊥ Z, and the fi-

nal equality uses that P(Yd =y,Dz =d,X1 =x1,..., XK =xK) is a marginal probability of

P({Yd′ =yd′}d′ , {Dz′ =dz′}z′ , X1 =x1,..., XK =xK). The same steps hold for all v’s in the

range of φ1 and similarly for φ2. The left-hand-side of these equations constitute the ele-

ments of b1, and the elements of A1 are sums of the probabilities P(Z=z), and the rows of

b1 and A1 correspond to the equations from above. Define b1 to be the vector that includes

P
(
φ1(Y,D,Z,X1,..., XK) = v

)
for each v and similarly for φ2, and define A1 accordingly by

the above equation with entries in terms of the probabilities P(Z=z).

The set {p : A1p = b1,1
′p, p ≥ 0} is the sharp identified set for p. To see this, notice that

given p in this set and the identified distribution of Z imply the identified distribution of each

of φ1(Y,D,Z,X1,..., XK) and φ2(Y,D,Z,X1,..., XK). The set of identified joint distributions

of (Y,D,Z,X1,..., XK) are those that have the identified distributions φ1(Y,D,Z,X1,..., XK)

and φ2(Y,D,Z,X1,..., XK). This is because I assume nothing about how the observations

across samples are related. All observations across both samples could be mutually indepen-

dent, in which case, nothing more about the joint distribution of (Y,D,Z,X1,..., XK) than

the marginals φ1(Y,D,Z,X1,..., XK) and φ2(Y,D,Z,X1,..., XK) is identified.

Example 1. Suppose that Y , D and Z are all in {0, 1} and there are no covariates. Suppose

that one sample contains i.i.d. observations of (Y,D), and another unlinked sample contains

i.i.d. observations of (Y, Z). In terms of Assumption 3.2, φ1(y, d, z) = (y, d) and φ2(y, d, z) =

(y, z). Therefore, the probabilities P (Y =y,D=d) for all (y, z) ∈ {0, 1}2 and P (Y =y, Z=z)

for all (y, d) ∈ {0, 1}2 are identified. Notice that the marginal of Z is identified. A1p = b1 is
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1 q1 q0 0 0 0 0 0 1 q1 q0 0 0 0 0 0
0 q0 q1 1 0 q0 q1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 q1 q0 0 0 0 0 0 1 q1 q0 0
0 0 0 0 0 0 0 0 0 q0 q1 1 0 q0 q1 1
q0 q0 q0 q0 0 q0 0 q0 q0 0 q0 0 0 0 0 0
0 0 0 0 q0 0 q0 0 0 q0 0 q0 q0 q0 q0 q0

q1 q1 q1 q1 0 0 q1 q1 q1 q1 0 0 0 0 0 0
0 0 0 0 q1 q1 0 0 0 0 q1 q1 q1 q1 q1 q1


︸ ︷︷ ︸

A1

p =



P(Y = 0, D = 0)
P(Y = 0, D = 1)
P(Y = 1, D = 0)
P(Y = 1, D = 1)
P(Y = 0, Z = 0)
P(Y = 1, Z = 0)
P(Y = 0, Z = 1)
P(Y = 1, Z = 1)


︸ ︷︷ ︸

b1

where q0 and q1 are P(Z = 0) and P(Z = 1), respectively. Additionally, p is as follows:

p =



P(Y1 = 0, Y0 = 0, D1 = 0, D0 = 0)
P(Y1 = 0, Y0 = 0, D1 = 0, D0 = 1)
P(Y1 = 0, Y0 = 0, D1 = 1, D0 = 0)
P(Y1 = 0, Y0 = 0, D1 = 1, D0 = 1)
P(Y1 = 0, Y0 = 1, D1 = 0, D0 = 0)
P(Y1 = 0, Y0 = 1, D1 = 0, D0 = 1)
P(Y1 = 0, Y0 = 1, D1 = 1, D0 = 0)
P(Y1 = 0, Y0 = 1, D1 = 1, D0 = 1)
P(Y1 = 1, Y0 = 0, D1 = 0, D0 = 0)
P(Y1 = 1, Y0 = 0, D1 = 0, D0 = 1)
P(Y1 = 1, Y0 = 0, D1 = 1, D0 = 0)
P(Y1 = 1, Y0 = 0, D1 = 1, D0 = 1)
P(Y1 = 1, Y0 = 1, D1 = 0, D0 = 0)
P(Y1 = 1, Y0 = 1, D1 = 0, D0 = 1)
P(Y1 = 1, Y0 = 1, D1 = 1, D0 = 0)
P(Y1 = 1, Y0 = 1, D1 = 1, D0 = 1)



.

4

So, the form of A1 and b1 depend on the support of the variables and which variables are

observed in each sample. Notice that in A1 the entries are the probabilities that Z takes a

particular value. Assumption 3.3 implied that these are identified. I return to Example 1

later in the paper.

Assumption 4. The parameter of interest, θ, can be written as

E (f ({Yd}d, {Dz}z, X1, ..., XK)), where f : Y |D| ×D|Z| ×X1 × ...×XK −→ R.

This assumption says that the parameter θ can be written as θ = c′p, where c is the vector

of values that f takes over its finite domain, and p is the vector of probabilities of the point
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in the domain. This assumption allows for many parameters including the average treatment

effect, E [Y1 − Y0], the average outcome under treatment, E (Y1), and the average outcome

under no treatment, E (Y0). f could also be an indicator, and the parameter could be the

probability of an event involving ({Yd}d, {Dz}z, X1, ..., XK). In Subsection 2.1 I discuss how

parameters such as the local average treatment effect can be bounded. For the application

in Section 4, I show how certain assumptions allow one to identify bounds on a particular

policy relevant treatment effect. In Example 2 I show how the average treatment effect fits

into Assumption 4.

Example 2. Suppose that Y , D and Z are all in {0, 1} and there are no covariates as in

Example 1. p is also as in Example 1. Suppose θ = E[Y1 − Y0]. Let

c =
(

0 0 0 0 −1−1−1−1 1 1 1 1 0 0 0 0
)′
.

Then, c′p = E[Y1 − Y0]. 4

Beyond the assumptions already made, it may be the case that the researcher is willing

to make stronger additional assumptions such as monotonicity. While such assumptions are

not needed in order to use linear programming, they can be incorporated into the linear

programming problem, and doing so can improve identified bounds.

Assumption 5. Additional assumptions the researcher makes are equivalent to linear equal-

ities in p with known coefficients, i.e. are equivalent to A2p = b2 where A2 & b2 are a known

matrix and vector, respectively.

Assumption 5 accommodates various shape restrictions made in the heterogeneous effects

literature such as monotonicity and monotone treatment response. This assumption can

be extended to include inequalities, but for simplicity I keep the discussion to equalities.

Demuynck (2015) and Lafférs (2019) both include discussions of types of restrictions that

can be incorporated into linear programming. I do not cover these details fully as they are

not central to the ideas covered in this paper. Note that linear programming problems with

inequality constraints can be restated in standard form. The linear programming problem

would then be in the vector p and slack variables.

Example 3. The common monotonicity assumption that P(Dz′ > Dz) = 0 for z ≥ z′ can

be written as a linear equation in p. Similarly, the monotone treatment response assumption

P(Yd′ > Yd) = 0 for d ≥ d′ can be written as a linear equation in p. In this example I

represent these two assumptions in the form of Assumption 5. Additionally, I include that
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the elements of p sum to one. As in Example 1, Y , D and Z are all in {0, 1} and there are

no covariates. The elements of p are ordered as in Example 1. The first row of what follows

represents that the probabilities sum to one, the second row represents the monotonicity

assumption, and the third row represents the monotone treatment response assumption.

 ∑
y1,y0,d1,d0

P(Y1 =y1, Y0 =y0, D1 =d1, D0 =d0)∑
y1,y0

P(Y1 =y1, Y0 =y0, D1 =0, D0 =1)∑
d1,d0

P(Y1 =0, Y0 =1, D1 =d1, D0 =d0)


=

 1
P(D1 =0, D0 =1)
P(Y1 =0, Y0 =1)

 =

 1
0
0


Probabilities sum to one
Monotonicity
Monotone Treatment Response.

The following represents these three restrictions as they relate to Assumption 5: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

A2

p =

 1
0
0

 .

︸ ︷︷ ︸
b2

4

Theorem 2. Under assumptions 1, 2, 3.1, 3.2, 3.3, 4, and 5 the sharp identified lower

bound for θ, θLB, can be characterized as follows:

θLB = min
p
c′p

such that A1p = b1

A2p = b2

p ≥ 0

where A1 and b1 are identified from the data and A2 and b2 are known. The upper bound,

θUB, can be written similarly with a max instead of a min.

This result follows immediately from Theorem 1 and Assumptions 4 and 5. Notice

additionally that the set {p : A1p = b1, A2p = b2, p ≥ 0} is a convex set. Because θLB

and θUB characterize the sharp identified upper and lower bounds, the sharp identified set

is the interval [θLB, θUB].
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2.1 Extensions

Conditioning Covariates Suppose that Assumption 1 that ({Yd}d, {Dz}z, X1, ..., XK) ⊥⊥
Z is not plausible, but the assumption that the instrument is independent when conditioning

on covariates W , i.e. ({Yd}d, {Dz}z, X1, ..., XK) ⊥⊥ Z|W , holds. I can extend the previous

identification result to this setting if I additionally assume the following: (1) that W takes

finitely many values, (2) W is observed in every sample, and (3) change the assumption that

the distribution of Z is identified to the conditional distribution of Z|W being identified.

The parameter of interest is still E[f({Yd}d, {Dz}z, X1, ..., XK)]. Since W is observed in each

sample, sharp bounds for E[f({Yd}d, {Dz}z, X1, ..., XK)|W = w] can be characterized as the

optimal value of the objective function in a linear programming problem for each value of

W . The distribution of W is identified, so these bounds can then be used to characterize

the identified set for E[f({Yd}d, {Dz}z, X1, ..., XK)].

Conditional Expectations I can allow for conditional expectations such as the local

average treatment effect, E[Y1 − Y0|D1 = 1, D0 = 0], using linear-fractional programming

similar to the approach of Kamat (2018). He considers other parameters in a different setting.

This conditional expectation can be written as E[(Y1−Y0)1[D1=1,D0=0]]
E[1[D1=1,D0=0]]

. Instead of Assumption

4, if the parameter can be written as a fraction, where the numerator and denominator

individually satisfy the condition in Assumption 4, then the identified upper and lower

bounds can be characterized as a linear-fractional program with an additional relevance

assumption, so that the denominator is strictly positive. Linear fractional programs can be

rearranged into linear programs as first shown in Charnes and Cooper (1962), and therefore,

can be easily solved.

