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Abstract

In this paper I show an asymptotically optimal choice of a weighting matrix used in
the synthetic control method. The synthetic control method takes a weighted average of
outcomes for untreated units to estimate the outcome under no treatment for a treated
unit. This can then be used to estimate a treatment effect for the treated unit. The
weights are chosen such that the weighted average of the outcomes in the pretreatment
time periods and of covariates approximates that of the treated unit. In practice,
these weights are chosen to minimize a distance which depends on a weighting matrix.
I show asymptotic optimality of a leave-one-out cross-validation procedure to choose
this weighting matrix. This amounts to performing the synthetic control method, in
turn, as if each of the untreated units were instead treated and assessing the prediction
on the untreated units for a given weighting matrix. This is not straightforward because
there is dependence across these synthetic control estimates.

∗Northwestern University, Department of Economics
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1 Introduction

The synthetic control method (SCM) introduced in Abadie and Gardeazabal (2003) has

rapidly gained traction in applied work. As often happens with new methods, there are

issues that need to be addressed. In the SCM a tuning parameter choice needs attention

for two reasons. First, the standard method for choosing this tuning parameter has not

been shown to be optimal in any sense. Second, and perhaps more importantly, the current

method restricts the set of specifications available to researchers. This restriction eliminates

specifications that previous research has motivated. These two points are expanded upon as

the focus of this paper.

In the first use of the synthetic control method, Abadie and Gardeazabal (2003) examine

the effects of terrorist conflict in the Basque Country, using per capita GDP as the outcome

variable. Panel data on real per capita GDP are available before and after times of peak

ETA terrorist activity, as well as other characteristics that determine growth for 17 regions of

Spain. One might expect the researchers to use the difference in differences (DiD) approach

here. This would involve choosing one of the 16 non-Basque regions of Spain and taking

the change in per capita GDP before and after the terrorist activity and subtracting that

quantity from the change in per capita GDP for the Basque Country. To see why they may

not want to do this, let us compare this setting to that of a well-known DiD application.

Card and Krueger (1994) examine a 1992 minimum wage increase in New Jersey,

surveying employment at individual fast food restaurants in New Jersey and Pennsylvania

before and after the minimum wage increase. The first distinction here is that Card

and Krueger (1994) have data at the individual restaurant level, whereas Abadie and

Gardeazabal (2003) have aggregate per capita GDP for entire regions of Spain. The

assumptions for identification in DiD, as in Angrist and Pischke (2009), is that

E
[
Y N
ist|s, t

]
= γs + φt (1)

where Y N
ist is the potential outcome under no treatment. In Card and Krueger (1994), the

outcome is employment for restaurant i, in state s (New Jersey or Pennsylvania), at time t

(pre- or post- minimum wage increase). This potential outcome is observed in the pre- and

post- time periods for Pennsylvania, and in the pre- time period for New Jersey. Therefore,

E
[
Y N
ist|s = Penn., t = Post

]
− E

[
Y N
ist|s = Penn., t = Pre

]
= φPost − φPre
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is identified. Also,

E
[
Y N
ist|s = NJ, t = Post

]
− E

[
Y N
ist|s = NJ, t = Pre

]
= φPost − φPre

holds. The right-hand-side of the previous two equations are the same, giving this assumption

the name “common trends.” Therefore, E
[
Y T
ist − Y N

ist|s = NJ, t = Post
]

can be identified

from (1) in this setting, where Y T
ist is the potential outcome under treatment.

Returning to the topic of Basque Country terrorism, the researchers make the case that

the determinants of GDP growth in the Basque Country were different from those of other

regions of Spain before the terrorist activity. This makes the common trends assumption

difficult to believe because, in the absence of the terrorist activity, the per capita GDPs

likely would have grown at different rates anyway. Additionally, the researchers have data

on all 17 Spanish regions for many years before peak ETA terrorist activity—in comparison

to the two states and two time periods in Card and Krueger (1994). The SCM allows them

to leverage the length and width of this panel to replace the common trends assumption.

The model that motivates the SCM is as follows:

Y N
it = θ′tZi + λ′tµi + εit (2)

Y T
it = αit + Y N

it .

where E [εit|µ1, Z1, ..., µJ+1, ZJ+1] = 0, Y N
it and Y T

it represent the potential outcomes for unit

i at time t under no treatment and under treatment, respectively, and αit is the treatment

effect for unit i in time t. Zi and µi represent an r× 1 vector of unit-specific covariates and

an F × 1 vector of (unobserved) unit-specific factor loadings, and θt and λt are time-specific

vectors of coefficients and factors. Our panel extends for T periods where T0 is the last

pretreatment period. T = T0 + 1 is assumed in this paper for simplicity of the discussion.

