Midwest Dynamics and Group Actions
Indiana U. /U. of Chicago/U. of Illinois at Chicago/Northwestern U. /U. of Michigan
7 June, 2021

Rigidity of foliations on surfaces and renormalization

Corinna Ulcigrai

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.
- \mathcal{F} minimal

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.

- E.g. \mathcal{F}_{0} linear foliation (leaves are trajectories of the straight line flow);
- \mathcal{F} minimal

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_{0};

- E.g. \mathcal{F}_{0} linear foliation (leaves are trajectories of the straight line flow);

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_{0};

- E.g. \mathcal{F}_{0} linear foliation (leaves are trajectories of the straight line flow);
- If θ is the angle of the lines, $\alpha:=\cot \theta$ is the rotation number,

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_{0};
- E.g. \mathcal{F}_{0} linear foliation (leaves are trajectories of the straight line flow);
- If θ is the angle of the lines, $\alpha:=\cot \theta$ is the rotation number;
- Def: a foliation \mathcal{F} is geometrically rigid if \mathcal{F} topologically conjugate to \mathcal{F}_{0} implies that \mathcal{F} is differentiably conjugate to \mathcal{F}_{0} (as foliations) $\left[\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right.$ conjugacy].

Rigidity of foliations in genus one.

- \mathcal{F} orientable smooth foliation of compact S with $g=1$.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_{0};
- E.g. \mathcal{F}_{0} linear foliation (leaves are trajectories of the straight line flow);
- If θ is the angle of the lines, $\alpha:=\cot \theta$ is the rotation number,
- Def: a foliation \mathcal{F} is geometrically rigid if \mathcal{F} topologically conjugate to \mathcal{F}_{0} implies that \mathcal{F} is differentiably conjugate to \mathcal{F}_{0} (as foliations) $\left[\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right.$ conjugacy].
- For a full measure set of rotation numbers (i.e. for a.e. α) foliations in $g=1$ are geometrically rigid [follows from M. Herman global theorem on circle diffeos.]

Rigidity of foliations in genus two.

- \mathcal{F} orientable smooth foliation of compact S with $g=2$ with only Morse type saddles;
[Morse type (simple) saddles:
leaves are level sets of $f(x, y)=x y$]

Theorem (Ghazouani-U', 2021)
Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_{0}, then
it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.
[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

Rigidity of foliations in genus two.

- \mathcal{F} orientable smooth foliation of compact S with $g=2$ with only Morse type saddles;
[Morse type (simple) saddles:
leaves are level sets of $f(x, y)=x y$]

- E.g. \mathcal{F}_{0} linear model: leaves are trajectories of the straight line flow on a translation surface;

Theorem (Ghazouani-U', 2021)
Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_{0}, then
it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.
[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

Rigidity of foliations in genus two.

- \mathcal{F} orientable smooth foliation of compact S with $g=2$ with only Morse type saddles;
[Morse type (simple) saddles:
leaves are level sets of $f(x, y)=x y$]

- E.g. \mathcal{F}_{0} linear model: leaves are trajectories of the straight line flow on a translation surface;

Theorem (Ghazouani-U', 2021)
Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_{0}, then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.
[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

Rigidity of foliations in genus two.

- \mathcal{F} orientable smooth foliation of compact S with $g=2$ with only Morse type saddles;
[Morse type (simple) saddles:
leaves are level sets of $f(x, y)=x y$]
Theorem (Ghazouani-U', 2021)
Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_{0}, then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.
[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- $S^{1} \subset S$ transverse section;

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- $S^{1} \subset S$ transverse section;

The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle diffeomorphism;

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- E.g. \mathcal{F}_{0} irrational linear foliation (angle θ);
- $S^{1} \subset S$ transverse section; The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle diffeomorphism;

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- $S^{1} \subset S$ transverse section;

The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle diffeomorphism;

- E.g. \mathcal{F}_{0} irrational linear foliation (angle θ);
- The Poincaré first return map on I is $R_{\alpha}=x+\alpha \bmod 1$, where $\alpha=\cot \theta$.

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- $S^{1} \subset S$ transverse section;

The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle diffeomorphism;

- E.g. \mathcal{F}_{0} irrational linear foliation (angle θ);
- The Poincaré first return map on I is $R_{\alpha}=x+\alpha \bmod 1$, where $\alpha=\cot \theta$.

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- $S^{1} \subset S$ transverse section; The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle
- E.g. \mathcal{F}_{0} irrational linear foliation (angle θ); diffeomorphism;
- The Poincaré first return map on I is $R_{\alpha}=x+\alpha \bmod 1$, where $\alpha=\cot \theta$.
- Def/recall: f and R_{α} are conjugate if there exists a orientation preserving, invertible $h: S^{1} \rightarrow S^{1}$ (the conjugacy) such that

$$
h \circ f=R_{\alpha} \circ h .
$$

Poincaré maps in genus one: circle diffeomorphisms

- \mathcal{F} orientable, smooth, minimal foliation on S with $g=1$.
- E.g. \mathcal{F}_{0} irrational linear foliation (angle θ);
- $S^{1} \subset S$ transverse section; The Poincaré map $f: S^{1} \rightarrow S^{1}$ is a circle
- The Poincaré first return map on I is $R_{\alpha}=x+\alpha \bmod 1$, where $\alpha=\cot \theta$. diffeomorphism;
- Def/recall: f and R_{α} are conjugate if there exists a orientation preserving, invertible $h: S^{1} \rightarrow S^{1}$ (the conjugacy) such that

$$
h \circ f=R_{\alpha} \circ h
$$

- The rotation number α of $f: S^{1} \rightarrow S^{1}$ can be defined dynamically ($\alpha=\lim _{n \rightarrow \infty} \frac{f^{n}(x)-x}{n}$) or combinatorially (via continued fractions and the Euclidean algorithm).

Circle diffeomorphisms: a mini-survey of the classical theory.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number α.

Circle diffeomorphisms: a mini-survey of the classical theory.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number α.
(1) Combinatorics:

- if the rotation number $\alpha \notin \mathbb{Q}, \exists$ [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h: S^{1} \rightarrow S^{1}$ such that $h \circ f=R_{\alpha} \circ h$.