2.2 Examples

I describe combinations of variables that could be observed in unlinked samples to which

the identification approach applies. The following table enumerates all possible combinations

of variables that could occur across two samples where each sample contains a subset of Y ,

D, and Z. The idea is to highlight some of the more interesting settings. Remember that

the only restriction on the subsets of variables in the samples is that Z must be observed

at least once. Some of the possibilities this allows for are less interesting than others. For

example, if the variables in one sample are a subset of the variables in the other sample,

using both samples does not improve the identified bounds over just using the sample with

more variables. Also, if Z is the only variable in a sample, that sample would not improve

the identified bounds over the just using the other sample. Additionally, one would like
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each of Y , D, and Z to be observed at least once if the parameter to be bounded is the

average treatment effect. Five settings, as shown in Table 1, do not fall into any of these

three categories. In Example 4 I focus on some of these settings. When allowing for more

than two samples, allowing for more than one instrument, and allowing for covariates, the

number of combinations can grow quite large. This gives a sense for how many settings a

researcher may come across and may be interested in using the results of this paper.

Sample 1
(Y ) (D) (Z) (Y,D) (Y, Z) (D,Z) (Y,D,Z)

S
a
m

p
le

2

(Y ) a, c
(D) c a, c
(Z) b, c b, c a, b, c
(Y,D) a, c a, c b a, c
(Y, Z) a, c a, b, c a, c
(D,Z) a, c a, b, c a, c
(Y,D,Z) a a a, b a a a a

Table 1. The section is blacked out due to symmetry. a) Denotes that the
variables in one sample are a subset of the other. b) Denotes that Z is
the only variable in one of the samples. c) Denotes that at least one of
the three variables is not observed

I explain several points with these examples. Example 4 illustrates how the identified set

shrinks when both samples are used as opposed to just one sample. Examples in Appendix

F illustrates other points, such as how the full independence assumption improves upon

bounds over the mean independence assumption with multiple samples with and without

the monotonicity assumption.

Example 4. Suppose that each of Y , D, and Z are in {0, 1},
P (Y1 =1, Y0 =0, D1 =1, D0 =0) = 1, and P (Z=0) = P (Z=1) = 1

2
. Table 2 illustrates

the improvement of the identified bounds when both samples are used together as opposed

to using each sample individually. This is evidenced by the fact that under this distribution

the average treatment effect is point identified under each of the three combinations of

samples considered in Table 2. If only the information in one of the two samples is used,

the bounds are larger and often trivial. Details for Table 2 can be found in Appendix F.2.
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Identified Set for ATE

Sample(s) (Y, Z), (D,Z) (Y, Z) (D,Z)

Identified Set {1} [−1, 1] [−1, 1]

Sample(s) (Y,D), (Y, Z) (Y,D) (Y, Z)

Identified Set {1} [0, 1] [−1, 1]

Sample(s) (Y,D), (D,Z) (Y,D) (D,Z)

Identified Set {1} [0, 1] [−1, 1]

Table 2. The first column of this table show the identified set for various com-
binations of variables observed in two different i.i.d. samples. The second
and third columns show the identified set when only one of the two sam-
ples is observed.

4

Example 4 is quite idealized; the identified set will not be a point in typical examples.

However, one can anticipate an improvement in many settings. I chose this example for the

simplicity of the data generating process.

3 Estimation

In this section I develop an estimation procedure based on the identification result in the

previous section. It may seem natural to define a linear program which replaces identified

probabilities in Theorem 2 with sample analogues. However, this is problematic as I illustrate

subsequently. Before I do so, I introduce some notation.

Notation 1. Let n1 and n2 denote the sample sizes of each of the two samples. All
p→ in

this section should be understood as n1, n2 →∞.

Definition 1. Let Â1 and b̂1 be the matrix and vector whose elements replace the probabil-

ities in A1 and b1 with empirical probabilities.

Considering Example 1, the entries of Â1 replace P(Z = 0) and P(Z = 1) in A1 with

P̂(Z = 0) and P̂(Z = 1), the empirical probabilities of (Z = 0) and (Z = 1) from the

sample where (Y, Z) are observed. b̂1 similarly replaces the probabilities in b1 with empirical

16



probabilities.

b̂1 =



P̂(Y = 0, D = 0)

P̂(Y = 0, D = 1)

P̂(Y = 1, D = 0)

P̂(Y = 1, D = 1)

P̂(Y = 0, Z = 0)

P̂(Y = 1, Z = 0)

P̂(Y = 0, Z = 1)

P̂(Y = 1, Z = 1)




Emprical probabilities from the sample of (Y,D)


Emprical probabilities from the sample of (Y, Z)

Remark: In some circumstances, Definition 1 leaves some ambiguity in exactly how the

entries of A1 and b1 should be estimated, which did not manifest in the previous example.

If Z is observed in both samples, then using all n1 + n2 observations to create the empirical

probabilities estimating P(Z = z) suffices since P̂(Z = z)
p→ P(Z = z). If it is believed

that all observations across both samples are mutually independent, this is the natural

choice to estimate P(Z = z). If it is believed that all of the individuals of the first sample

are observed in the second sample, and thus each observation of Z in the first sample is

observed in the second sample, a better estimate would be to use only the second sample

to estimate P(Z = z). If Z is only observed in one sample, the empirical probabilities for

Z = z from that sample are the natural estimators of the P(Z = z)’s.

I illustrate here why replacing A1 and b1 with Â1 and b̂1 would be problematic. To under-

stand this, notice that (Y,D,Z,X1, ..., XK) is a function of ({Yd}d, {Dz}z, X1, ..., XK) and Z.

Each distribution of ({Yd}d, {Dz}z, X1, ..., XK) and distribution of Z, implies a distribution

of (Y,D,Z,X1, ..., XK), which in turn implies the distributions of φ1(Y,D,Z,X1, ..., XK) and

φ2(Y,D,Z,X1, ..., XK). This is represented by the linear transformation of p to A1p. Re-

placing A1 with Â1 results in a similar transformation and Â1p are the probability masses of

the marginals of a distribution represented by φ1 and φ2. Therefore, if there is any overlap

in the variables that φ1 and φ2 keep, the sample marginals of these variables must be equal

for there to be a solution to Â1p = b̂1. If the samples are independent, the probability that

this is true goes to zero. In the following example I show precisely why this is true for a

particular setting.

Example 1. (Continued) Make the same assumptions as in Example 1 from Section 2.

Suppose one sample has n1 i.i.d. observations of (Y,D), and another sample has n2 i.i.d. ob-

servations of (Y, Z). Suppose all n1 +n2 observations are mutually independent. A necessary

condition for {p : Â1p = b̂1, A2p = b2,≥ 0} to be nonempty, would be that the sample dis-

tribution of Y in both samples are identical–each sample distribution of Y converges to the
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same population distribution of Y , but that is not enough. This set being nonempty is nec-

essary for an estimator based on replacing identified coefficients with estimated coefficients

to exist. The probability of this goes to zero as n1, n2 →∞ if var(Y ) 6= 0.

For this set to be nonempty, it is clearly necessary for Â1p = b̂1 to have a solution where

Â1 =



1 q̂1 q̂0 0 0 0 0 0 1 q̂1 q̂0 0 0 0 0 0

0 q̂0 q̂1 1 0 q̂0 q̂1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 q̂1 q̂0 0 0 0 0 0 1 q̂1 q̂0 0

0 0 0 0 0 0 0 0 0 q̂0 q̂1 1 0 q̂0 q̂1 1

q̂0 q̂0 q̂0 q̂0 0 q̂0 0 q̂0 q̂0 0 q̂0 0 0 0 0 0

0 0 0 0 q̂0 0 q̂0 0 0 q̂0 0 q̂0 q̂0 q̂0 q̂0 q̂0

q̂1 q̂1 q̂1 q̂1 0 0 q̂1 q̂1 q̂1 q̂1 0 0 0 0 0 0

0 0 0 0 q̂1 q̂1 0 0 0 0 q̂1 q̂1 q̂1 q̂1 q̂1 q̂1


.

When rows 1 & 2, rows 3 & 4, rows 5 & 7, and rows 6 & 8 are added together this new

matrix is formed:
1 1 1 1 0 q̂0 q̂1 1 1 q̂1 q̂0 0 0 0 0 0

0 0 0 0 1 q̂1 q̂0 0 0 q̂0 q̂1 1 1 1 1 1

1 1 1 1 0 q̂0 q̂1 1 1 q̂1 q̂0 0 0 0 0 0

0 0 0 0 1 q̂1 q̂0 0 0 q̂0 q̂1 1 1 1 1 1

 .

Notice that the 1st & 3rd rows are equal, and the 2nd & 4th rows are equal. Performing the

same operation on b̂1, the 1st row is the empirical probability of (Y = 0) from the sample of

(Y,D) and the 3rd row is the empirical probability of (Y = 0) from the sample of (Y, Z), and

similarly for (Y = 1) and the 2nd and 4th rows. Therefore, for Â1p = b̂1 to have a solution,

it is necessary for the sample distribution of Y to be the same from both samples.

4

The solution to this problem is to project b̂1 onto {b̄1 : Â1p = b̄1, A2p = b2, p ≥ 0}. This

new vector, when used in lieu of b̂1 does not suffer from the problem outlined previously, by

construction.

Definition 2. Define b̃1 ≡ Â1p̃ where

(p̃, b̃1) ∈ arg min
(p,b̄1)

(
b̂1 − b̄1

)′ (
b̂1 − b̄1

)
such that Â1p = b̄1

A2p = b2

p ≥ 0.
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Notice that substituting Â1p for b̄1 in
(
b̂1 − b̄1

)′ (
b̂1 − b̄1

)
yields the term(

b̂1 − Â1p
)′ (

b̂1 − Â1p
)

= p′Â′1Â1p−2b̂′1Â1p+ b̂′1b̂1, which is quadratic in p with Â′1Â1 clearly

positive semidefinite. Because {p : A2p=b2, p ≥ 0} is a convex set and
(
b̂1 − b̄1

)′ (
b̂1 − b̄1

)
is

strictly convex in b̄1 (a choice variable), it must be that each p̃ in the arg min have the same

vector Â1p̃. Therefore, calculating b̃1 amounts to solving a quadratic programming problem

(picking any arbitrary minimizer p̃) and multiplying the resulting arg min by the matrix Â1

to find b̃1. The approach that I take is to replace A1 and b1 with Â1 and b̃1

Definition 3. Define θ̂LB, the estimate of θLB, as

θ̂LB = minp c
′p

s.t. Â1p = b̃1

A2p = b2

p ≥ 0.

Define θ̂UB similarly with a max replacing the min.

To recap the estimation procedure, using sample estimates to replace the population

parameters in the linear programming problem from Theorem 2 may result in an inconsistent

system of equations. I solve this problem by projecting the vector b̂1 onto the space of vectors,

such that there is a solution when this vector is used in the linear programming problem.

This is a simple two step procedure where the first step is to find the optimal solution in a

quadratic programming problem and perform one matrix multiplication and the second step

is to perform a new linear programming problem. This is related to the generalized method

of moments. In GMM the true value of the parameter sets a vector of population moments

equal to zero. In my setting there exists a vector p such that(
A1

A2

)
p−

(
b1

b2

)
=

(
0

0

)
.

The difference is that p is not the parameter we are interested in and there is not a unique

minimizer p in Definition 2, so we need to go through the extra linear programming step.