Unit 1 is the only treated unit and units 2, ..., J + 1 are the untreated units, sometimes

referred to as the “pool.” The observed outcome is

Yit = DitY
T
it + (1−Dit)Y

N
it (3)

where Dit is an indicator for receiving treatment. Dit = 1 only for i = 1 and t = T and is 0

otherwise. α1T is the parameter we are interested in estimating.

Part of the appeal of this model is the general factor structure, which can be shown to

be more general than in DiD. If we consider (2) without covariates, then

E
[
Y N
it

]
= E [λ′tµi] .
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If

λt =

(
1

φt

)
then E [λ′tµi] could be decomposed into the structure used in DiD. However, λt is not limited

to this particular vector, meaning that the common trends assumption in DiD does not need

to hold.

The following thought experiments, first expressed in Abadie et al. (2010), give ide-

alized conditions where an unbiased or asymptotically unbiased estimate of α1T could be

constructed. First, suppose that there exist weights {w∗j}J+1
j=2 such that

J+1∑
j=2

w∗jZj = Z1 &
J+1∑
j=2

w∗jµj = µ1. (4)

This condition, in addition to (2), implies unbiasedness of Y1T −
∑J+1

j=2 w
∗
jYjT as an estimate

for α1T . However, verifying (4) is not possible as the µj’s are unobserved. So, the weights in

(4) may exist, but we cannot find them. Therefore, suppose that we can find weights that

satisfy the following instead of (4):

J+1∑
j=2

w∗jZj = Z1 &
J+1∑
j=2

w∗jYjt = Y1t for t = 1, ..., T0. (5)

Assuming (5), as well as the εit’s being independent across i and t with an even moment

existing, E [εit|Z1, µ1, ..., ZJ+1, µJ+1] = 0, and conditions regulating how the λt’s change over

pretreatment periods, then Y1T −
∑J+1

j=2 w
∗
jYjT is an asymptotically unbiased estimate for α1T

as T0, the number of pretreatment periods, goes to ∞.

The weights from (5) in the previous thought experiment are not guaranteed to exist,

and often do not exist in applications. Instead, weights such that (5) hold approximately

are found by minimizing a pseudometric between X1, a vector of pretreatment variables,

and the weighted average of this vector for the untreated units. Given the argument for an

asymptotically unbiased estimate relied on (5), a natural choice for X1 would be to include

all covariates in Z and all pretreatment outcomes Y1t, i.e.

X1 =



Z1

Y11

Y12
...

Y1T0


(6)
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The pseudometric from Abadie et al. (2010) is√
(X1 −X0W )′ V (X1 −X0W )′ (7)

where X0 is a J column matrix whose columns contain the same variables as X1 except for

units j = 2, ..., J + 1, i.e.

X0 =



Z2 Z3 . . . ZJ+1

Y2,1 Y3,1 . . . YJ+1,1

Y2,2 Y3,2 . . . YJ+1,2

...
...

. . .
...

Y2,T0 Y3,T0 . . . YJ+1,T0


. (8)

W is a length J vector of positive weights summing to one, and V is a diagonal positive

semidefinite matrix. V is the focus of this paper. It would be possible to fix some V and (7)

would still be a pseudometric. Informally, the idea why tuning V could improve the estimate

of α1T is that some dimensions of X1 may be more important than others in determining Y N
1T .

In Section 2 it is shown that the standard way of choosing V does not allow for X1 as in (6);

the standard method assigns zeros to the diagonals in V that correspond to the covariates

Z. This results in discretionary choices for X1, or worse, relevant data being dismissed by

the synthetic control method. Moreover, the standard choice of V has not been shown to be

optimal in any sense. The choice of V that is discussed in this paper involves a leave-one-

out cross validation (CV) across units j, does not suffer from the issues involving X1 just

discussed, and is optimal in terms of mean squared error under some additional conditions

for large J .

The rest of this paper is organized as follows. Section 2 provides the details of the SCM,

including the current standard choice of V , demonstrates how this choice of V does not

allow specification in (6), and explains the cross validation choice of V . Section 3 gives the

asymptotic argument for the optimality of cross validation. Section 4 supports Section 3

with simulation evidence. Section 5 concludes.
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2 Synthetic Control Method and Cross Validation

The argument for the synthetic control method, as laid out in Abadie et al. (2010) and

in Section 1, is the asymptotic unbiasedness of the estimate

α̂1T = Y1T −
J+1∑
j=2

w∗jYjT (9)

for α1T when {w∗j}J+1
j=2 satisfy Equation (5). Again, weights that satisfy Equation (5) are not

guaranteed to exist, so the following minimization is an attempt to make Equation (5) hold

approximately.