Circle diffeomorphisms: a mini-survey of the classical theory.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number α.
(1) Combinatorics:

- if the rotation number $\alpha \notin \mathbb{Q}, \exists$ [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h: S^{1} \rightarrow S^{1}$ such that $h \circ f=R_{\alpha} \circ h$.
- h could fail to be a conjugacy, if there are wandering intervals, i.e. $J \subset S^{1}$ s.t. $f^{n}(J), n \in \mathbb{Z}$ are all disjoint (Denjoy counterexamples).
[Idea: $\left(f^{n}(J)\right)_{n \in \mathbb{Z}}$ are obtained by blow up of an orbit.]

a Denjoy flow (courtesy of J. Carrard)

Circle diffeomorphisms: a mini-survey of the classical theory.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number α.
(1) Combinatorics:

- if the rotation number $\alpha \notin \mathbb{Q}, \exists$ [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h: S^{1} \rightarrow S^{1}$ such that $h \circ f=R_{\alpha} \circ h$.
- h could fail to be a conjugacy, if there are wandering intervals, i.e. $J \subset S^{1}$ s.t. $f^{n}(J), n \in \mathbb{Z}$ are all disjoint (Denjoy counterexamples).
[Idea: $\left(f^{n}(J)\right)_{n \in \mathbb{Z}}$ are obtained by blow up of an orbit.]

a Denjoy flow (courtesy of J. Carrard)
(2) Topology: if f is differentiable, e.g. $f \in \mathcal{C}^{2}\left(\mathcal{C}^{1}+f^{\prime} \in B V\right)$, then f is a conjugacy \Leftrightarrow f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).

Circle diffeomorphisms: a mini-survey of the classical theory.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number α.
(1) Combinatorics:

- if the rotation number $\alpha \notin \mathbb{Q}, \exists$ [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h: S^{1} \rightarrow S^{1}$ such that $h \circ f=R_{\alpha} \circ h$.
- h could fail to be a conjugacy, if there are wandering intervals, i.e. $J \subset S^{1}$ s.t. $f^{n}(J), n \in \mathbb{Z}$ are all disjoint (Denjoy counterexamples).
[Idea: $\left(f^{n}(J)\right)_{n \in \mathbb{Z}}$ are obtained by blow up of an orbit.]

a Denjoy flow (courtesy of J. Carrard)
(2) Topology: if f is differentiable, e.g. $f \in \mathcal{C}^{2}\left(\mathcal{C}^{1}+f^{\prime} \in B V\right)$, then f is a conjugacy \Leftrightarrow f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).
(3) Geometry: What is the regularity of h ? Is $h \in \mathcal{C}^{1}$? Is $h \in \mathcal{C}^{\infty}$?
(Rigidity: topology determines geometry)

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}):

(B) Global results (No closeness assumption):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

(B) Global results (No closeness assumption):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine, [i.e. $\left|\alpha-\frac{p}{q}\right| \geq C / q^{2+\tau}$, for $\tau>0, \forall p \in \mathbb{Z}, q \in \mathbb{N}_{+}$]

(B) Global results (No closeness assumption):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine, [i.e. $\left|\alpha-\frac{p}{q}\right| \geq C / q^{2+\tau}$, for $\tau>0, \forall p \in \mathbb{Z}, q \in \mathbb{N}_{+}$] and f is \mathcal{C}^{ω}-close (resp. \mathcal{C}^{∞}) to R_{α}, h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

(B) Global results (No closeness assumption):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,
[i.e. $\left|\alpha-\frac{p}{q}\right| \geq C / q^{2+\tau}$, for $\tau>0, \forall p \in \mathbb{Z}, q \in \mathbb{N}_{+}$]
and f is \mathcal{C}^{ω}-close (resp. \mathcal{C}^{∞}) to R_{α}, h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

- Key step: Solve the cohomological equation
[i.e. linearized conjugacy problem: given (smooth) ϕ,
find (smooth) ψ s.t. $\psi \circ R_{\alpha}-\psi=\phi$]
$R k$: if α is Diophantine and $\int \phi=0$, it has a smooth solution.
(B) Global results (No closeness assumption):

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,
[i.e. $\left|\alpha-\frac{p}{q}\right| \geq C / q^{2+\tau}$, for $\tau>0, \forall p \in \mathbb{Z}, q \in \mathbb{N}_{+}$]
and f is \mathcal{C}^{ω}-close (resp. \mathcal{C}^{∞}) to R_{α}, h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

- Key step: Solve the cohomological equation
[i.e. linearized conjugacy problem: given (smooth) ϕ,
find (smooth) ψ s.t. $\psi \circ R_{\alpha}-\psi=\phi$]
$R k$: if α is Diophantine and $\int \phi=0$, it has a smooth solution.
(B) Global results (No closeness assumption):
- [Herman, Yoccoz] if α is Diophantine, f is \mathcal{C}^{∞}-conjugate (so in particular \mathcal{C}^{1}-conjugate) to R_{α} (geometric rigidity).

Circle diffeomorphisms: local and global results.

Let $f: S^{1} \rightarrow S^{1}$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.
(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,
[i.e. $\left|\alpha-\frac{p}{q}\right| \geq C / q^{2+\tau}$, for $\tau>0, \forall p \in \mathbb{Z}, q \in \mathbb{N}_{+}$]
and f is \mathcal{C}^{ω}-close (resp. \mathcal{C}^{∞}) to R_{α}, h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

- Key step: Solve the cohomological equation
[i.e. linearized conjugacy problem: given (smooth) ϕ,
find (smooth) ψ s.t. $\psi \circ R_{\alpha}-\psi=\phi$]
$R k$: if α is Diophantine and $\int \phi=0$, it has a smooth solution.
(B) Global results (No closeness assumption):
- [Herman, Yoccoz] if α is Diophantine, f is \mathcal{C}^{∞}-conjugate (so in particular \mathcal{C}^{1}-conjugate) to R_{α} (geometric rigidity).