The prior approach of Freyberger and Horowitz (2015) could not be used as they give

conditions when sample moments can replace population moments and the estimates exist

with probability going to one. As evidenced in Example 1, empirical probabilities cannot

replace population probabilities. The advantage the estimator in Definition 3 is that it surely

produces an estimate, not just with probability going to one.
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The problem that I address in this section is not new. Mogstad et al. (2018) have a

similar issue in estimation. In comparison to Mogstad et al. (2018), the approach I take does

not require the choice of a tuning parameter. In my approach I make use of the fact that

my linear program is bounded, since the choice variable is positive and sums to one, which

helps to avoid any tuning parameter. Both my approach and that of Mogstad et al. (2018)

are computationally simple. Where their approach requires solving two linear programming

problems, my approach requires solving a quadratic programming problem, followed by a

linear programming problem. Both approaches also allow the researcher to impose shape

restrictions.

Before introducing the additional assumptions used to show consistency of these esti-

mates, consider the assumptions already made in the identification section and how those

help estimation. b1 is composed of identified probabilities and b̂1 are empirical analogues

from i.i.d. samples, and so it is immediate that b̂1
p→ b1. Similarly, the elements of A1 are

identified probabilities and the elements of Â1 are the empirical analogues from i.i.d. sam-

ples, so the elements of Â1 converge in probability to the elements of A1. As a result of

both of these convergences and that the linear programs for identification and estimation

are bounded, b̃1
p→ b1. These linear programs are bounded because p ≥ 0 and A2p = b2 is

assumed to include 1′p = 1 for Theorem 3. This is shown early in the proof of Theorem 3.

Assumption 6. Let m ≡ rank (A). Let A =

(
A1

A2

)
and Â =

(
Â1

A2

)
. Let I index rows

of A and define AI to be the submatrix of A that keeps that the rows in I. Define ÂI

similarly. Assume the following

1. rank
(
Â
)

= m with probability going to one.

2. There exists I such that AI and ÂI each have m rows and rank (AI) = rank
(
ÂI

)
= m

with probability going to one.

3. Let r be the number of rows of A2 and b2 that assign elements of p to zero. There

exists an optimal basic feasible solution with m − r strictly positive elements to the

population linear programming problem in Theorem 2. 3

The r rows referred Assumption 6.3 refer to the rows such that elements of A2 in that

row are all ≥ 0 and the element of b2 is zero. In Example 3 A2 and b2 implies r = 2.

Assumption 6 is unnecessary for the consistency result in specific cases. This assumption

is needed because the entries of A1 are estimated. However, in some cases, the linear equa-

3Because A can have rank less than the number of rows of A and the basic feasible solutions only make
sense when the number rows of A and the rank of A are the same, this is referring the linear programming

problem that keeps the rows of A and

(
b1
b2

)
indexed by I.
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tions can be expressed in such a way that A1 is known and only b1 needs to be estimated.

This includes when Z is observed in every sample and one is willing to assume instead that

P(Z = z) > 0. Appendix Subsection D.1 discusses this in more detail.

In Appendix G I discuss why Assumption 6.1 and 6.2 would be satisfied. In this setting

much can be said about the form of A and Â. I decompose A and Â into the product of

matrices, of which, properties can be demonstrated.

In Appendix D.2 I provide an alternative to Assumption 6.3 with boundedness of the dual

program. In the proof of Theorem 3 I construct an upper and lower bound on θ̂LB and show

that each converges in probability to θLB. Showing that the lower bound of θ̂LB converges to

θLB does not require Assumption 6, but uses that the primal linear programming problem is

bounded. If the dual linear programming problem is also bounded, then a similar idea holds

for the upper bound on θ̂LB converging to θLB. This can be repeated for θUB and θ̂LB.

Theorem 3. If Assumptions 1, 2, 3, 4, 5, and 6 are satisfied and assuming A2p = b2

includes the restriction 1′p = 1, then θ̂LB
p→ θLB and θ̂UB

p→ θUB.

Remember that the identified set is the closed interval [θLB, θUB]. Because θ̂LB
p→ θLB

and θ̂UB
p→ θUB, [θ̂LB, θ̂UB] converges in probability to [θLB, θUB] in the Hausdorff metric.

See Appendix B for the proof of Theorem 3. This proof uses, in part, classical results

of sensitivity analysis in linear programs. These results invoke Strong Duality to show that

the optimal value of a linear programming problem is continuous piecewise linear in b (the

vector of constants in the restrictions). Such results can be found in Bertsimas and Tsitsiklis

(1997). One could invoke this immediately if the coefficients in the matrix A1 were known.

Because the coefficients in A1 need to be estimated, the result is not immediate, but the

proof still makes use of this result.

I should also note, this approach imposes any shape restrictions made in Assumption

5. As an illustration of this benefit, I use this estimation procedure in simulations in the

Section 5 to compare it to regression estimates in a setting where a local average treatment

effect is being estimated.

In Result 1 I give a sufficient condition for Assumption 6.3.

(
b1

b2

)
cannot lie in the

union of a finite number of linear spaces of dimension m− r− 1 or less and the dimension of

the span of A is m. The solution is immediate from the definition of a basic feasible solution.

Result 1. If

(
b1

b2

)
is not a linear combination of strictly less than m − r columns of A

then 6.3 is satisfied.
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4 Application

In this section I apply the econometric theory of Sections 2 and 3 to algorithmic bail

reform. The idea is to use information on felony defendants that is available at the time of

arrest to determine who is released and who is detained pretrial. The algorithm is a function

that maps from these variables to a decision of pretrial release or pretrial detention. The

status quo is that individuals charged with a crime see a bail judge who determines, among

other things, whether to release, detain, or set bail for an individual. I am interested in how

average outcomes change if a freely available algorithm replaces judicial discretion in pretrial

release. The outcome I focus on is whether or not an individual is sentenced to incarceration.

This application follows in the previous literature using the random assignment individuals

to bail judges and the tendency of the judge to detain individuals as an instrument.

This section is structured as follows: First, I formalize the parameter begin estimated.

Next, I discuss the algorithm used to determine pretrial release. Then, I discuss the data

setting and the instrument. Finally, before presenting and discussing the results, I discuss

the related literature.

As mentioned previously, I am interested in the change to the incarceration rate if judicial

discretion–the status quo–were replaced with an algorithm to determine which defendants

are released pretrial. This is a distinct parameter from the average treatment effect or the

local average treatment effect. The policy setting that the average treatment effect would be

relevant for is if one wants to know how the average outcome will change if the status quo is

to detain everyone pretrial and the new policy is to release everyone pretrial, or vice versa.

This is clearly not the case as a set of individuals are released under the status quo, and a

different set of individuals would be released under the new policy. A similar statement can

be made for the local average treatment effect. The change in the average outcomes from

the status quo to the new policy is a parameter that would be helpful for a policymaker in

determining whether the policy should be implemented.

Let the superscript a denote the status quo policy and let the superscript b denote the

policy of algorithmic pretrial release. Y a denotes the outcome (incarceration) under the

status quo and Y b denotes the outcome when the algorithm is used to determine pretrial

release. The parameter of interest is the policy relevant treatment effect:4

PRTE = E[Y b − Y a].

4The policy relevant treatment effect has been defined differently in different papers. For example, this
follows the given definition in Heckman and Vytlacil (2001). Mogstad et al. (2018) define the policy relevant
treatment effect as this same parameter, except divided by the change in the proportion of individuals that
are treated.
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First, notice that in this setting Y a, the status quo outcome, is observed, so E[Y a] is point

identified. Therefore, it is sufficient to consider the identified set for E[Y b]. Before showing

how this parameter fits into the form discussed in Section 2, I need to introduce additional

notation and one further assumption.

Notation 2. Let Y a, Da, Za, Y a
1 , Y a

0 , {Da
z}z, Za, Xa

1 ,..., Xa
K denote the variables under

the status quo. Define the variables under the alternative policy similarly instead with the

superscript b.

Notation 3. Let db : X1, ...,XK → {0, 1} denote the algorithm to determine pretrial release.

The status quo retains the same equations relating unobserved variables to observed

variables:

Y a = DaY a
1 + (1−Da)Y a

0

Da =
∑
z

Da
z1[Za = z].

Under the alternative policy, using the algorithm to determine pretrial release, the following

equations relate the potential outcomes and covariates to treatments and outcomes:

Y b = DbY b
1 + (1−Db)Y b

0

Db = db(X
b
1, ..., X

b
K).

In order to be able to say anything about the outcomes under this alternative policy b,

an assumption about how the distributions of the variables are related under the different

policies is needed.

Assumption 7 (Policy Invariance). (Y a
1 , Y

a
0 , X

a
1 , ..., X

a
K)

d
= (Y b

1 , Y
b

0 , X
b
1, ..., X

b
K)

d
=

(Y1, Y0, X1, ..., XK)

Similar policy invariance assumptions have been made in, for example, Heckman and

Vytlacil (2005). In terms of what this means for E[Y b], this assumptions says that the only

way that the mean of the outcome is affected is by changing who is treated, i.e. who is

detained pretrial. The distribution of potential outcomes and covariates does not change

depending on which policy is implemented.

23



This results in the following:

E[Y b] =E[db(X
b
1, ..., X

b
K)Y b

1 + (1− db(Xb
1, ..., X

b
K))Y b

0 ]

=E[db(X1, ..., XK)Y1 + (1− db(X1, ..., XK))Y0].

Recalling Assumption 4, E[db(X1, ..., XK)Y1 + (1−db(X1, ..., XK))Y0] satisfies the conditions

for parameters that can be bounded. db(X1, ..., XK)Y1 + (1− db(X1, ..., XK))Y0 is a function

of Y1, Y0, and X1, ..., XK .

The algorithm I consider is the Public Safety Assessment (PSA), which is freely available

from the Laura and John Arnold Foundation.5 The PSA scores individuals on how likely

they are to fail to appear for a court date, how likely they are to commit a new crime, and

whether they are likely to commit a new violent crime based on information that could be

made available to a bail judge just after arrest, such as age and prior interactions with the

criminal justice system. The score for whether an individual is likely to commit a new violent

crime maps to {0, 1}–1 indicating that the individual is likely to commit a new crime. The

algorithm I consider for determining pretrial release, db, is this mapping for violent crime.6

7 In other words, the policy that I compare to the status quo would be to detain those

that the PSA deems likely to commit a new violent crime, while releasing those that the

PSA does not flag as likely to commit a new violent crime. The algorithm takes as inputs

whether the current offense is violent, the age of the defendant, whether the defendant has a

pending charge at the time of the offense, and whether the defendant has any prior conviction

(misdemeanor or felony) and the number of prior violent felonies.

In the literature using the tendencies of judges as an instrument there are a few ways of

calculating the value of the instrument. The instrument in this paper is the mean pretrial

detention rate for the first bail judge that the defendant sees. In Philadelphia, there are six

judges that oversee the majority of bail hearings at any one time. I include only observations

that went to one of these six bail judges. Therefore, the instrument takes six unique values,

and all individuals assigned to the same bail judge have the same value of their instrument.