W (V ) = arg min
W∈W

(X1 −X0W )′ V (X1 −X0W ) (10)

where W = {W ∈ RJ
≥0 : ‖W‖1 = 1}, V is a positive semidefinite J ×J diagonal matrix, and

W is written explicitly a function of V . Previous research has made informal arguments for

these restrictions on W instead of allowing for some other subset of RJ . Comparing results

under alternative choices ofW is not the focus of this paper, and it may be difficult to develop

theory to compare potential choices ofW . If V is positive semidefinite, the objective in (10)

is a pseudometric between X1 and X0W when the square root is taken, which has no effect

on the arg min. Additionally, it may be difficult to develop theory comparing this loss to

other possible loss functions, so only losses of the form in (10) are considered. Only allowing

V to be diagonal, reducing the dimension of the parameter, is more a matter of practicality;

a brief note is made in Section 3 of how this relates to our cross validation optimality result.

The standard method for choosing V is to minimize the mean squared prediction error

in the pre treatment periods for the treated unit. Defining

Y1 =


Y1,1

Y1,2
...

Y1,T0

 & Y0 =


Y2,1 Y3,1 . . . YJ+1,1

Y2,2 Y3,2 . . . YJ+1,2

...
...

. . .
...

Y2,T0 Y3,T0 . . . YJ+1,T0


then this choice of V , V MSPE, is

V MSPE = arg min
V ∈V

(Y1 − Y0W (V ))′ (Y1 − Y0W (V )) (11)

where V is the set of positive semidefinite diagonal J × J matrices. Abadie et al. (2010)

only provide informal arguments to support this specification. Furthermore, (11) rules out
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the use of X1 in Equation (6). To see why this is the case, suppose the specification in (6)

is used while (11) is used to choose V . This results in choice of V as follows:

Ṽ =

(
0r×r 0r×T0

0T0×r IT0×T0

)
.

This is important because Ṽ has zeros along the diagonal that correspond to the covariates.

Therefore, the covariates do not play a role in calculating the synthetic control weights. If a

researcher has covariates that are a strong predictors of Y N
jT , the potential outcome under no

treatment in the treatment period, then this could be a hindrance to finding good weights.

To understand why Ṽ is the result of using (6) in combination with (11), consider the analogy

of running OLS of a dependent variable Y on Y and X. Clearly, you would get a coefficient

of 1 on Y and a coefficient of 0 on X. Mechanically, this is similar to getting Ṽ as above.

For a more formal explanation, notice that

(X1 −X0W )′
(

0r×r 0r×T0

0T0×r IT0×T0

)
(X1 −X0W )

=




Z1

Y1,1
...

Y1,T0

−


Z2 . . . ZJ+1

Y2,1 . . . YJ+1,1

...
. . .

...

Y2,T0 . . . YJ+1,T0

W


′

∗

(
0r×r 0r×T0

0T0×r IT0×T0

)


Z1

Y1,1
...

Y1,T0

−


Z2 . . . ZJ+1

Y2,1 . . . YJ+1,1

...
. . .

...

Y2,T0 . . . YJ+1,T0

W


= (Y1 − Y0W )′ (Y1 − Y0W )

The above equalities tell us that W (Ṽ ) = arg minW∈W (Y1 − Y0W )′ (Y1 − Y0W ). But, we

have that

min
W∈W

(Y1 − Y0W )′ (Y1 − Y0W ) ≤ min
V ∈V

(Y1 − Y0W (V ))′ (Y1 − Y0W (V ))

≤
(
Y1 − Y0W

(
Ṽ
))′ (

Y1 − Y0W
(
Ṽ
))
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The first inequality is because W (V ) ∈ W for all V by (10) and the second inequality

is because Ṽ ∈ V . However, the first and last expression are equal, so all of the above

inequalities are equalities. This idea has previously appeared in Kaul et al. (2015)

As a result of this issue, many papers take one of two approaches. One is to include

covariates in X1 as well as linear combinations of the pretreatment outcomes, such as the av-

erage, not making use of all pretreatment observations. Such papers include Pinotti (2015),

Ando (2015), and Kleven et al. (2013). The other approach avoids covariates altogether and

includes only pretreatment outcomes in X1. Papers taking this approach include Acemoglu

et al. (2016) and Jardim et al. (2017). Although the argument previously laid out shows

that (11) and (6) cannot be used in conjunction with each other, papers go through with

this estimation nonetheless. Hinrichs (2012) examines the effect affirmative action bans had

on the ethnic composition of college enrollments, using a ban in California. The predictors

used—variables in X1—include percent underrepresented minority (the outcome of interest)

in the pretreatment years as well as the percent underrepresented minority in the state and

per capita state income. As a result, the synthetic control method calculates weights as if

the researcher did not provide the percent underrepresented minority in the state and per

capita state income. Bohn et al. (2014) examine a 2007 Arizona law aimed at reducing

unauthorized employment from undocumented immigrants and are interested in the effect

on the composition of the state’s population. In addition to approximating the pretreatment

outcomes, they also use covariates including the state’s workforce in various industrial cat-

egories, the proportion of the state’s population in educational categories, and the state’s

unemployment rate. These covariates are given a zero diagonal element in V and do not

have any effect on the synthetic control weights. Whenever (11) and (6) are used together,

this produces an estimate as if the covariates were not included, despite the researchers’

implicitly expressed desires to use the covariates. The cross validation replacement for (11),

which is introduced next, does not suffer from this problem.