[Renormalization approach: Khanin-Sinai, Khanin-Teplisnky]

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
\rightarrow discovered by Feigenbaum, Coullet-Tresser in the ' 70 s ;

- deen mathematical theory in the '90s by Sullivan McMullen, Lyubich et al
- Circle maps with singularities, i.e. with:
- NEW: typical foliations on S with $g=2$
(and corresponding Poincaré maps);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
- discovered by Feigenbaum, Coullet-Tresser in the '70s;

- deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:

- NEW: typical foliations on S with $g=2$
(and corresponding Poincaré maps);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
- discovered by Feigenbaum, Coullet-Tresser in the '70s;

- deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:

- critical points $f^{\prime}(c)=0$ [de Faria-de Melo, Yampolsky ...]
- break points $\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)^{-}(b)$ [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo . . .]
- NEW: typical foliations on S with $g=2$
(and corresponding Poincaré maps)

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
- discovered by Feigenbaum, Coullet-Tresser in the '70s;

- deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:
- critical points $f^{\prime}(c)=0$ [de Faria-de Melo, Yampolsky ...]
$\begin{aligned} & \text { break points }\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)-(b) \\ & {[\text { Khanin, Khmelev, Teplinsky, Kocic, Mazz }} \\ > & \text { NEW : typical foliations on } S \text { with } g=2 \\ & \text { (and corresponding Poincaré maps): }\end{aligned}$
$\begin{aligned} & \text { break points }\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)^{-}(b) \\ & \text { [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo } \\ & \text { DEW: typical foliations on } S \text { with } g=2 \\ & \text { (and corresponding Poincaré maps): }\end{aligned}$

$\begin{aligned} & \text { break points }\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)-(b) \\ & {[\text { Khanin, Khmelev, Teplinsky, Kocic, Mazz }} \\ > & \text { NEW : typical foliations on } S \text { with } g=2 \\ & \text { (and corresponding Poincaré maps): }\end{aligned}$

(and corresponding Poincaré maps)

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
- discovered by Feigenbaum, Coullet-Tresser in the '70s;

- deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:
- critical points $f^{\prime}(c)=0$ [de Faria-de Melo, Yampolsky ...]
- break points $\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)^{-}(b)$ [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]

\rightarrow NEW: typical foliations on S with $g=2$

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}$ conjugacy):

- Circle diffeomorphisms (and foliations in $g=1$) with Diophantine α [Herman, Yoccoz];
- Unimodal maps of $[0,1]$:
- discovered by Feigenbaum, Coullet-Tresser in the '70s;

- deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:

- critical points $f^{\prime}(c)=0$ [de Faria-de Melo, Yampolsky ...]
- break points $\left(f^{\prime}\right)^{+}(b) \neq\left(f^{\prime}\right)^{-}(b)$ [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]

- NEW: typical foliations on S with $g=2$ (and corresponding Poincaré maps);

Poincaré maps in higher genus: generalized interval exchange maps

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
$\rightarrow I \subset S$ transverse arc (section);

Poincaré maps in higher genus: generalized interval exchange maps

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);

Poincaré maps in higher genus: generalized interval exchange maps

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);
- E.g. \mathcal{F}_{0} minimal linear flow on a translation surface;

Poincaré maps in higher genus: generalized interval exchange maps

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);

IET

- E.g. \mathcal{F}_{0} minimal linear flow on a translation surface;
- The Poincaré first return map $T_{0}: I \rightarrow I$ is an (irreducible) (standard) Interval Exchange Transformation (IET).

Poincaré maps in higher genus: generalized interval exchange maps

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);
- The Poincaré map $T: I \rightarrow I$ is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)

- E.g. \mathcal{F}_{0} minimal linear flow on a translation surface;
- The Poincaré first return map $T_{0}: I \rightarrow I$ is an (irreducible) (standard) Interval Exchange Transformation (IET).

Poincaré maps in higher genus: generalized interval exchange maps

GIET

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);
- The Poincaré map $T: I \rightarrow I$ is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)
- Def: T is of class \mathcal{C}^{r} if each branch $T_{i}=T| |_{i}$ extends to \mathcal{C}^{r} diffeo on $\bar{i}_{i} ;$

- E.g. \mathcal{F}_{0} minimal linear flow on a translation surface;
- The Poincaré first return map $T_{0}: I \rightarrow I$ is an (irreducible) (standard) Interval Exchange Transformation (IET).

Poincaré maps in higher genus: generalized interval exchange maps

GIET

- \mathcal{F} orientable, smooth, minimal foliation on S with $g \geq 2$.
- $I \subset S$ transverse arc (section);
- The Poincaré map $T: I \rightarrow I$ is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)
- Def: T is of class \mathcal{C}^{r} if each branch $T_{i}=T| |_{i}$ extends to \mathcal{C}^{r} diffeo on \bar{i}_{i};

IET

- E.g. \mathcal{F}_{0} minimal linear flow on a translation surface;
- The Poincaré first return map $T_{0}: I \rightarrow I$ is an (irreducible) (standard) Interval Exchange Transformation (IET).
- Def: T and T_{0} are conjugate iff there exists a o. p. diffeomorphism $h: I \rightarrow I$ (the conjugacy) such that

$$
h \circ T=T_{0} \circ h .
$$

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET,
 then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET,
 then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];
(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy,

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET, then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

a Denjoy-like linear flow [E.g. by Jerome Carrard]
(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy,

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET, then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

a Denjoy-like linear flow [E.g. by Jerome Carrard]
(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy,

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET, then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

a Denjoy-like linear flow [E.g. by Jerome Carrard]

(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy, also if T if smooth, even affine!

Affine IET

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET, then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

a Denjoy-like linear flow [E.g. by Jerome Carrard]

(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy, also if T if smooth, even affine!
- \exists affine IETs (AIETs) with wandering intervals [n.u.e. first example by Levitt, (families of) periodic type, u.e. AIETs by Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];

Affine IET

GIETs: combinatorics and wandering intervals.

Let $T: I \rightarrow I$ be a Keane GIET (no saddle connections).
(1) Combinatorics:

- The role of rotation number for T is played by a combinatorial datum $\gamma(T)$ [Sequence of permutations, or path in Rauzy-Veech diagram]
- if $\gamma(T)=\gamma\left(T_{0}\right)$ where T_{0} is a (minimal or Keane) IET, then T is semi-conjugate to T_{0} [Ref: Yoccoz lecture notes];

a Denjoy-like linear flow [E.g. by Jerome Carrard]

Affine IET
(2) Topology: T can have wandering intervals $\left(T^{n} J\right)_{n \in \mathbb{Z}}$ and h may fail to be a conjugacy, also if T if smooth, even affine!