Additionally, without any shape restrictions being made, such as monotonicity, the results

5For full details see: LJAF (2019)
6This application could be repeated using a cutoff rule over the three scores that are given by the PSA.

The scores for failure to appear, and new criminal activity take values 1, 2, ...6, so using new violent criminal
activity is somewhat less arbitrary.

7The LJAF states that this is not intended as a replacement for judicial discretion, but to assist judges
in making their decisions. However, in order to say anything about how this affects outcomes, one must
make an assumption about how the algorithm is used. This sentiment is shared in Kleinberg et al. (2017).
This section could be repeated using similar algorithms.
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of identification and estimation are equivalent to treating the instrument as a categorical

variable for which judge the defendant was assigned. When I incorporate shape restrictions,

such as monotonicity, all that matters is the order of the values of the instrument. The reader

may be concerned that the values of the instrument are estimated. However, if no two bail

judges have the exact same true propensity to detain individuals pretrial, then because the

estimates of this true propensity are consistent, the ordering is correct with probability going

to one. The results are reported for various combinations of shape restrictions.

The application relies on two samples: the first sample is a set of court records from

felony defendants in Philadelphia and the second sample is the State Court Processing

Statistics (SCPS) maintained by the Bureau of Justice Statistics BJS (2014). The SCPS

are anonymized and prohibited through a data use agreement from being linked to other

data sources. Additionally, the SCPS statistics and court records do not have any overlap in

observation as the court records available begin in 2009 and the most recent year Philadelphia

is sampled in the SCPS is in May of 2004.8 So that the gap in years is as short as possible

between the two samples, I use the May 2004 observations from Philadelphia and observa-

tions in the court records of those arrested in May 2010–using only May in case there is any

seasonality in criminal activity. The court records contain observations at the case level for

those charged with a felony. Among other variables, I observe the name of the bail judge for

each bail hearing, type of bail and the defendants’ bail statuses, and information on sentenc-

ing for each of the charges. Additionally, the court records contain only some of the inputs

into the algorithm determining pretrial release db, such as the age of the defendant. However,

not all of the inputs into the algorithm are in the court records. This is where the SCPS

are useful. The SCPS contain the inputs into the algorithm as well as the treatment and

outcome, but not the instrument. Mapping this to the notation of Assumption 3.2 of Section

2, the observations in the court records are of φ1(Y,D,Z,X1, ..., XK) and the observations

in the SCPS are of φ2(Y,D,Z,X1, ..., XK). φ1(y, d, z, x1, ..., xK) = (y, d, z, x1, ...XK1) where

K1 is the number of covariates in the court records. φ2(y, d, z, x1, ..., xK) = (y, d, x1, ..., xK).

The covariates, being information about the defendant that is determined before the bail

judge is assigned such as age and prior criminal history, should independent of which judge

the defendant sees as they serve on a rotating schedule.

The application is most similar to that of Kleinberg et al. (2017). They use machine

learning to predict crime, as proxied by failure to appear and/or rearrest, of those arrested

in New York. There are two important econometric distinctions between my application and

8In even years from 1990 to 2006 and in 2009 the BJS sampled large urban counties and within those
selected counties sampled some of the felony defendants arrested in May of that year. For Pennsylvania court
records, the standard for bulk electronic data requests is limited to the most recent 10 year time frame.
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that of Kleinberg et al. (2017). First, I am taking the algorithm to make bail decisions as

given. Second, in addition to using court records, I am using the State Court Processing

Statistics, which cannot be linked. If the methodology of Kleinberg et al. (2017) where

applied to my data setting in Philadelphia, one would only use the court records and not use

the State Court Processing Statistics, which would limit which algorithms are possible, i.e.

an algorithm would not be able to take as inputs the covariates observed only in the State

Court Processing Statistics. The Pretrial Safety Assessment uses such covariates.

Table 3 displays the results using the estimation procedure described in Section 3. Upper

and lower bounds for E[Y b−Y a], which is the change in the incarceration rate if the algorithm

described in Appendix C where to replace the status quo, are reported.

Table 3 reports four sets of results. Each set of results imposes a different combination of

the monotonicity and monotone treatment response assumptions. In words, the monotonicity

assumption says that when judges are ordered from lowest to highest propensity to detain

individuals pretrial that if an individual were to be detained by any particular judge, they

would also be detained by any judge with a higher propensity to detain. This assumption is

dubious in this setting as judges likely place varying importance on various factors relating

to the individual and of the case. For example, one judge may only take into account

the defendant’s criminal history, whereas another judge may also consider the defendant’s

demeanor in court. Monotone treatment response, on the other hand, is more credible. In

the context of this application, monotone treatment response says that with probability zero

an individual is sentenced to incarceration when detained pretrial but is not sentenced to

incarceration when released pretrial. One mechanism for the effect of this treatment on

the outcomes discussed in Dobbie et al. (2018) is that the prosecution has leverage for an

individual to accept an unfavorable plea deal while being detained until their trial begins.

(1) (2) (3) (4)

Assumptions

Monotonicity 3 3

Monotone Treatment Response 3 3

Estimates

Lower Bound -0.3621 -0.2740 -0.2258 -0.0882

Upper Bound 0.1378 -0.0230 0.0758 -0.0193

Table 3. This table reports the estimated upper and lower bounds of the change
in the incarceration rate of those charged with a felony in Philadelphia if
the algorithm described in this section were to replace the status quo of
judicial discretion in determining pretrial release. Each column presents
estimates using different combinations of shape restrictions.
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Both sets of results for which the monotonicity assumption was not made, (1) and (3),

include 0 in the estimate of the identified set. 0 being in the identified set would mean

that it cannot be concluded whether replacing the status quo of allowing judges to make

pretrial release decisions with this algorithm would increase or decrease the incarceration

rate for felony defendants in Philadelphia county. In contrast, both estimated sets for which

the monotonicity assumption is made, (2) and (4), do not contain 0 in the estimate for the

identified set since the estimated upper bounds are negative. This does not necessarily mean

that 0 is not in the true identified set because these are just consistent estimates of the

bounds, and could be below 0 as a result of random sampling error. If 0 were not in the

identified set, this would mean one could conclude that the algorithm would decrease the

incarceration rate.

5 Use of Estimator for LATE and Simulations

In this section I compare the estimator discussed in the previous section via simulations.

I compare the use of the estimator defined in Definition 3 to estimate parameters in a local

average treatment effects (LATE) setting because there exists well established estimates

that I can compare to, namely the ordinary least squares estimate for the reduced form and

the two stage least squares estimate (TSLS) for the LATE. Before presenting the results

of simulations, I discuss how the use of the estimate in Definition 3 relates to that of the

regression estimate in this context. I refer to the estimate in Definition 3 in this section as

the shape restricted estimate. The parameters being estimated are point identified and the

estimates are points (the min and max in Definition 3 are equal). In this section I assess

how imposing shape restriction in LATE via Definition 3 improves the precision of estimates

relative to OLS or TSLS.

For this section I take D and Z to be in {0, 1}, Y takes finitely many values, and I observe

an i.i.d. sample of (Y,D,Z). I additionally make the monotonicity assumption of LATE and

that (Y1, Y0, D1, D0) ⊥⊥ Z. Notice the following:

LATE = E [Y1 − Y0|D1 = 1, D0 = 0] =
E [(Y1 − Y0)1 [D1 = 1, D0 = 0]]

P [D1 = 1, D0 = 0]
. (2)

Notice that both the numerator and the denominator are linear functionals of the vector

of probabilities p of P(Y1 = y1, Y0 = y0, D1 = d1, D0 = d0). Therefore, LATE =
c′rfp

c′fsp
where

crf and cfs are vectors. The sharp set of feasible p can be written as {p : A1p= b1, A2p=

b2, p ≥ 0}, since the results of Section 2 can be applied. Additionally, because the first
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stage and reduced form of LATE are point identified, {c′rfp : A1p= b1, A2p= b2, p ≥ 0} and

{c′fsp : A1p=b1, A2p=b2, p ≥ 0} are each a singleton.

Consider the regression estimate of the denominator of (2), the reduced form estimate:

Ê [Y |Z=1]− Ê [Y |Z=0]=
∑
y

y
(
P̂ (Y =y|Z=1)− P̂ (Y =y|Z=0)

)
=
∑
y

y

[∑
d

(
P̂ (Y =y,D=d|Z=1)− P̂ (Y =y,D=d|Z=0)

)]
.

(3)

It turns out that this estimate is equivalent to replacing the coefficients in the linear

programming problem with the empirical probabilities and dropping the restriction that

p ≥ 0, i.e. it is equivalent to

c′rfp

s.t. Â1p = b̂1

A2p = b2

where A2p=b2 represents the monotonicity condition and that the elements of p sum to one.

Imposing the shape restrictions that A2p = b2 and p ≥ 0 should improve the precision

of the estimate, and the estimation outlined previously does impose this shape restriction.

This is equivalent to imposing the sharp testable implication for which a test was developed

in Kitagawa (2015). This implies the sign of the population version of the terms in the inner

sum in (3). In the sample the terms in could have either sign, despite the population sign.

The following result gives conditions for which the regression estimate and the shape

restricted estimate of the reduced form and first stage are equal with probability going to

one

Result 2. The regression estimate of E [(Y1 − Y0)1 [D1 =1, D0 =0]] is equal to the use of

estimation procedure in Definition 3 with probability going to one if for each value of y

1. P (Y1 =y,D1 =1, D0 =0) > 0 or P (Y1 =y,D1 =1, D0 =1) = 0, and

2. P (Y0 =y,D1 =1, D0 =0) > 0 or P (Y0 =y,D1 =0, D0 =0) = 0

in addition to the assumptions that (Y,D,Z) are i.i.d., (Y1, Y0, D1, D0) ⊥⊥ Z, and the mono-

tonicity assumption P (D1 =0, D0 =1) = 0.

A similar result holds for P (D1 =1, D0 =0) replacing E ((Y1 − Y0)1 [D1 =1, D0 =0]). In

Result 2 give conditions for when, if the estimation procedure in Section 3 were implemented,
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the estimate would be the same as the regression estimate of the reduced form with prob-

ability going to one. It follows that if P (D1 =1, D0 =0) > 0, then the ratio of these two

estimates is the same as the two-stage least squares estimate of the LATE with probability

going to one.

With this previous result in mind I present results comparing the root-mean-squared

error of the regression estimate and shape restricted estimate.

In Table 4 I show the data generating process for the Monte Carlo simulations. For all

specifications P (Z=0) = P (Z=1) = 1/2. For each specification the population reduced

form E(Y |Z = 1)− E(Y |Z = 0) = 0, and therefore LATE = 0.
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Table 4. Data generating processes for Monte Carlo simulations

For the first specification P (Y1 =y,D1 =1, D0 =0) = P (Y0 =y,D1 =1, D0 =0) = 1/8 > 0.

Therefore, the estimates of the reduced form and first stage will be equal to the shape re-

stricted estimate with probability going to one according to Result 2. In the second and third

specification the data generating process is adjusted so that more shape restrictions hold with

equality in the population. In the second specification I changed two of the probabilities to

P (Y1 =0, D1 =1, D0 =0)=P (Y0 =0, D1 =1, D0 =0)=0. In the third specification I addition-

ally change the two probabilities to P (Y1 =1, D1 =1, D0 =0)=P (Y0 =1, D1 =1, D0 =0)=0.