Cross Validation The cross validation estimate of V is defined here, which is shown to

be optimal asymptotically in terms of mean squared error of the estimate of α̂1T . But first,

notice that

α̂1T − α1T = Y1T −
J+1∑
j=2

wjYjT − α1T = Y T
1T −

J+1∑
j=2

wjY
N
jT − α1T = Y N

1T −
J+1∑
j=2

wjY
N
jT

Since unit 1 is treated in period T , we observe Y T
1T , not Y N

1T . However, we do observe Y N
jT

for j = 2, ..., J + 1. This suggests that, with some assumptions on the joint distributions of

the variables, performing the SCM for the untreated units could provide information about
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the mean squared error of α̂1T . To continue, some additional notation must be introduced.

Let X1i be the vector analogous to X1, except for any unit i = 1, ..., J + 1, and let X0i be a

matrix whose columns consist of vectors X1j for j 6= i .1 The cross validation choice of V is

V̂J = arg min
V ∈V

J+1∑
i=2

(YiT − ỸiT (V ))2 (12)

where ỸiT (V ) is the synthetic control estimate of Y N
iT where the calculations are done as if

unit i is treated instead of unit 1. The weights for unit i are calculated analogously to (10)

as follows

W ∗(X1i, X0i, V ) = arg min
W∈W

(X1i −X0iW )′V (X1i −X0iW ) (13)

and the weighted average using the vector of weights W ∗(X1i, X0i, V ) to calculate ỸiT (V ) is

taken using YjT over units j 6= i. In the data setting of the SCM, Doudchenko and Imbens

(2016) also consider this type of cross validation except to choose a penalty parameter in a

modified version of the SCM. Abadie et al. (2010) and Abadie et al. (2015) also suggest use

of a validation period to choose V , though no result as in Section 3 has been shown.

3 Cross Validation Optimality

The goal of the following lemmas and theorems is to show optimality of our choice of V in

terms of the mean squared error of our estimate α̂1T .2 LJ(V ) is defined as E
[
(α̂1T − α1T )2

]
.

V̂J is the cross-validation choice of V , and V ∗J is a minimizer of LJ in V . The aim of this

section is to show

|LJ(V̂J)− LJ(V ∗J )| p−→
J→∞

0 (14)

where

V̂J = arg min
V ∈V

J+1∑
i=2

(YiT − ỸiT (V ))2 (15)

1 In practice this does matrix’s columns are not all X1j for j 6= i, i.e. may have fewer than J columns.
In Section 3 it is shown that if there are too many columns in X0i, then it is difficult to guarantee that
the synthetic control weights are unique. This would mean that the synthetic control estimate would not
necessarily be uniquely defined by (13). It is not new to the SCM to not use all observations in creating the
synthetic control–see, for example, Abadie et al. (2015), which created a synthetic control for West Germany
using 23 OECD countries in 1990, but Turkey, Luxembourg, and Iceland were prevented from having positive
weights. This is addressed further in Section (3).

2If we have multiple post-treatment time periods, we could instead consider E
[∑T

t=T0+1(α̂1t − α1t)
2
]
.
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ỸiT (V ) is the synthetic control estimate of Y N
iT for unit i 6= 1 using the other untreated units

as control units written explicitly as a function of V . Equation (14) says that the mean

squared error of the synthetic control estimate of α1T using the cross validation choice of V ,

V̂J , converges in probability to the mean squared error of the synthetic control estimate of

α1T that uses the best possible V , in terms of mean squared error. Trivially, LJ(V ∗J ) would

be smaller if V is allowed to include any positive semidefinite matrix, instead of just those

that are diagonal. The convention of using diagonal V is retained for this paper, although

this section could be extended to more general V .

In order to show optimality of our estimator, we first need to show that the synthetic

control weights are almost surely uniquely defined for all positive definite diagonal V under

some conditions. All proofs for this section can be found in Appendix A.

Lemma 1. W ∗(X1i, X0i, V ) = arg minW∈W(X1i −X0iW )′V (X1i −X0iW ) is unique almost

surely if

1. V is positive definite, and

2. letting Θ denote the space of vectors whose elements sum to zero and has dimension

equal to the number of columns in X0i, Null(X0i) ∩Θ is trivial (i.e. {~0}) a.s.