- \exists affine IETs (AIETs) with wandering intervals [n.u.e. first example by Levitt, (families of) periodic type, u.e. AIETs by Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];
- most AIETs have wandering intervals [Marmi-Moussa-Yoccoz];

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
[Seminal works: Forni,
 Marmi-Moussa-Yoccoz]

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,

Marmi-Moussa-Yoccoz]

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,
 Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\left.\varphi \circ T_{0}-\varphi=\psi(\star)\right]$

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\varphi \circ T_{0}-\varphi=\psi(\star)$]
- Forni, 1997: for a.e. T_{0}, there are obstructions to solve (\star) (space of solutions has finite codimension).

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,
 Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\varphi \circ T_{0}-\varphi=\psi(\star)$]
- Forni, 1997: for a.e. T_{0}, there are obstructions to solve (\star) (space of solutions has finite codimension).
- Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (Roth-type).

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,
Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\varphi \circ T_{0}-\varphi=\psi(\star)$]
- Forni, 1997: for a.e. T_{0}, there are obstructions to solve (\star) (space of solutions has finite codimension).
- Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (Roth-type).

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,
Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\varphi \circ T_{0}-\varphi=\psi(\star)$]
- Forni, 1997: for a.e. T_{0}, there are obstructions to solve (\star) (space of solutions has finite codimension).
- Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (Roth-type).

- Local linearization:
- Marmi-Moussa-Yoccoz, 2012: for a.e. IET T_{0}, the GIETs \mathcal{C}^{5}-close to T_{0} (+simple deformations) which are \mathcal{C}^{2} conjugate have finite codim;

Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T_{0} smoothly conjugated?
(A) Local theory: assume T is \mathcal{C}^{r}-close to T_{0} and a simple perturbation (perturb away from discontinuties).
[Seminal works: Forni,
Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_{0} IET) [given ψ, find φ s.t. $\varphi \circ T_{0}-\varphi=\psi(\star)$]
- Forni, 1997: for a.e. T_{0}, there are obstructions to solve (\star) (space of solutions has finite codimension).
- Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (Roth-type).

- Local linearization:
- Marmi-Moussa-Yoccoz, 2012: for a.e. IET T_{0}, the GIETs \mathcal{C}^{5}-close to T_{0} (+simple deformations) which are \mathcal{C}^{2} conjugate have finite codim;
- Ghazouani, 2020: for T_{0} hyperbolic periodic-type, the GIETs \mathcal{C}^{3}-close to T_{0} (+simple def.) \mathcal{C}^{1} conjugate to it have codim $(d-1)+(g-1)$;

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.
- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.
- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};
- $T_{0} \mathrm{IET} \Rightarrow B\left(T_{0}\right)_{i}=0 \forall i$ (from definition);

Global theory: rigidity conjecture.

Geometric rigidity: if T and T_{0} are topologically conjugate $\left(h \in \mathcal{C}^{0}\right)$, are they differentiably conjugate $\left(h \in \mathcal{C}^{1}\right)$?

- Conjecture [Marmi-Moussa-Yoccoz]: if T and T_{0} are \mathcal{C}^{0}-conjugate and have the same boundary $B(T)=B\left(T_{0}\right)$, then T and T_{0} are \mathcal{C}^{1}-conjugate.

- Def: the boundary $B(T)$ is a \mathcal{C}^{1}-conjugacy invariant s.t:
- $B(T)=\left(B(T)_{i}\right)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}, \kappa$ number of saddles;
- for p_{i} saddle, $B(T)_{i}$ is a sum of the one-sided derivatives of $f:=\log D T$ at the endpoints corresponding to p_{i}, e.g. :

$$
\begin{gathered}
B(T)_{1}=f\left(u_{0}\right)^{+}-f\left(u_{2}\right)^{-}+f\left(u_{2}\right)^{+}-f\left(u_{4}\right)^{-}+f\left(u_{4}\right)^{+} \\
B(T)_{2}=f\left(u_{1}\right)^{+}-f\left(u_{1}\right)^{-}+f\left(u_{3}\right)^{+}-f\left(u_{3}\right)^{+}-f\left(u_{5}\right)^{-}
\end{gathered}
$$

- Remarks: $B T_{i}$ gives holonomy around the saddle p_{i};
- $T_{0} \mathrm{IET} \Rightarrow B\left(T_{0}\right)_{i}=0 \forall i$ (from definition);
- $B(T)_{i}=0$ when p_{i} is a Morse singularity (holonomy zero);

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible), If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks: | | proves Marmi-Moussa-Yoccoz conjecture in $g=2 ;$ |
| ---: | :--- |
| | Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0) ;$ |
| | $>$ global result (no closeness assumption); |
| | $>$ Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}\left(\right.$ not $\left.\mathcal{C}^{\infty}\right)$ |
| | $>$ general case: most results already hold for any $d \geq 2 ;$ |

Proof: Tools from Teichüller dynamics, and
\rightarrow Rauzy-Veech
induction

- KZ-cocycle;
- Oseledets thm;
- Lyapunov exponents

> dvnamical

partitions;
$>$ non linearity

- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)
For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible), If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

```
> proves Marmi-Moussa-Yoccoz conjecture in g}=2\mathrm{ ;
* Cor: resulis on rolia'ions (Morse saddles }=>B(T)=0
* global result (no closeness assumption)
* Optimal regularity is conjecturally Cl+\alpha (not Col)
- general case: most results already hold for any \(d \geq 2\);
```


Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech
induction
- KZ-cocycle;
- Oseledets thm
- Lyapunov exponents

- dvnamical

partitions;
$>$ non linearity

- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible), If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$)
- global result (no closeness assumption)
\Rightarrow Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}\left(\operatorname{not} \mathcal{C}^{\infty}\right)$

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech
induction
- KZ-cocycle;
- Oseledets thm
- Lyapunov exponents

Tools from one dimensional dynamics

- dvnamical

partitions;
$>$ non linearity

- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible), If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
> global result (no closeness assumption)
\rightarrow Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})