In Tables 5 and 6 I present Monte Carlo simulation results for the three specifications

from Table 4. Table 5 presents the root-mean-square error for the estimate of the reduced

form, E[Y |Z=1]−E[Y |Z=0], and Table 6 presents results for estimates of the local average

treatment effect. All simulations were performed with 10,000 Monte Carlo draws.
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Specification 1 Specification 2 Specification 3

n Reg.
Shape

Restricted
Reg.

Shape

Restricted
Reg.

Shape

Restricted

100 0.2245 0.2195 0.2241 0.1773 0.2246 0.1644

500 0.0992 0.0992 0.0992 0.0792 0.0993 0.0728

1000 0.0707 0.0707 0.0705 0.0564 0.0706 0.0519

5000 0.0318 0.0318 0.0317 0.0254 0.0318 0.0233

Table 5. RMSE of the reduced form estimates. The columns labeled “Reg.”
indicate the regression estimate, and the columns labeled “Shape Re-
stricted” indicate the estimate discussed in this paper.

Specification 1 Specification 2 Specification 3

n 2SLS
Shape

Restricted
2SLS

Shape

Restricted
2SLS

Shape

Restricted

5009 0.2004 0.2004 0.2698 0.2047 0.4199 0.2625

1000 0.1422 0.1422 0.1900 0.1465 0.2893 0.1914

5000 0.0636 0.0636 0.0847 0.0667 0.1278 0.0896

Table 6. RMSE of the local average treatment effect estimates. The columns
labeled “2SLS” indicate the two-stage least squares estimate, and the
columns labeled “Shape Restricted” indicate the estimate discussed in
this paper.

The first specification of Tables 5 and 6 support Result 2. The estimates of the root-

mean-squared error are identical for the first specification for sample sizes of 500 or larger.

The first specification satisfies the assumptions for the two estimates to be identical with

probability approaching one. With a small sample size there is a small improvement in

RMSE by imposing the shape restrictions.

The second and third specifications do not satisfy the conditions for Result 2, so the

estimates do not need to be equal with increasing probability. Additionally, some shape

restrictions hold with equality in the population, so imposing the shape restriction should

improve the precision of the estimate. The RMSE is about 20% less when the shape restric-

tions are imposed for the reduced form estimates for each sample size in specification 2. The

improvement increases to slightly more than 25% for each sample size in Specification 3.

9n = 100 simulation performed but not included in Table 6. There is a weak instrumental variables
for the 2SLS estimates. One of the Monte Carlo draws had a first stage of exactly zero for n = 100 in
Specification 3. Even after dropping that draw, the RMSE of the estimate for the LATE many orders of
magnitude greater than the rest of the RMSEs in Table 6. The shape restricted estimate improves on the
2SLS estimate for each specification.
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Additionally, these shape restrictions seem to help with the weak instruments problem.

The first stage E(D|Z = 1) − E(D|Z = 0) decreases when moving from Specification 1 to

Specification 3. The RMSE of the estimate with shape restrictions shows a 2% to 5% increase

between Specifications 1 and 2 for all samples sizes, while that of the two-stage least squares

estimate increases between 33% and 35% depending on the sample size.

6 Conclusion

In this paper I have addressed an instrumental variables setting with multiple samples

drawn from the same population that cannot be linked. I have shown that in this setting the

sharp identified upper and lower bounds for parameters such as the average treatment effect

can be characterized as the optimal value of the objective function in a linear programming

problem with coefficients that are identified from the data. I have shown consistency of

an estimate which only requires solving a quadratic programming problem followed by a

linear programming problem. The methods developed in Sections 2 and 3 are applied to

algorithmic bail reform. I estimate the identified set for the change in the incarceration

rate if judicial discretion where replaced by a freely available algorithm. I provide estimates

under a variety of combinations of shape restrictions, and whether zero is in this estimate of

the identified set depends on the shape restrictions made.
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A Identification Generalizations

In this section I extend the setting of Section 2 to the case when there are an arbitrary

number of samples, J , and an arbitrary number of instruments, L. Let Z1, Z2,..., ZL denote

the instruments and let Z = (Z1, ..., ZL) be the vector of all instruments. Here I present

assumptions that are the counterparts to Assumptions 1, 2, and 3 of Section 2.

Assumption 1a. ({Yd}d, {Dz}z, X1, ..., XK) ⊥⊥ (Z1, ..., ZL)

Assumption 2a. Y ∈ Y , D ∈ D, Zl ∈ Zl for each l, Xk ∈ Xk for each k. |Y|, |D|, |Zl| for

each l, and |Xk| for each k are finite.

Assumption 3a.

1. ({Yd}d, {Dz}z, Z1, ..., ZL, X1, ..., XK) is identically distributed across samples.

2. Let φ1, φ2, ..., φJ be functions of ({Yd}d, {Dz}z, Z1, ..., ZL, X1, ..., XK) that select a

subset of these variables. The observations in sample 1 are i.i.d. observations of

φ1({Yd}d, {Dz}z, Z1, ..., ZL, X1, ..., XK), the observations in sample 2 are i.i.d. obser-

vations of φ2({Yd}d, {Dz}z, Z1, ..., ZL, X1, ..., XK), and so forth through sample J and

φJ .

3. The distribution of (Z1, ..., ZL) is identified.

Theorem 4. [Linearity] If Assumptions 1a, 2a, 3a.1, 3a.2, and 3a.3 are satisfied, then the

sharp identified set for the vector of probabilities masses P({Yd = yd}d, {Dz = dz}z, X1 =

x1, ..., XK =xK) are the vectors p satisfying

A1p = b1

1′p = 1

p ≥ 0

where A1 is a matrix, b1 is a vector and the entries of each are identified probabilities.

Remark: The assumption that the distribution of Z is identified would be satisfied if

Z1, ..., ZL are all in the same sample. Alternatively, if Z1, ..., ZL are mutually independent
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and each Zl is observed in at least one sample would also satisfy the requirement that the

distribution of Z is identified. In Example 5 I illustrate how this can be generalized when

there are an arbitrary number of instruments spread across an arbitrary number of samples.

In Lemma 1 I formalize these conditions.

Example 5. Assume Z = (Z1 Z2 Z3)′. Suppose there are two samples and the observations

are i.i.d. within each sample. The observations in one sample are of the pair (Z1, Z2) and

observations in the second sample are of the pair (Z2, Z3). Mutual independence of Z1, Z2,

and Z3 is not needed. It is sufficient for either (Z1, Z2) ⊥⊥ Z3, or (Z2, Z3) ⊥⊥ Z1. This

assumption is clearly weaker than assuming mutual independence. 4

Lemma 1. Suppose Z = (Z1 Z2 · · · ZL)′ takes finitely many values. Assume:

1. there exists a partition (Pj)j∈J of {1, ..., L} such that the {ZPj
}j∈J are mutually inde-

pendent where ZPj
is a subvector of (Z1 Z2 · · · ZL)′, and

2. for all j ∈ J , there exists an i.i.d. sample such that for each l ∈ Pj, Zl is observed in

sample j.

Then the distribution of Z is identified.

Proof. (of Lemma 1) P (Z = z) = P
(
∧j∈JZPj

= zPj

)
=
∏

j∈J P
(
ZPj

= zPj

)
Proof . (of Theorem 4) The distributions of φ1(Y,D,Z1,..., ZL, X1,..., XK) through

φJ(Y,D,Z1,..., ZL, X1,..., XK) are identified because i.i.d. samples of each are observed. Let

v be a point in the range of φ1. Let φ−1
1 (v) denote the preimage of v. As φ1 is not one-to-one,

φ−1
1 (v) is a set.

P
(
φ1(Y,D,Z1,..., ZL, X1,..., XK)=v

)
︸ ︷︷ ︸

coefficients in b1

=
∑

{yd′ }d′ ,{dz′ }z′ ,z1,...,zL,x1,...,xk

P(Z=z)1
[
(yd, dz) = (y, d) & (y, d, z1,..., zL, x1,..., xK)∈φ−1

1

(
v
)]

︸ ︷︷ ︸
coefficients in A1

×P({Yd′ =yd′}d′ , {Dz′ =dz′}z′ , X1 =x1,..., XK =xK)︸ ︷︷ ︸
element of the vector p

This equality holds as in the proof of Theorem 1. These steps can be repeated for φ2 through

φJ .

The left-hand-side of these equations constitute the elements of b1, and the elements of

A1 are in terms of the P(Z = z)’s. b1 and A1 are defined analogously to the definitions of b1

and A1 in Section 2 where additional rows are added for the additional samples.
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Theorem 5. Under Assumptions 1a, 2a, 3a.1, 3a.2, 3a.3, 4, and 5 the sharp identified

lower bound for θ, θLB, can be characterized as follows:

θLB = min
p
c′p

such that A1p = b1

A2p = b2

p ≥ 0

where A1 and b1 are identified from the data and A2 and b2 are known. The upper bound,

θUB, can be written similarly with a max instead of a min.

This result follows immediately from Theorem 4 and Assumptions 4 and 5.

B Estimation Proof

In this section I present the proof of Theorem 3.

Proof. (of Theorem 3) I only show θ̂LB
p→ θLB. θ̂UB

p→ θUB follows similarly. The proof is

broken into two steps.

1. Construct a sequence that is a lower bound on θ̂LB. The lower bound converges in

probability to θLB
2. Construct a sequence that is an upper bound on θ̂LB. The upper bound converges in

probability to θLB
These two steps imply θ̂LB

p→ θLB.

Before these two steps, first notice that Assumptions 1, 2, and 3 imply that b̂1
p→ b1 and

that vec(Â1)
p→ vec(A1) because the entries of A1 and b1 are probabilities and the entries of

Â1 and b̂1 are empirical probabilities. Notice, also, that b̃1
p→ b1. Letting p0 ∈ {p : A1p =

b1, A2p = b2, p ≥ 0} the following equalities/inequalities imply b̃1
p→ b1:∥∥∥b̃1 − b1

∥∥∥ ≤ ∥∥∥b̃1 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥ =
∥∥∥Â1p̃− b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − A1p0

∥∥∥+
∥∥∥A1p0 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − A1p0

∥∥∥+ 2
∥∥∥b̂1 − b1

∥∥∥
where the first inequality is a triangle inequality, the first equality uses the definition of

b̃1 = Â1p̃ for some p̃ in Definition 2, the second line uses the definition of p̃ and b̃ as
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the minimizers in Definition 2, the third line uses the triangle inequality, and the last line

uses that A1p0 = b1. Additionally,
∥∥∥Â1p0 − A1p0

∥∥∥ ≤ ∥∥∥vec(Â1)− vec(A1)
∥∥∥ p→ 0 where the

inequality holds because p0 is bounded by 1 as p0 ≥ 0 and the elements of p0 sum to one.

Knowing, additionally, that b̂1
p→ b1 implies b̃1

p→ b1.