The latter condition could be reasonably satisfied if X1i has more linearly independent

continuously distributed variables than the number of columns of X0i and the X1i are i.i.d.

In light of this, it can be seen that X0i cannot be allowed to have J columns, since as

J grows it cannot be guaranteed that the arg min in Lemma 1 is unique. To address this

problem, I still allow the number of untreated units, J , to grow, but I assume there is a J0

such that, if we restrict the “pool” to a set of J0 untreated units, then the weights are almost

surely unique. In other words, there are J0 units that are allowed to have positive weights

in (13). These J0 units are chosen, independent of everything else, as a random sample from

{2, ..., i−1, i+1, ..., J +1}. To formalize this, there are J0 columns of X0i, which correspond

to the X1j for a simple random sample from {2, ..., i− 1, i+ 1, ..., J + 1}. J0 is fixed and the

subscript on LJ can be dropped. Let J i0 denote the subset of {2, ..., i − 1, i + 1, ..., J + 1}
sampled union with {i}.

There are other possibilities to modify (13) to guarantee the argmin is unique. This

approach is similar to approaches already taken in that a subset of untreated units are

allowed to have positive weights in the synthetic control estimate, e.g. Footnote 1. The

reader may be concerned that the weights are still random due to the draws of J i0. Taking

expectations over J i0 removes this issue, which can be done computationally. A simple

inequality shows that this further reduces the means squared error.
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Lemma 2. Let ỸiT (V ) denote the SC estimate for unit i 6= 1 using units

{2, ..., i − 1, i + 1, ..., J + 1} as control units (written explicitly as a function of V ),

W ∗(X1i, X0i, V ) as in Lemma 1. Under the assumptions of Lemma 1, (YiT − ỸiT (V ))2 is

almost surely continuous in V for V ∈ V where V includes positive definite diagonal matrices.

Notice that Lemmas 1 and 2 refers to positive definite V . In order to extend this to

positive semidefinite V , define W ∗(X1i, X0i, V ) for positive semidefinite as the limit of

W ∗(X1i, X0i, V ) for positive definite V , since Lemma 2 shows Ỹit(V ) is continuous in V for

positive definite V .3

Recapping Lemmas 1 and 2, W ∗(X1i, X0i, V ) is a.s. unique and continuous in V .

W ∗(X1i, X0i, V ) can be defined for positive semidefinite V as the limit using positive definite

V .

Lemma 3. Define ỸiT (V ) to be the SC estimate of Y N
iT with X0i created as defined above

(excluding unit 1). Under the assumptions of Lemma 1 and Lemma 2, and

1. i.i.d. (X1i, Y
N
iT ) across i, and

2. finite second moments of Y N
iT

3. X0i is as described previously

then L(V ) is continuous in V.

The proof of the following theorem is similar to that of Huber et al. (1967).

Theorem 1 (Main Result). The assumptions of Lemma 1-3 and finite fourth moment of

Y N
iT imply:

1.

1

J

J+1∑
i=2

(Y N
iT − ỸiT (V ))2

p−→ L(V )

uniformly over V, the space of positive semidefinite diagonal matrices whose diagonal

elements sum to one, and

2. Letting V ∗ denote an element of arg minV ∈V L(V ) and V̂J denoting the V found through

cross validation L(V̂J) converges in probability to L(V ∗).

Part 2 of Theorem 1 has been the goal in this section and follows quickly from Part 1.

This gives the sense in which cross validation is optimal. This says that the mean squared

3In practice, the diagonal elements of V can be bounded below by an arbitrarily small positive constant.
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error of the SCM estimate of α1T using cross validation converges in probability to the mean

squared error of the SCM estimate of α1T as if we plugged in the best V (in terms of MSE).

This has shown the optimality of the cross validation choice of V , V̂J , in terms of the mean

squared error of α̂1.

4 Simulations

The simulations performed for this section support the asymptotic results demonstrated

in Section 3 as the mean squared error of the estimate generally decreases for the simulations

using the cross validated choice of V . Additionally, the argument specifying X1 to include

covariates and pretreatment outcomes is supported.