\rightarrow general case: most results already hold for any $d>2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech
induction
- KZ-cocycle;
- Oseledets thm
- Lyapunov exponents

Tools from one dimensional dynamics

- dvnamical

partitions;
$>$ non linearity

- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible), If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
\Rightarrow Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichuiller dynamics, and

- Rauzy-Veech
induction
- KZ-cocycle
- Oseledets thm
- Lyapunov exponents

Tools from one dimensional dynamics

- dynamical

partitions;
$>$ non linearity

- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible),
If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}\left(\right.$ not $\left.\mathcal{C}^{\infty}\right)$

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-V/eech
induction
- KZ-cocycle;
- Oseledets thm.
- Lyapunov exponents
- dynamical
partitions;
$>$ non linearity
- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible),
If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech
induction
- KZ-cocycle;
- Oseledets thm:
- Lyapunov exponents
- dynamical
partitions;
\Rightarrow non linearity
- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible),
If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and Tools from one dimensional dynamics

- Rauzy-Veech
induction
- KZ-cocycle;
- Oseledets thm;
- Lyapunov exponents $\left(\lambda_{g}>0\right)$;
- dynamical partitions;
- Schwartzian derivative;

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible),
If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}\left(\right.$ not $\left.\mathcal{C}^{\infty}\right)$

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and Tools from one dimensional dynamics

- Rauzy-Veech induction;
- KZ-cocycle;
- Oseledets thm;
- Lyapunov exponents $\left(\lambda_{g}>0\right) ;$
- dynamical partitions;
- non linearity
- Schwartzian derivative;
- Distorsion bounds

Rigidity of GIETs in genus two.

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_{0} with $d=4,5$ intervals (Poincaré sections of $g=2, \pi$ irreducible),
If T is a GIET of class \mathcal{C}^{3} with $B(T)=B\left(T_{0}\right)=0$ topologically conjugate to T_{0}, then the conjugacy is \mathcal{C}^{1} (geometric rigidity).

Remarks:

- proves Marmi-Moussa-Yoccoz conjecture in $g=2$;
- Cor: results on foliations (Morse saddles $\Rightarrow B(T)=0$);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})

- general case: most results already hold for any $d \geq 2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech induction;
- KZ-cocycle;
- Oseledets thm;
- Lyapunov exponents $\left(\lambda_{g}>0\right) ;$

Tools from one dimensional dynamics

- dynamical partitions;
- non linearity;
- Schwartzian derivative;
- Distorsion bounds;

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
\Rightarrow Define nested $f^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t
$\rightarrow T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
\Rightarrow Define nested $f^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t
$\rightarrow T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;

- Define nested $f^{(n)} \subset t^{(n-1)}, n \in \mathbb{N}$, s.t
$-T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
\Rightarrow Define nested $f^{(n)} \subset f^{(n-1)}, n \in \mathbb{N}$, s.t
$\rightarrow T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $\rho^{(0)}:=I$
\Rightarrow Define nested $f^{(n)} \subset f^{(n-1)}, n \in \mathbb{N}$, s.t.
$\rightarrow T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T \mathrm{GIET}, I^{(0)}:=I$;
\Rightarrow Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
$\Rightarrow T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
$\Rightarrow T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
$\rightarrow T^{(n)}$ is and induced d-GIET

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;
- The algorithm produces:

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$;
[where $\pi^{(n)}$ is the permutation of $T^{(n)}$]

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]
- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]
- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]
- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]
- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]
- Let $T^{(0)}:=T \mathrm{GIET}, I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

- The algorithm produces:
- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

- The algorithm produces:
- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]

ח|

- a sequence of (products of) matrices

$$
B(0, n) \text { (RV-cocycle) }
$$

[where $B(0, n)_{i j}:=$ number of pieces of j tower inside $I_{i}^{(0)}$]

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

- The algorithm produces:
- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]

- a sequence of (products of) matrices

$$
B(0, n) \text { (RV-cocycle) }
$$

[where $B(0, n)_{i j}:=$ number of pieces of j tower inside $I_{i}^{(0)}$]

Renormalization: Rauzy-Veech induction for GIET

- Idea: induce on shorter sections;

- Let $T^{(0)}:=T$ GIET, $I^{(0)}:=I$;
- Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- $T^{(n)}$ is and induced d-GIET.

- The algorithm produces:
- the rotation number $\gamma(T)$, which is the sequence $\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the permutation of $T^{(n)}$]
- a sequence of dynamical partitions; [into floors of Rohlin towers]

ח1

- a sequence of (products of) matrices

$$
B(0, n) \text { (RV-cocycle) }
$$

[where $B(0, n)_{i j}:=$ number of pieces of j tower inside $I_{i}^{(0)}$]

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For any $d>2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ sit. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, ie. there exists v (the shadow) st. \square (n) $-B(0, n) v \| \leq C_{\epsilon} \mid$
$B(0, n) v \|^{\epsilon}$,

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

Scaling invariants
Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized. Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For anv $d>2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K}),
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

Scaling invariants
Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:
average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$.

$$
\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$ (and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

$$
\left\|\omega^{(n)}-B(0, n) \vee\right\| \leq C_{\epsilon}\|B(0, n) v\|^{\epsilon} \quad \forall \epsilon>0
$$

Scaling invariants
Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:
average slope
Important remarks:

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$.

$$
\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$ (and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

$$
\left\|\omega^{(n)}-B(0, n) \vee\right\| \leq C_{\epsilon}\|B(0, n) v\|^{\epsilon} \quad \forall \epsilon>0
$$

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Important remarks:

- if T is an AIET,

$$
\omega^{(n)}=B(0, n) \omega^{(0)}
$$

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$. $\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]$ Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}} s$. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. \square

Scaling invariants

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Important remarks:

- if T is an AIET,

$$
\omega^{(n)}=B(0, n) \omega^{(0)}
$$

- for T GIET, linear approximation error:
approximation error:

$$
\left|\omega^{(n+1)}-\omega^{(n)}\right| \leq N_{T}\|B(n, n+1)\|
$$

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$. $\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}} s$. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K}),
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the
shadow) s.t.