Part 1 Let
¯
p be as follows:

¯
p ∈ arg minp c

′p

s.t. Â1p = b̃1

A2p = b2

p ≥ 0.

¯
p can be any arbitrary choice in this set. Notice that c′

¯
p = θ̂LB. Define

¯
b1 = A1

¯
p, and define

¯
θLB as

¯
θLB = minp c

′p

s.t. A1p =
¯
b1

A2p = b2

p ≥ 0.

Because
¯
p ∈ {p : A1p =

¯
b1, A2p = b2, p ≥ 0},

¯
θLB ≤ θ̂LB. Additionally,

¯
b1 − b̃1

p→ 0

because
¯
p ≥ 0, 1′

¯
p = 1, and vec(Â1)

p→ vec(A1).
∥∥∥b̃1 −

¯
b1

∥∥∥ =
∥∥∥Â1

¯
p− A1

¯
p
∥∥∥ ≤∥∥∥vec(Â1)− vec(A1)

∥∥∥ p→ 0. Therefore,
¯
b1

p→ b1. By Strong Duality,

¯
θLB = maxx

(
¯
b1

b2

)′
x

s.t. A′x ≤ c

Let {x1, ..., xs} be the extreme points of A′x ≤ c. Note that these points only depend on

populations parameters.

Therefore,
¯
θLB = max{x∈x1,...,xs}

(
¯
b1

b2

)′
x, which is continuous in

(
¯
b1

b2

)
, and(

¯
b1

b2

)
p→

(
b1

b2

)
. Additionally, θLB = max{x∈x1,...,xs}

(
b1

b2

)′
x, again by Strong Dual-

ity. Therefore,
¯
θLB

p→ θLB.

Part 2 To start, notice that Assumptions 6.1 and 6.2 allow us keep the linear constraints

corresponding to I in the linear programs in Theorem 2 and Definition 3 without changing

the set of feasible solutions in either linear programming problem, and thus the optimal values

of the objective do not change. For this part of the proof I consider these linear programs with
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fewer constraints, i.e.

(
Â1

A2

)
I

p =

(
b̃1

b2

)
I

replaces

(
Â1

A2

)
p =

(
b̃1

b2

)
in Definition 3.

Let p∗ be the length m vector corresponding to the p that satisfies Assumption 6.3. Therefore,

there exists an m×m matrix, B, consisting of m columns of AI such that p∗ = B−1

(
b1

b2

)
I

,

by the definition of a basic feasible solution. Replacing B and b1 with B̂ and b̃1 and we have

a basic solution in the sample linear programming problem. To see this, first note that the

entries of B̂ converge in probability to the entries of B. B is invertible, so B̂ is invertible with

probability going to one. The r rows of B̂−1

(
b̃1

b2

)
I

corresponding to the r rows of p∗ that

are zero are zero. B̂−1

(
b̃1

b2

)
I

converges in probability to B−1

(
b1

b2

)
I

by the Continuous

Mapping Theorem. The other m− r rows of p∗ are strictly positive, so the other m− r rows

of B̂−1

(
b̃1

b2

)
I

are strictly positive with probability going to one. Therefore, with probability

going to one B̂−1

(
b̃1

b2

)
I

≥ 0. Thus, this has constructed a sample basic feasible solution

in the sample which converges to an optimal basic feasible solution in the population. Let

θ̄LB denote the value of the objective at this sample basic feasible solution. θ̂LB ≤ θ̄LB since

θ̄LB is a basic feasible solution in the sample, and I have already established θ̄LB
p→ θLB.

Part 3 Therefore, we have that
¯
θLB ≤ θ̂LB ≤ θ̄LB with probability going to one.

¯
θLB

p→ θLB
and θ̄LB

p→ θLB, so θ̂LB
p→ θLB.

C Details of Pretrial Safety Assessment

This section details the algorithm discussed in Section 4. For full details on the Public

Safety Assessment see Laura and John Arnold Foundation (2019).

The formula calculates how many “points” an individual has based on the value of the

covariates. For new violent criminal activity the number of points an individual has can be

integers values between 0 and 7. If an individual has at least 4 points, they are flagged as

being likely to commit a violent crime while on pretrial release. The algorithm detains these

high risk individuals and release all other individuals pretrial. Define the following variables:
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current violent offense: an indicator equal to one if the current offense is violent

age less equal 20: an indicator for whether the defendant is 20 years old or less

pending charge: an indicator for whether the defendant has a pending charge

at the time of the offense

prior conviction: an indicator for whether the defendant has either

a misdemeanor or felony prior conviction

prior violent convictions: number of prior violent convictions

NV CA points: points discussed previously–if this is ≥ 4 the PSA flags

the individual has being likely to commit a violent crime,

and the algorithm detains that individual

NV CA points =2× current violent offense

+ current violent offense× age less equal 20

+ pending charge

+ prior conviction

+ 1[1 ≤ prior violent convictions ≤ 2]

+ 2× 1[prior violent convictions ≥ 3]

The PSA flags an individual for having a high probability of committing a violent crime while

released pretrial if this NV CA points is above 4. The algorithm, db, detains defendants that

have been flagged by the PSA for their risk of committing a new violent crime and release

defendants otherwise.

This does not fit perfectly into setting, since I do not observe the total number of prior

violent convictions in either data set. However, I do observe in the SCPS whether or not

an individual has any prior violent conviction, as well as the total number of prior felony

convictions. With this information I am able to infer exactly the NV CA points for most

defendants–if an individual has more than 2 prior felony convictions and I know they have at

least one prior violent conviction they could have between 1 and 2 prior violent convictions or

have 3 or more prior violent convictions. This would change their NV CA points by 1. This

only affects whether they are treated under the algorithm if this changes their NV CA points

from 3 to 4. To address this, when estimating the bounds on E[Y b−Y a], I can use a “worst

case” choice of the vector c, or include an unobserved variable for prior violent convictions,
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and include the relation between number of violent felonies, the indicator for violent felonies,

and number of prior felonies as shape restrictions in A2p = b2.

D Estimation Proofs Under Alternative Assumptions

D.1 A1 known

The scenario where A1 is known and only b1 needs to be estimated would occur if Z is

observed in every sample. In the proof of Theorem 1, if Z is observed in a sample with

(Y,D,Z,X1, ..., XK), the linear equation is

P (Y = y,D = d, Z = z,X1, ..., XK) = P (Yd = y,Dz = d,X1, ..., XK) P (Z = z)

This is equivalent to the following when P (Z = z) > 0:

P (Y = y,D = d,X1, ..., XK |Z = z) = P (Yd = y,Dz = d,X1, ..., XK)

Where the left-hand-side is identified and can be consistently estimated. A similar rearrange-

ment can be performed when a subset of Y , D, X1, ... XK is observed. The left-hand-side

of these new equations would constitute b1. The matrix A1 would then be a matrix of 0’s

and 1’s, and the entries would be known, and not need to be estimated.

Theorem 6. Suppose the following conditions are met:

I) b̂1
p→ b1

II) A2p = b2 includes the restriction 1′p = 1

III) Â1 = A1

Then, θ̂LB
p→ θLB and θ̂UB

p→ θUB

Proof. (of Theorem 6) I show θ̂LB
p→ θLB. θ̂UB

p→ θUB follows similarly.

By the construction of b̃1, the set {p : A1p = b̃1, A2p = b2, p ≥ 0} is not empty. By II)

θ̂LB is finite. Therefore, I can invoke Strong Duality and have

θ̂LB = maxx

(
b̃1

b2

)′
x

s.t.

(
A1

A2

)′
x ≤ c.
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Let {x1, ..., xs} be the extreme points of

(
A1

A2

)′
x ≤ c.

Then, θ̂LB = max{x∈x1,...,xk}

(
b̃1

b2

)′
x, which is continuous in

(
b̃1

b2

)
.

Because

(
b̃1

b2

)
p→

(
b1

b2

)
, this implies θ̂LB

p→ θLB. To see that b̃1
p→ b1 notice that∥∥∥b̃1 − b̂1

∥∥∥ ≤ ∥∥∥b1 − b̂1

∥∥∥ by the definition of b̃1. Therefore,
∥∥∥b̃1 − b1

∥∥∥ ≤ ∥∥∥b̃1 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥ ≤
2
∥∥∥b̂1 − b1

∥∥∥
D.2 Bounded Dual Problem

The following result replaces Assumption 6.3 with an assumption about the boundedness

of the dual linear programming problem.

Theorem 7. Make Assumptions 1, 2, 3, 4, 5, 6.1 and 6.2 and assume A2p = b2 includes the

restriction 1′p = 1. Additionally, assume that here exists M such that for some x̃ ∈ arg maxx

of the dual problem in Definition 3, such that ‖x̃‖∞ ≤M with probability going to one. Then,

θ̂LB
p→ θLB and θ̂UB

p→ θUB.

Drawing a deeper connection between the boundedness condition in Theorem 7 and the

setting of this paper is an area for future work. I suspect that there is a connection between

M and the smallest value of P(Z = z) when P(Z = z) > 0 for all z.

Proof. (of Theorem 7) I only show θ̂LB
p→ θLB. θ̂UB

p→ θUB follows similarly. The proof is

broken into two steps.

1. Construct a sequence that is a lower bound on θ̂LB. The lower bound converges in

probability to θLB
2. Construct a sequence that is an upper bound on θ̂LB. The upper bound converges in

probability to θLB
These two steps imply θ̂LB

p→ θLB.

This initial section of the proof is the same as that of the proof of Theorem 3. Before

these two steps, first notice that Assumptions 1, 2, and 3 imply that b̂1
p→ b1 and that

vec(Â1)
p→ vec(A1) because the entries of A1 and b1 are probabilities and the entries of Â1

and b̂1 are empirical probabilities. Notice, also, that b̃1
p→ b1. Letting p0 ∈ {p : A1p =
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b1, A2p = b2, p ≥ 0} the following equalities/inequalities imply b̃1
p→ b1:∥∥∥b̃1 − b1

∥∥∥ ≤ ∥∥∥b̃1 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥ =
∥∥∥Â1p̃− b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − A1p0

∥∥∥+
∥∥∥A1p0 − b̂1

∥∥∥+
∥∥∥b̂1 − b1

∥∥∥
≤
∥∥∥Â1p0 − A1p0

∥∥∥+ 2
∥∥∥b̂1 − b1

∥∥∥
where the first inequality is a triangle inequality, the first equality uses the definition of

b̃1 = Â1p̃ for some p̃ in Definition 2, the second line uses the definition of p̃ and b̃ as

the minimizers in Definition 2, the third line uses the triangle inequality, and the last line

uses that A1p0 = b1. Additionally,
∥∥∥Â1p0 − A1p0

∥∥∥ ≤ ∥∥∥vec(Â1)− vec(A1)
∥∥∥ p→ 0 where the

inequality holds because p0 is bounded by 1 as p0 ≥ 0 and the elements of p0 sum to one.

Knowing, additionally, that b̂1
p→ b1 implies b̃1

p→ b1.

Part 1 (Same as Part 1 in proof of Theorem 3) Let
¯
p be as follows:

¯
p ∈ arg minp c

′p

s.t. Â1p = b̃1

A2p = b2

p ≥ 0.