The simulations are designed as follows. The outcomes under no treatment Y N
iT are

generated according to Equation (2) where the covariates, factor loadings, and error terms

are independent of each other and across i and, for all simulations, are drawn according to

the distributions

Zi ∼ U ([0, 1]r) µi ∼ U
(

[0, 1]F
)

εi ∼ 0.2 ∗N (0, IT×T ) (16)

The dimensions r and F can be deduced from the design choices of θt and λt. All of the

designs have 6 pretreatment periods, T0, and 1 treatment period. Figure 1 graphs how the

coefficients θt and factors λt evolve across time periods for the four different designs. Table

1 shows the specifications of X1 across the different designs for both the MSPE and cross

validation. In evaluating the cross validation choice of V , X1 is always as in (6), whereas for

the MSPE choice of V varies between two common choices of X1. Remember that the mean

squared error of α̂1T does not depend on α1T because α̂1T − α1T is the same for all values of

α1T , so α1T does not need to be stated in the design.
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Figure 1 – Coefficients and Factors for Four Simulations Designs
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These three graphs display the factors and coefficients over the different time periods. In Design 3 &
4 the covariates belong to R6. The coefficients are defined as follows: θk,t = 1 if k = t or t = 7(= T ) and
θk,t = 0 otherwise. The first subscript in λ1,t and λ2,t refer to the first and second dimension of λt.
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Table 1 – X1 Specification for Both MSPE and CV for Four Simulation Designs

MSPE Cross Validation

[1] [2] [3] [4] [1]-[4]

X1 =


Y11
...

Y1T0




Y11
...

Y1T0


(
Z1

Ȳ1

) 
Y11
...

Y1T0




Z1

Y11
...

Y1T0


This table displays the various specifications for X1 across the four different simulation designs for

estimating the treatment effect α1T using both MSPE and cross validation. Ȳ1 = 1
T0

∑T0

t=1 Y1t

.

Table 2 presents the simulation results for the four different simulation designs outlined

in Equation (16), Figure 1, and Table 1 for both the MSPE and cross validation choice of

V . These simulation were performed for sample sizes of 10, 20, 50, 100, and 200. Some of

the samples previously mentioned used U.S. states, regions in Spain, OECD countries, or

banks on the NYSE, which are similar in size to the sample sizes simulated. There are only

a few simulations where the estimate using MSPE outperforms cross validation. Given the

asymptotic nature of the result in Section 3, it makes sense that the improvements from

using cross validation are larger when the sample size is larger.

Design 1 is somewhat of a best case scenario for using the MSPE choice of V . The data

are not generated with covariates, so the estimation using cross validation cannot make use

of the additional information that covariates would provide. Even then, the differences in

the mean squared error of the estimates are modest for all sample sizes. Design 2 shows that

these differences are slightly more pronounced in favor of cross validation when there is one

covariate available.

Simulation Designs 3 & 4 demonstrate the usefulness of specifying X1 to include all

covariates and pretreatment outcomes. Much of the variation in Y N
iT is due to the covariates.

In Design 3, where the estimate using MSPE specifies X1 using the covariates and only the

average of the outcome in pretreatment periods, the improvement from using cross validation

is up to about 12 percent. In Design 4, where the estimate using MSPE specifies X1 using

only pretreatment outcomes, the improvement from cross validation is even greater at up to

about 16 percent.
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Table 2 – Mean Squared Error of α̂1T

MSPE Cross Validation

J+1 [1] [2] [3] [4] [1] [2] [3] [4]

10 0.2982 0.3646 0.6132 0.7228 0.3182 0.3334 0.6194 0.6685

20 0.2811 0.3544 0.6309 0.7120 0.2900 0.3099 0.6122 0.6635

50 0.2946 0.3527 0.6227 0.7323 0.2948 0.2980 0.5785 0.6511

100 0.2890 0.3605 0.6171 0.7339 0.2852 0.2980 0.5466 0.6316

200 0.2976 0.3556 0.6386 0.7343 0.2907 0.2923 0.5602 0.6164

This table presents the mean squared error of the estimates using MSPE and cross validation to
choose V , across the four different simulation designs, and with J + 1, the sample size, being 10, 20,
50, 100, or 200. Each simulation uses 10,000 repetitions. Simulation results for cross validation between
3 and 4 should not be the same as J0 varied across the two simulations. J0 = 5 for [1], [2], and [4], and
J0 = 6 for [3].

5 Conclusion

A cross validation method for choosing a tuning parameter in the synthetic control

method has been shown to be useful. First, it allows researchers to use a broader range

of specifications, which no longer precludes specifications that have been motivated in pre-

vious research. Cross validation was also shown to be asymptotically optimal under some

conditions. There results were supported by simulations. Finally, it was shown that the

procedure for inference is valid if the i.i.d. assumption in Section 3 replaces the assumption

that treatment was randomized.
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A Proofs

In this appendix I provide proofs for the Lemmas and Theorem in Section 3.

Proof. (Lemma 1) W ∗(X1i, X0i, V ) is unique if the objective for which it solves is strictly

convex in W . Using the definition of strict convexity, for every W1,W2 ∈ W s.t. W1 6= W2

and α ∈ (0, 1)

((1− α)W1 + αW2)
′X ′0iV X0i((1− α)W1 + αW2) < (1− α)W ′

1X
′
0iV X0iW1 + αW ′

2X
′
0iV X0iW2

which is equivalent to

(W1 −W2)
′X ′0iV X0i(W1 −W2) > 0

Because V is positive definite, it is sufficient for X0i(W1 −W2) 6= ~0, which is almost surely

true by the second condition.