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Important remarks:

- if T is an AIET,

$$
\omega^{(n)}=B(0, n) \omega^{(0)}
$$

- for T GIET, linear approximation error:

$$
\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]
$$

$$
\left|\omega^{(n+1)}-\omega^{(n)}\right| \leq N_{T}\|B(n, n+1)\|
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)
For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence
(and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diveroes and we have affine shadowing, i.e. there exists v (the shadow) s.t.

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Important remarks:

- if T is an AIET,

$$
\omega^{(n)}=B(0, n) \omega^{(0)}
$$

- for T GIET, linear approximation error:

$$
\left|\omega^{(n+1)}-\omega^{(n)}\right| \leq N_{T}\|B(n, n+1)\|
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$. $\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]$

For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$ (and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

Scaling invariants

Use an acceleration \mathcal{R} of RV . Let $\mathcal{R}^{n}(T)$ be $T^{(n)}$ normalized.
Key quantities:

- average slope

$$
\rho^{(n)}=\left(\frac{\left|T^{(n)}\left(I_{1}^{(n)}\right)\right|}{\left|I_{1}^{(n)}\right|}, \ldots, \frac{\left|T^{(n)}\left(I_{d}^{(n)}\right)\right|}{\left|I_{d}^{(n)}\right|}\right)
$$

Important remarks:

- if T is an AIET,

$$
\omega^{(n)}=B(0, n) \omega^{(0)}
$$

- for T GIET, linear approximation error:

$$
\left|\omega^{(n+1)}-\omega^{(n)}\right| \leq N_{T}| | B(n, n+1) \|
$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- log-slope vector: $\omega^{(n)}:=\log \rho^{(n)}$. $\left[\omega^{(n)}:=\left(\log \rho_{1}^{(n)}, \ldots, \log \rho_{d}^{(n)}\right)\right]$

For any $d \geq 2$, for a full measure set of rotation numbers $\gamma(T), \exists\left(n_{k}\right)_{k \in \mathbb{N}}$ s. t.
(1) either we have recurrence, i.e. $\exists C>0$ s.t. $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C \forall k$ (and $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^{1}-bounded set \mathcal{K});
(2) or $\left(\mathcal{R}^{n}(T)\right)_{n \in \mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t.

$$
\left\|\omega^{(n)}-B(0, n) v\right\| \leq C_{\epsilon}\|B(0, n) v\|^{\epsilon}, \quad \forall \epsilon>0
$$

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$>d_{C^{1}}\left(\mathcal{R}^{n}(T), I E T_{s}\right) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional
dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left.\left\|\omega^{\left(n_{k}\right)}\right\| \leq C\right] \Rightarrow$

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$-d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially; (exponential convergence of renormalization) - T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional
dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow
$>\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$-d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially; (exponential convergence of renormalization)

- T is C^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional
dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$>d_{C^{1}}\left(\mathcal{R}^{n}(T), I E T_{s}\right) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)
- follows Herman's strategy;
- one-dimensional dynamics techniques;
- T is \mathcal{C}^{1}-conjugate to T_{0};

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left.\left\|\omega^{\left(n_{k}\right)}\right\| \leq C\right] \Rightarrow$

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$-d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
> one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$-d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow
$-\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
$-d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially;
(exponential convergence of renormalization)

- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists v$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists \mathrm{v}$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$
(a) if the shadowing AIET has wandering intervals (with exponentially distorted towers), then also the GIET T has wandering intervals;
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left.\left\|\omega^{\left(n_{k}\right)}\right\| \leq C\right] \Rightarrow$

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T)\right.$, IETs $) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists \mathrm{v}$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$
(a) if the shadowing AIET has wandering intervals (with exponentially distorted towers), then also the GIET T has wandering intervals;
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in $g=2$;
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists \mathrm{v}$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$
(a) if the shadowing AIET has wandering intervals (with exponentially distorted towers), then also the GIET T has wandering intervals;
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in $g=2$;
- follows Herman's strategy;
- one-dimensional dynamics techniques;

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists \mathrm{v}$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$
(a) if the shadowing AIET has wandering intervals (with exponentially distorted towers), then also the GIET T has wandering intervals;
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in $g=2$;
- follows Herman's strategy;
- one-dimensional dynamics techniques;
- Remark: only this restricts result to $g=2$
[(MMY requires v to project on λ_{2}; this is always true in $g=2$)]

Case (2) cannot happen when T and T_{0} are topologically conjugated (no wandering intervals). So we are in Case (1)!

Strategy to prove rigidity $\left(\mathcal{C}^{0} \Rightarrow \mathcal{C}^{1}\right)$

Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{\left(n_{k}\right)} \leq \nu$ (a priori bounds);
- $d_{\mathcal{C}^{1}}\left(\mathcal{R}^{n}(T), I E T s\right) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
- T is \mathcal{C}^{1}-conjugate to T_{0};
(2) Affine shadowing case: [$\exists \mathrm{v}$ shadow s.t. $\left.\omega^{(n)} \sim B(0, n) v\right]$
(a) if the shadowing AIET has wandering intervals (with exponentially distorted towers), then also the GIET T has wandering intervals;
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in $g=2$;
- follows Herman's strategy;
- one-dimensional dynamics techniques;
- Remark: valid for any $d \geq 2$;
- Remark: only this restricts result to $g=2$
[(MMY requires v to project on λ_{2}; this is always true in $g=2$)]

Case (2) cannot happen when T and T_{0} are topologically conjugated (no wandering intervals). So we are in Case (1)!