¯
p can be any arbitrary choice in this set. Notice that c′

¯
p = θ̂LB. Define

¯
b1 = A1

¯
p, and define

¯
θLB as

¯
θLB = minp c

′p

s.t. A1p =
¯
b1

A2p = b2

p ≥ 0.

Because
¯
p ∈ {p : A1p =

¯
b1, A2p = b2, p ≥ 0},

¯
θLB ≤ θ̂LB. Additionally,

¯
b1 − b̃1

p→ 0

because
¯
p ≥ 0, 1′

¯
p = 1, and vec(Â1)

p→ vec(A1).
∥∥∥b̃1 −

¯
b1

∥∥∥ =
∥∥∥Â1

¯
p− A1

¯
p
∥∥∥ ≤∥∥∥vec(Â1)− vec(A1)

∥∥∥ p→ 0. Therefore,
¯
b1

p→ b1. By Strong Duality,

¯
θLB = maxx

(
¯
b1

b2

)′
x

s.t. A′x ≤ c

Let {x1, ..., xs} be the extreme points of A′x ≤ c. Note that these points only depend on

populations parameters.
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Therefore,
¯
θLB = max{x∈x1,...,xs}

(
¯
b1

b2

)′
x, which is continuous in

(
¯
b1

b2

)
, and(

¯
b1

b2

)
p→

(
b1

b2

)
. Additionally, θLB = max{x∈x1,...,xs}

(
b1

b2

)′
x, again by Strong Dual-

ity. Therefore,
¯
θLB

p→ θLB.

Part 2 (Different than Part 2 in Theorem 3) Let

x̄ ∈ arg maxx

(
b̃1

b2

)′
x

such that

(
Â1

A2

)′
x ≤ c

(4)

such that ‖x̄‖∞ ≤ M , which exists by the assumption made in Theorem 7 with probability

going to 1. θ̂LB =

(
b̃1

b2

)′
x̄ because (4) is the dual linear programming problem of the linear

programming problem in Definition 3. (5) holds because ‖x̄‖∞ ≤ M and the elements of Â1

converge to the elements of A1.((
Â1

A2

)
−

(
A1

A2

))′
x̄

p→ 0 (5)

Define

c̄ = max

{(
A1

A2

)′
x̄, c

}
where the max is taken elementwise across the two vectors. Then, c̄

p→ c by the choice of x̄

in (4).

Define:

θ̄LB = minp c̄
′p

such that A1p = b̃1

A2p = b2

p ≥ 0

&

θ̈LB = minp c
′p

such that A1p = b̃1

A2p = b2

p ≥ 0

(6)
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By Strong Duality

θ̄LB = maxx

(
b̃1

b2

)′
x

such that

(
A1

A2

)′
x ≤ c̄

&

θ̈LB = maxx

(
b̃1

b2

)′
x

such that

(
A1

A2

)′
x ≤ c

(
A1

A2

)′
x̄ ≤ c̄ by the construction of c̄ and θ̂LB =

(
b̃1

b2

)′
x̄ is already established. There-

fore, θ̂LB ≤ θ̄LB. Additionally, θ̈LB − θ̄LB
p→ 0 because c̄

p→ c and by the definitions in (6).

Also, θ̈LB
p→ θLB by the same argument as

¯
θLB

p→ θLB in Part 1. Therefore, θ̄LB
p→ θLB.

Step 3 It has been established that
¯
θLB ≤ θ̂LB ≤ θ̄LB,

¯
θLB

p→ θLB, and θ̄LB
p→ θLB.

Therefore, θ̂LB
p→ θLB

E Proof of Result 2 of Section 5

In this Section I present Result 2 of Section 5.

Proof. (of Result 2) As discussed previously, I want to show conditions for the estimates

c′rfp

s.t. Â1p = b̂1

A2p = b2

&

c′rfp

s.t. Â1p = b̃1

A2p = b2

p ≥ 0

to be equal with probability going to one. These are equal if {p : Â1p= b̂1, A2p= b2, p ≥ 0}
is nonempty, in which case b̂1 = b̃1. {p : Â1p = b̂1, A2p = b2, p ≥ 0} being nonempty is

equivalent to P̂ (Y =y,D=1|Z=1)−P̂ (Y =y,D=1|Z=0) ≥ 0 and P̂ (Y =y,D=0|Z=0)−
P̂ (Y =y,D=0|Z=1) ≥ 0, for all y (using results of Kitagawa (2015)). First consider the

term P̂ (Y =y,D=1|Z=1)− P̂ (Y =y,D=1|Z=0).

Case I Suppose P (Y1 =y,D1 =1, D0 =1) = 0. Because P (D1 =0, D0 =1) =

0 (monotonicity), I have that P (Y =y,D=1|Z=0) = P (Y1 =y,D0 =1) =

P (Y1 =y,D1 =1, D0 =1) + P (Y1 =y,D1 =0, D0 =1) = 0, and it must be that

P̂ (Y =y,D=1|Z=1)− P̂ (Y =y,D=1|Z=0) ≥ 0 because P̂ (Y =y,D=1|Z=0) = 0.
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Case II Suppose P (Y1 =y,D1 =1, D0 =0) > 0. Therefore,

P̂ (Y =y,D=1|Z=1)−P̂ (Y =y,D=1|Z=0)
p−→P (Y =y,D=1|Z=1)−P (Y =y,D=1|Z=0)

=P (Y1 =y,D1 =1)−P (Y1 =y,D0 =1)

=(P (Y1 =y,D1 =1, D0 =1) + P (Y1 =y,D1 =1, D0 =0))

−P (Y1 =y,D1 =1, D0 =1)

=P (Y1 =y,D1 =1, D0 =0)

>0.

Therefore, P̂ (Y =y,D=1|Z=1)− P̂ (Y =y,D=1|Z=0) ≥ 0 with probability going to one.

The result for P̂ (Y =y,D=0|Z=0)− P̂ (Y =y,D=0|Z=1) ≥ 0 follows similarly.

F Additional Examples and Details of Examples

In this section I provide the details for the example in Subsection 2.2 as well as additional

examples.

F.1 Additional Examples

Example 6 illustrates that in a two sample instrumental variables setting (one sam-

ple the observations are of (Y, Z) and in another sample observations are of (D,Z)), if

the monotonicity assumption is not made, the identified set is smaller when the inde-

pendence assumption (Y1, Y0, D1, D0) ⊥⊥ Z is made as opposed to the weaker assumption

E [Yd|D1, D0, Z] = E [Yd|D1, D0] and (D1, D0) ⊥⊥ Z. When the monotonicity assumption is

maintained, the identified set for the ATE under either set of assumptions are equal. Ex-

ample 7 demonstrates that the identified bounds with full independence can improve over

the identified bounds when the only the mean independence assumption is made, when the

monotonicity assumption holds.

Example 6. In this example the assumption that (Y1, Y0, D1, D0) ⊥⊥ Z is satisfied. I compare

the bounds on the average treatment effect the assumption (Y1, Y0, D1, D0) ⊥⊥ Z is made

against when the assumption that E [Yd|D1, D0, Z] = E [Yd|D1, D0] and (D1, D0) ⊥⊥ Z is

made. The marginal distribution of (Y, Z) and the marginal distribution of (D,Z) are

identified. Y ∈ {0, 1, ..., 5} and D and Z are in {0, 1}. No shape restrictions are assumed.
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The distributions of Z and (Y1, Y0, D1, D0) are:

Z =

{
0 w/ prob 1/2

1 w/ prob 1/2
& (Y1, Y0, D1, D0) =


(5, 2, 1, 0) w/ prob 1/4

(3, 0, 1, 0) w/ prob 1/4

(4, 1, 0, 1) w/ prob 1/2

.

This yields the following marginal distributions of (Y, Z) and (D,Z):

Y 0 1 2 3 4 5

Z
0 1/8 0 1/8 0 1/4 0

1 0 1/4 0 1/8 0 1/8

Table 7. Distribution of (Y,Z) for Example 6.

D 0 1

Z
0 1/4 1/4

1 1/4 1/4

Table 8. Distribution of (D,Z) for Example 6.

Under the assumption that Y =DY1 + (1−D)Y0 and (Y1, Y0, D1, D0) ⊥⊥ Z, the marginal

distribution of (Y, Z) says that P(D1 = 0, D0 = 0) = 0 and P(D1 = 1, D0 = 1) = 0. Therefore,

P(D1 =1, D0 =0)= 1
2

and P(D1 =0, D0 =1)= 1
2
. This implies that −3 ≤ ATE ≤ 3.

However, if the full independence assumption is replaced with E [Yd|D1, D0, Z] =

E [Yd|D1, D0] and (D1, D0) ⊥⊥ Z, distribution such that E(Y1 − Y0) = 4 can be constructed.

This is outside of the set [−3, 3] with the stronger assumption. The full independence as-

sumption is stronger, so the identified set is a strict subset. Proofs for this example can be

found in Appendix F.3. 4

In Example 6 the bounds on the average treatment effect were compared when the mono-

tonicity assumption is dropped in a two sample instrumental variables setting.

Example 7. In this example the data generating process satisfies (Y1, Y0, D1, D0) ⊥⊥
Z. I compare the bounds on the average treatment effect when the assumption that

(Y1, Y0, D1, D0) ⊥⊥ Z is made against when the assumptions that E [Yd|D1, D0, Z] =

E [Yd|D1, D0] and (D1, D0) ⊥⊥ Z are made. In this example Y ∈ {0, 1, ..., 6} and D and

Z are in {0, 1}. (Y,D) is observed in one sample and (Y, Z) is observed in another sample.

I make the monotonicity assumption that P(D1 = 0, D0 = 1) = 0.
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Suppose the distributions of Z and (Y1, Y0, D1, D0) are

Z =

{
0 w/ prob 1/2

1 w/ prob 1/2
& (Y1, Y0, D1, D0) =


(3, 1, 1, 0) w/ prob 1/4

(3, 5, 1, 0) w/ prob 1/4

(2, 2, 1, 0) w/ prob 1/4

(4, 4, 1, 0) w/ prob 1/4

.

This yields the following marginal distributions of (Y,D) and (Y, Z)

Y 0 1 2 3 4 5 6

D
0 0 1/8 1/8 0 1/8 1/8 0

1 0 0 1/8 1/4 1/8 0 0

Table 9. Distribution of (Y,D) for Example 7

Y 0 1 2 3 4 5 6

Z
0 0 1/8 1/8 0 1/8 1/8 0

1 0 0 1/8 1/4 1/8 0 0

Table 10. Distribution of (Y,Z) for Example 7

Making the full independence assumption (Y1, Y0, D1, D0) ⊥⊥ Z and knowing Y = DY1 +

(1−D)Y0 results in the bounds −3
2
≤ E(Y1 − Y0) ≤ 3

2
.

Now, make the assumptions that (D1, D0) ⊥⊥ Z and E(Yd|D1, D0, Z) = E(Yd|D1, D0).