Proof. (Lemma 2) It suffices to show W ∗(X1i, X0i, V ) is continuous a.s. for V positive

definite diagonal matrices. Assume Null(X0i) ∩ Θ is trivial, which is a.s. true. Suppose for

the sake of contradiction that W ∗(X1i, X0i, V ) is not continuous at some V0 ∈ V
Therefore,

∃ ε > 0 s.t. ∀ δ > 0 ∃ V ∈ Nδ(V0) s.t. ‖W ∗(X1i, X0i, V0)−W ∗(X1i, X0i, V )‖ ≥ ε

Let {δn} be a positive sequence such that δn → 0 and let Vn be the corresponding matrix such

that the above statement holds. The norm considered for V is the Euclidean norm, since V

can be though of as a vector of its diagonal elements. Define Wn ≡ W ∗(X1i, X0i, Vn) (n ≥ 1)

and W0 ≡ W ∗(X1i, X0i, V0). Note that:

(X1i −X0iWn)′Vn(X1i −X0iWn) ≤ (X1i −X0iW0)
′Vn(X1i −X0iW0) (17)

−→
n→∞

(X1i −X0iW0)
′V0(X1i −X0iW0)

where the inequality holds by optimality of the Wn and convergence is by continuity of the

objective in V . By the Bolzano-Weierstrass theorem ∃{nk} such that Wnk → W̄ ∈ W . Since

the objective determining W ∗ is continuous in V and W

(X1i −X0iWnk)
′Vnk(X1i −X0iWnk) −→

k→∞
(X1i −X0iW̄ )′V0(X1i −X0iW̄ )

≤ (X1i −X0iW0)
′V0(X1i −X0iW0)
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where the inequality follows from (17). The following equality must hold by the optimality

of W0. i.e.:

(X1i −X0iW̄ )′V0(X1i −X0iW̄ ) = (X1i −X0iW0)
′V0(X1i −X0iW0)

However, the objective (13) is almost surely strictly convex and ‖W̄ − W0‖ ≥ ε. This

contradicts optimality of W0.

Proof. (Lemma 3) This follows from the Dominated Convergence Theorem.

Let V ∈ V be given and let Vn be a sequence in V such that Vn → V .

|(Y N
iT − ỸiT )2| ≤ 4 max

l∈Ji0
{Y N

lT

2}

The right of the above inequality is the dominating function. Because the second moment of

Y N
jT is assumed to exist, the expectation of the maximum of J0 + 1 i.i.d. realizations of this

variable must also exist. These observations are i.i.d. Therefore, the dominating function is

integrable. (Y N
iT − ỸiT (Vn))2 −→

n→∞
(Y N

iT − ỸiT (V ))2 a.e. pointwise; therefore, by the dominated

convergence theorem

lim
n→∞

E(Y N
iT − ỸiT (Vn))2 = E(Y N

iT − ỸiT (V ))2

This shows continuity of E(Y N
iT − ỸiT (V ))2 in V .

Proof. Part 1 of Theorem 1 Let ε > 0 be given. Consider the term4

sup
V ′∈Nδ(V )

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (V ))2
∣∣∣ (18)

Notice that by the continuity of (Y N
iT − ỸiT (V ))2, (18) converges to zero as δ → 0 fixing

V . Notice that (18) is bounded by 8 maxl∈Ji0

{
Y N
lT

2
}

, and the expectation of this exists.

Therefore, by the dominated convergence theorem

E

[
sup

V ′∈Nδ(V )

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (V ))2
∣∣∣] −→

δ→0
0

4Assume it is measurable.
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Therefore, ∀V , ∃δ(V ) such that δ < δ(V ) implies

E

[
sup

V ′∈Nδ(V )

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (V ))2
∣∣∣] < ε

The {Nδ(V )(V )}V ∈V cover V , and V is compact. Therefore, ∃K such that K neighborhoods

centered at {Vk}Kk=1 of radius δk = δ(Vk) cover V .

Let V ∈ V be given. Let k be such that V ∈ Nδk(Vk), which exists since the sets cover V .

From here, we bound by terms which only depend on k. Since there are only finitely many

possible k, the convergence is uniform.∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (V ))2 − L(V )

∣∣∣∣∣ ≤
∣∣∣∣∣ 1J

J+1∑
i=2

(Y N
iT − ỸiT (V ))2 − (Y N

iT − ỸiT (Vk))
2

∣∣∣∣∣
+

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (Vk))

2 − L(Vk)

∣∣∣∣∣+ |L(Vk)− L(V )|

Let µk ≡ E
(

supV ′∈Nδ(Vk)

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (Vk))
2
∣∣∣) < ε and notice

|L(Vk)− L(V )| < ε.