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}\left[\right.$ i.e. $\left.\frac{1}{c} \leq D T^{(n)} \leq C\right]$;

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n}; - profiles φ_{i}^{f} are $T_{i}^{(r)}$ rescaled to be in Diff ${ }^{+}[0,1]$
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k}

2. Convegence to Moebius IET: no B assumption!

- Tool: Schwarzian derivative $\mathcal{S}(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)^{2}$
- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T}$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k}

2. Convegence to Moebius IET: no B assumption!

- Tool: Schwarzian derivative $S(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)^{2}$
- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T}$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

```
- Consider separately shape and profile coordinates
    the shape is the affine IET with log-slope }\mp@subsup{\omega}{n}{}\mathrm{ ;
    p profiles }\mp@subsup{\varphi}{i}{n}\mathrm{ are }\mp@subsup{T}{i}{(n)}\mathrm{ rescaled to be in Diff}\mp@subsup{}{}{+}[0,1]
\nabla Classical distorsion bounds control }|\mp@subsup{\varphi}{i}{n}(x)/\mp@subsup{\varphi}{i}{n}(y)|\forallx,y,\forall
| The assumption on }\mp@subsup{\omega}{}{(\mp@subsup{n}{k}{})}\mathrm{ controls the shape at }\mp@subsup{n}{k}{}\mathrm{ ;
```


2. Convegence to Moebius IET: no B assumption!

- Tool: Schwarzian derivative $S(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)^{2}$
- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{*} B(T)_{s}=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T}$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

```
\ Consider separately shape and profile coordinates
     the shape is the affine IET with log-slope \mp@subsup{\omega}{n}{};
    | profiles }\mp@subsup{\varphi}{i}{n}\mathrm{ are }\mp@subsup{T}{i}{(n)}\mathrm{ rescaled to be in Diff+}[0,1]
\nabla Classical distorsion bounds control | }\mp@subsup{\varphi}{i}{n}(x)/\mp@subsup{\varphi}{i}{n}(y)|\forallx,y,\foralln
| The assumption on }\mp@subsup{\omega}{}{(\mp@subsup{n}{k}{})}\mathrm{ controls the shape at n}\mp@subsup{n}{k}{
```


2. Convegence to Moebius IET: no B assumption!
3. Convergence to AIET : requires $\sum_{s=1}^{\kappa} B(T)_{s}=0$

[^0]
Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

```
* Consider separately shape and profile coordinates:
     the shape is the affine IET with log-slope \mp@subsup{\omega}{n}{};
    | profiles }\mp@subsup{\varphi}{i}{n}\mathrm{ are }\mp@subsup{T}{i}{(n)}\mathrm{ rescaled to be in Diff+}[0,1]
\nabla Classical distorsion bounds control | }\mp@subsup{\varphi}{i}{n}(x)/\mp@subsup{\varphi}{i}{n}(y)|\forallx,y,\foralln
| The assumption on }\mp@subsup{\omega}{}{(\mp@subsup{n}{k}{})}\mathrm{ controls the shape at }\mp@subsup{n}{k}{
```


2. Convegence to Moebius IET: no B assumption!
3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T}$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$;
\Rightarrow Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k}

2. Convegence to Moebius IET: no B assumption!
\rightarrow Tool: Schwarzian derivative $S(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right.$

- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0 \Leftrightarrow \int \eta_{T}=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T} ;$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$;
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k};

2. Convegence to Moebius IET: no B assumption!
\rightarrow Tool: Schwarzian derivative $\mathcal{S}(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)$

- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0 \Leftrightarrow \int \eta T=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T} ;$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$;
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k};

2. Convegence to Moebius IET: no B assumption!
\rightarrow Tool: Schwarzian derivative $\mathcal{S}(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)$

- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0 \Leftrightarrow \int \eta T=0$

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T} ;$
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$;
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k};

2. Convegence to Moebius IET: no B assumption!

- Tool: Schwarzian derivative $\mathcal{S}(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)^{2}$;
- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0 \Leftrightarrow \int \eta T=0$

$>$ Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T} ;$
$>$ Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;
4. Convergence to IETs: requires $B(T)=0$ assumption;

Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, $\left\|\omega^{\left(n_{k}\right)}\right\| \leq C$]

1. Show a priori bounds at $\left(n_{k}\right)_{k}$ [i.e. $\frac{1}{C} \leq D T^{(n)} \leq C$];

- Consider separately shape and profile coordinates:
- the shape is the affine IET with log-slope ω_{n};
- profiles φ_{i}^{n} are $T_{i}^{(n)}$ rescaled to be in $\operatorname{Diff}^{+}[0,1]$;
- Classical distorsion bounds control $\left|\varphi_{i}^{n}(x) / \varphi_{i}^{n}(y)\right| \forall x, y, \forall n$;
- The assumption on $\omega^{\left(n_{k}\right)}$ controls the shape at n_{k};

2. Convegence to Moebius IET: no B assumption!

- Tool: Schwarzian derivative $\mathcal{S}(T):=\frac{D^{3} T}{D T}-\frac{3}{2}\left(\frac{D^{2} T}{D T}\right)^{2}$;
- Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_{s}=0 \Leftrightarrow \int \eta_{T}=0$;

- Tool: non-linearity $\eta_{T}(x):=D \log D T(x)=\frac{D^{2} T}{D T}$;
- Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

4. Convergence to IETs: requires $B(T)=0$ assumption;

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
\rightarrow Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
\Rightarrow Denote by P_{u} the projection on E^{u};
Definition (Shadow in periodic case)

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step $i ;$
\Rightarrow bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.
$>$ General case: requires arithmetic condition. Exploits hyperbolicity of $K Z$ cocycle.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
\rightarrow Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
\Rightarrow Denote by P_{u} the projection on E^{u};
Definition (Shadow in periodic case)

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step $i ;$
\Rightarrow bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.
$>$ General case: requires arithmetic condition. Exploits hyperbolicity of $K Z$ cocycle.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
\Rightarrow Assume A has g exponents $\lambda_{i}>1$
\rightarrow Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u} :

Definition (Shadow in periodic case)

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear anproximation error at step i
\Rightarrow bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i
- bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts $\left.E^{u}\right)$)
- Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

$$
v:=\sum_{i=1}^{\infty} A^{-i}(P_{u}(\underbrace{\omega^{(i)}-A \omega^{(i-1)}}_{e_{i}}))+P_{u}\left(\omega^{(0)}\right)
$$

> Idea: (bring back and collect future 'errors')
$-e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i;

- bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
\Rightarrow Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

$$
v:=\sum_{i=1}^{\infty} A^{-i}(P_{u}(\underbrace{\omega^{(i)}-A \omega^{(i-1)}}_{e_{i}}))+P_{u}\left(\omega^{(0)}\right) .
$$