There exists a distribution such that E(Y1 − Y0) = 3. This is outside of the interval
[
−3

2
, 3

2

]
that was implied by the stronger assumption of (Y1, Y0, D1, D0) ⊥⊥ Z and Y = DY1 + (1 −
D)Y0. Proofs for this example can be found in Appendix F.4. 4

F.2 Example 4

Details. (Example 4)

The marginals of (Y,D,Z) are as follows:

1. (Y, Z): P (Y = 1, Z = 1) = 1
2

and P (Y = 0, Z = 0) = 1
2

2. (D,Z): P (D = 1, Z = 1) = 1
2

and P (D = 0, Z = 0) = 1
2

3. (Y,D): P (D = 1, Z = 1) = 1
2

and P (D = 0, Z = 0) = 1
2

4. (D): P (D = 1) = 1
2

and P (D = 0) = 1
2

5. (Y ): P (Y = 1) = 1
2

and P (Y = 0) = 1
2

1. (Y, Z), (D,Z)

The distribution of (D,Z) implies that P(D1 = 1, D0 = 0) = 1. Now using the
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distribution of (Y, Z) and that P(D1 = 1, D0 = 0) = 1, P(Y0 = 0, D1 = 1, D0 = 0, Z =

0) = P(Y0 = 0, D1 = 1, D0 = 0)P(Z = 0) = 1
2
⇒ P(Y0 = 0, D1 = 1, D0 = 0) = 1.

Similarly, P(Y1 = 1, D1 = 1, D0 = 0) = 1, so E(Y1 − Y0) = 1 .

2. (Y,D), (Y, Z)

These two marginals imply P(Y = 1, D = 1, Z = 1) = 1
2

and P(Y = 0, D = 0, Z =

0) = 1
2
. This says that P(D1 = 1, D0 = 0) = 1. Therefore, P(Y1 = 1, D1 = 1, D0 =

0, Z = 1) = P(Y1 = 1, D1 = 1, D0 = 0)P(Z = 1) = 1
2
⇒ P(Y1 = 1, D1 = 1, D0 = 0) =

1. Similarly, P(Y0 = 1, D1 = 1, D0 = 0) = 1, so E(Y1 − Y0) = 1

3. (Y,D), (D,Z)

The distribution of (D,Z) says that P(D1 = 1, D0 = 0) = 1. Now using the distribution

of (Y,D) and that P(D1 = 1, D0 = 0) = 1, P(Y0 = 0, D1 = 1, D0 = 0, Z = 0) =

P(Y0 = 0, D1 = 1, D0 = 0)P(Z = 0) = 1
2
⇒ P(Y0 = 0, D1 = 1, D0 = 0) = 1. Similarly,

P(Y1 = 1, D1 = 1, D0 = 0) = 1, so E(Y1 − Y0) = 1 .

4. (Y, Z)

P (Y1 = 0, Y0 = 1, D1 = 1, D0 = 1) = 1
2

and P (Y1 = 0, Y0 = 1, D1 = 0, D0 = 0) = 1
2

is

possible, resulting in the trivial bounds [−1, 1] .

5. (D,Z)

Nothing about the distribution of Y0 and Y1 is known, so the bounds are trivial [−1, 1] .

6. (Y,D)

E (Y1 − Y0) = E[Y1|D = 1]P(D = 1) + E[Y1|D = 0]P(D = 0) − E[Y0|D = 1]P(D =

1) − E[Y0|D = 0]P(D = 0) = 1
2

+ E[Y1|D = 0]1
2
− E[Y0|D = 1]1

2
− 0 and E[Y1|D =

0] and E[Y0|D = 1] are in [0, 1]. Therefore, E (Y1 − Y0) ∈ [0, 1] . 0 is obtained if

P (Y1 = 1, Y0 = 1, D1 = 1, D0 = 1) = 1
2

and P (Y1 = 0, Y0 = 0, D1 = 0, D0 = 0) = 1
2
.

F.3 Example 6

Details. (Example 6)

48



If the full independence assumption is replaced with E [Yd|D1, D0, Z]=E [Yd|D1, D0] and

(D1, D0) ⊥⊥ Z, the following is possible:

P(Z = 0) = P(Z = 1) =
1

2

P(D1 = 1, D0 = 1) =
1

2
, P(D1 = 0, D0 = 0) =

1

2

(Y1|D1 = 1, D0 = 1, Z = 1) =

{
3 w.p. 1

2

5 w.p. 1
2

(Y1|D1 = 1, D0 = 1, Z = 0) = 4 w.p. 1

(Y0|D1 = 0, D0 = 0, Z = 0) =

{
0 w.p. 1

2

2 w.p. 1
2

(Y0|D1 = 0, D0 = 0, Z = 1) = 1 w.p. 1

Knowing Y ∈ {0, 1, ..., 5}, then it is possible for E (Y0|D1 = 1, D0 = 1) = 0 and

E (Y1|D1 = 0, D0 = 0) = 5. This would mean E(Y1 − Y0) = 4. This is outside of the set

[−3, 3] with the stronger assumption.

F.4 Example 7

Details. (Example 7)

Making the full independence assumption (Y1, Y0, D1, D0) ⊥⊥ Z and knowing Y = DY1 +

(1−D)Y0, implies

P(Y = 1, D = 0, Z = 0) =
1

8
, P(Y = 5, D = 0, Z = 0) =

1

8
, P(Y = 3, D = 1, Z = 0) =

1

4

this implies

P(Y0 = 1, D1 = 1, D0 = 0) =
1

4
, P(Y0 = 5, D1 = 1, D0 = 0) =

1

4
, P(Y1 = 3, D1 = 1, D0 = 0) =

1

2
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Therefore, −3
2
≤ E(Y1 − Y0) ≤ 3

2
The following distribution would satisfy these assumptions

and would result in the previous distribution of (Y,D) and (Y, Z).

P(D1 = 1, D0 = 1) =
1

2
&P(D1 = 0, D0 = 0) =

1

2

(Y0|D1 = 0, D0 = 0, Z = 0) =

{
1 w/ prob. 1

2

5 w/ prob. 1
2

(Y0|D1 = 0, D0 = 0, Z = 1) =

{
2 w/ prob. 1

2

4 w/ prob. 1
2

(Y1|D1 = 0, D0 = 0) = 6 w/ prob. 1

(Y1|D1 = 1, D0 = 1, Z = 0) =

{
2 w/ prob. 1

2

4 w/ prob. 1
2

(Y1|D1 = 1, D0 = 1, Z = 1) = 3 w/ prob. 1

(Y0|D1 = 1, D0 = 1) = 0 w/ prob. 1

This results in E(Y1 − Y0) = 3. This is outside of the interval
[
−3

2
, 3

2

]
that was implied by

the stronger assumption of (Y1, Y0, D1, D0) ⊥⊥ Z and Y = DY1 + (1−D)Y0.

G Discussion of Assumption 6 for Estimation

Example 8 demonstrates why the rank assumptions 1 and 2 in Theorem 3 should be

satisfied.

Example 8. Let q0, q1, q̂0, and q̂1 denote P(Z = 0), P(Z = 1), P̂(Z = 0), and P̂(Z = 1),

respectively. For illustrative purposes I show what the equation looks like when there are

four samples–one with (Y,D,Z), one with (Y,D), one with (Y, Z), one with (D,Z) (The last

three samples would clearly be unnecessary in this scenario).
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1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1−1−1 0 0 0 q0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 −1−1−1 q1 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
−1−1−1−1−1−1 q0+q1 0 0
1 1 0 0 0 0 0 0 0
−1−1 0 0 0 0 q0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 −1−1 0 q1 0 0
1 0 1 0 0 0 0 0 0
−1 0 −1 0 0 0 q0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 −1 0 −1 q1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

C1



q0 0 q0 0 0 0 0 0 q0 0 q0 0 0 0 0 0
0 q0 0 q0 0 q0 0 q0 0 0 0 0 q0 0 q0 0
0 0 0 0 q0 0 q0 0 0 0 0 0 0 0 0 0
q1 q1 0 0 0 0 0 0 q1 q1 0 0 0 0 0 0
0 0 q1 q1 0 0 q1 q1 0 0 0 0 0 0 0 0
0 0 0 0 q1 q1 0 0 0 0 0 0 q1 q1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

C2

︸ ︷︷ ︸ A1

A2





P(Y1 =0, Y0 =0, D1 =0, D0 =0)
P(Y1 =0, Y0 =0, D1 =0, D0 =1)
P(Y1 =0, Y0 =0, D1 =1, D0 =0)
P(Y1 =0, Y0 =0, D1 =1, D0 =1)
P(Y1 =0, Y0 =1, D1 =0, D0 =0)
P(Y1 =0, Y0 =1, D1 =0, D0 =1)
P(Y1 =0, Y0 =1, D1 =1, D0 =0)
P(Y1 =0, Y0 =1, D1 =1, D0 =1)
P(Y1 =1, Y0 =0, D1 =0, D0 =0)
P(Y1 =1, Y0 =0, D1 =0, D0 =1)
P(Y1 =1, Y0 =0, D1 =1, D0 =0)
P(Y1 =1, Y0 =0, D1 =1, D0 =1)
P(Y1 =1, Y0 =1, D1 =0, D0 =0)
P(Y1 =1, Y0 =1, D1 =0, D0 =1)
P(Y1 =1, Y0 =1, D1 =1, D0 =0)
P(Y1 =1, Y0 =1, D1 =1, D0 =1)


︸ ︷︷ ︸

p

=



P(Y =0, D=0, Z=0)
P(Y =0, D=1, Z=0)
P(Y =1, D=0, Z=0)
P(Y =1, D=1, Z=0)
P(Y =0, D=0, Z=1)
P(Y =0, D=1, Z=1)
P(Y =1, D=0, Z=1)
P(Y =1, D=1, Z=1)

P(Y =0, D=0)
P(Y =0, D=1)
P(Y =1, D=0)
P(Y =1, D=1)
P(Y =0, Z=0)
P(Y =1, Z=0)
P(Y =0, Z=1)
P(Y =1, Z=1)
P(D=0, Z=0)
P(D=1, Z=0)
P(D=0, Z=1)
P(D=1, Z=1)

1
0
0


︸ ︷︷ ︸ b1

b2



Figure 1. Equation for Example 8
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(
A1

A2

)
has been decomposed into C1C2. Let Ĉ1 and Ĉ2 replace q0 and q1 with q̂0 and

q̂1, respectively.

(
Â1

A2

)
= Ĉ1Ĉ2. If q0 > 0 and q1 > 0, rank(C2) = rows(C2) = rank(Ĉ2) =

rows(Ĉ2) with probability going to one. Therefore, rank

((
A1

A2

))
= rank (C1C2) =

rank (C1) and rank

((
Â1

A2

))
= rank

(
Ĉ1Ĉ2

)
= rank

(
Ĉ1

)
. Removing certain rows C1

and Ĉ1 does not reduce the rank and results in the matrix as follows:

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


The matrix above has the same rank as C1 and Ĉ1. Notice that removing rows of C1 or
the equivalent rows of Ĉ1 results in this matrix. This can be done similarly with other
combinations of variables observed in the samples.
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