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (V ))2 − L(V )

∣∣∣∣∣ ≤
∣∣∣∣∣ 1J

J+1∑
i=2

sup
V ′∈Nδ(Vk)

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (Vk))
2
∣∣∣− µk

∣∣∣∣∣+ |µk|

+

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (Vk))

2 − L(Vk)

∣∣∣∣∣+ |L(Vk)− L(V )|

≤

∣∣∣∣∣ 1J
J+1∑
i=2

sup
V ′∈Nδ(Vk)

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (Vk))
2
∣∣∣− µk

∣∣∣∣∣︸ ︷︷ ︸
(∗)

+

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (Vk))

2 − L(Vk)

∣∣∣∣∣︸ ︷︷ ︸
(∗∗)

+ 2ε

Notice that the last expression only depends on V through Vk. There are finitely many

Vk. If this expression converges in probability to zero, then we have uniform convergence.

It remains to show that (∗) and (∗∗) converge in probability to zero. First, consider (∗).
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Define ζi = supV ′∈Nδ(Vk)

∣∣∣(Y N
iT − ỸiT (V ′))2 − (Y N

iT − ỸiT (Vk))
2
∣∣∣− µk.

P ((∗) > ε) = P

(∣∣∣∣∣
J+1∑
i=2

ζi

∣∣∣∣∣ > Jε

)
≤

E
(∑J+1

i=2 ζi

)2
(Jε)2

=
E
[
(ζi)

2]
Jε2

+
(J − 1)Ei 6=j [ζiζj]

Jε2

where the inequality is Chebyshev’s inequality. Consider the first term. E
[
(ζi)

2] exists

because ζ2i ≤ maxl∈Ji0(Y
N
lT

2
+ ε)2. The fourth moment of Y N

iT exists, so the fourth moment of

the max of a finite number, |J i0|, of i.i.d. realizations of Y N
iT must exist. Therefore, the first

term converges to zero. Now consider the second term.

Ei 6=j [ζiζj] = Ei 6=j
[
ζiζj|J i0 ∩ J

j
0 = ∅

]
P
(
J i0 ∩ J

j
0 = ∅

)
+ Ei 6=j

[
ζiζj|J i0 ∩ J

j
0 6= ∅

]
P
(
J i0 ∩ J

j
0 6= ∅

)
Ei 6=j

[
ζiζj|J i0 ∩ J

j
0 = ∅

]
= 0 because J i0’s where chosen independently of the data. ζi and

ζj are functions of independent observations and are mean zero. ζiζj can be bounded in a

similar way that ζ2i was bounded. P
(
J i0 ∩ J

j
0 6= ∅

)
−→ 0, so (∗) p−→ 0. Now consider (∗∗).

Again for notational simplicity, define ξi = (Y N
iT − ỸiT (Vk))

2 − L(Vk). Showing (∗∗) p−→ 0 is

similar to that of (∗).

P ((∗∗) > ε) = P

(∣∣∣∣∣
J+1∑
i=1

ξi

∣∣∣∣∣ > Jε

)
≤

E
(∑J+1

i=2 ξi

)2
(Jε)2

=
E
[
(ξi)

2]
Jε2

+
(J − 1)Ei 6=j [ξiξj]

Jε2

E
[
(ξi)

2] exists because Emaxl∈Ji0 Y
N
lT

4
exists. The argument for Ei 6=j [ξiξj] is analogous to

Ei 6=j [ζiζj]. Therefore, the desired result has been shown.

Proof. Part 2 of Theorem 1∣∣∣L(V̂J)− L(V ∗)
∣∣∣
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≤

∣∣∣∣∣L(V̂J)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

∣∣∣∣∣+

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2 − L(V ∗)

∣∣∣∣∣
≤

∣∣∣∣∣L(V̂J)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

∣∣∣∣∣
+ max

{
1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2 − L(V ∗), L(V ∗)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

}

≤

∣∣∣∣∣L(V̂J)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

∣∣∣∣∣
+ max

{
1

J

J+1∑
i=2

(Y N
iT − ỸiT (V ∗))2 − L(V ∗), L(V̂J)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

}

≤2

∣∣∣∣∣L(V̂J)− 1

J

J+1∑
i=2

(Y N
iT − ỸiT (V̂J))2

∣∣∣∣∣+

∣∣∣∣∣ 1J
J+1∑
i=2

(Y N
iT − ỸiT (V ∗))2 − L(V ∗)

∣∣∣∣∣
Both terms converge in probability to zero by the uniform convergence in probability pre-

sented in Part 1 of Theorem 1.
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