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i;
\rightarrow bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

$$
v:=\sum_{i=1}^{\infty} A^{-i}(P_{u}(\underbrace{\omega^{(i)}-A \omega^{(i-1)}}_{e_{i}}))+P_{u}\left(\omega^{(0)}\right) .
$$

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i;
- bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
\rightarrow Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

$$
v:=\sum_{i=1}^{\infty} A^{-i}(P_{u}(\underbrace{\omega^{(i)}-A \omega^{(i-1)}}_{e_{i}}))+P_{u}\left(\omega^{(0)}\right) .
$$

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i;
- bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, n p)=A^{n}$, for any n, where $A>0$;
- Assume A has g exponents $\lambda_{i}>1$;
- Split $\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}$ (positive/neutral/negative eigenvalues);
- Denote by P_{u} the projection on E^{u};

Definition (Shadow in periodic case)

$$
v:=\sum_{i=1}^{\infty} A^{-i}(P_{u}(\underbrace{\omega^{(i)}-A \omega^{(i-1)}}_{e_{i}}))+P_{u}\left(\omega^{(0)}\right) .
$$

- Idea: (bring back and collect future 'errors')
- $e_{i}:=\omega^{(i)}-A \omega^{(i-1)}$ linear approximation error at step i;
- bring $P_{u}\left(e_{i}\right)$ back to initial step via A^{-i} (which contracts E^{u});
- Show that the series converges + use telescopic nature to show it works.
- General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}): - Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R}; \rightarrow Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)
$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii) for every $\epsilon>0,\left\|B\left(n_{k}, n_{k+1}\right)\right\| \leq C_{\epsilon} e^{\epsilon k}$;
(iii) the exists a uniform $C>0$ such that for all k
$\sum_{n=1}^{n_{k}}\left\|B\left(n, n_{k}\right)_{\left|E_{s}^{(n)}\right|}\right\|\left\|P_{s}^{(n)}\right\|\|B(n-1, n)\| \quad \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Backward series)
$\sum_{n=n_{k}+1}^{\infty}\left\|B\left(n_{k}, n\right)_{\mid E_{u}^{(n)}}^{-1}\right\|\left\|P_{u}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Forward series)

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R};
- Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)
$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii) for every $\epsilon>0,\left\|B\left(n_{k}, n_{k+1}\right)\right\| \leq C_{\epsilon} e^{\epsilon k}$;
(iii) the exists a uniform $C>0$ such that for all k
$\sum_{n=1}^{n_{k}}\left\|B\left(n, n_{k}\right)_{\mid E_{s}^{(n)} \|}\right\|\left\|P_{s}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ;$ (Backward series)
$\sum_{n=n_{k}+1}^{\infty}\left\|B\left(n_{k}, n\right)_{\mid E_{u}^{(n)}}^{-1}\right\|\left\|P_{u}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Forward series)

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R};
- Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)
$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii)
(iii) the exists a uniform $C>0$ such that for all k
$\sum_{n=1}^{n_{k}}\left\|B\left(n, n_{k}\right)_{\mid E_{s}^{(n)}}\right\|\left\|P_{s}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ;$ (Backward series)
$\sum_{n=n_{k}+1}^{\infty}\left\|B\left(n_{k}, n\right)_{\mid E_{u}^{(n)}}^{-1}\right\|\left\|P_{u}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Forward series)

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R};
- Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)
$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii) for every $\epsilon>0,\left\|B\left(n_{k}, n_{k+1}\right)\right\| \leq C_{\epsilon} e^{\epsilon k}$;
(iii) the exists a uniform $C>0$ such that for all k

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R};
- Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)
$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii) for every $\epsilon>0,\left\|B\left(n_{k}, n_{k+1}\right)\right\| \leq C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform $C>0$ such that for all k

$\sum_{n=1}^{n_{k}}\left\|B\left(n, n_{k}\right)_{\mid E_{s}^{(n)} \|}\right\| P_{s}^{(n)}\| \| B(n-1, n) \| \quad \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Backward series)
$\sum_{n=n_{k}+1}^{\infty}\left\|B\left(n_{k}, n\right)_{\mid E_{u}^{(n)}}^{-1}\right\|\left\|P_{u}^{(n)}\right\|\|B(n-1, n)\| \leq C, \quad$ for all $k \in \mathbb{N} ; \quad$ (Forward series)

The arithmetic condition

Condition on the rotation number $\gamma(T)=\gamma\left(T_{0}\right)$ (valid for full measure set of IET T_{0}):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R};
- Let $B(0, n)$ be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

$\gamma\left(T_{0}\right)$ satisfy the $(R D C)$ if there exists a linearly growing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of effective Oseledets times such that:
(i) at time n_{k}, one has a double occurrence $A A$ of $A>0$;
(ii) for every $\epsilon>0,\left\|B\left(n_{k}, n_{k+1}\right)\right\| \leq C_{\epsilon} \epsilon^{\epsilon k}$;
(iii) the exists a uniform $C>0$ such that for all k

$$
\begin{aligned}
& \sum_{n=1}^{n_{k}}\left\|B\left(n, n_{k}\right)_{\mid E_{s}^{(n)}}\right\|\left\|P_{s}^{(n)}\right\|\|B(n-1, n)\| \quad \leq C, \quad \text { for all } k \in \mathbb{N} ; \text { (Backward series) } \\
& \sum_{n=n_{k}+1}^{\infty}\left\|B\left(n_{k}, n\right)_{\mid E_{u}^{(n)}}^{-1}\right\|\left\|P_{u}^{(n)}\right\|\|B(n-1, n)\|
\end{aligned} \quad \leq C, \quad \text { for all } k \in \mathbb{N} ; \quad \text { (Forward series) }
$$

An overview to conclude

$$
g=1
$$

Combinatorics

- rotation number α;
- rotation number
$\gamma(T)=\left(\pi^{(n)}\right)_{n \in \mathbb{N}}$

- Obstructions to topological conjugacy: for a.e. $\gamma\left(T_{0}\right)$, affine T with $\gamma(T)=\gamma\left(T_{0}\right)$ has wandering intervals [Marmi,Moussa, Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma\left(T_{0}\right)$, $T, T_{0} C^{0}$-conjugate, $B(T)=B\left(T_{0}\right) \Rightarrow$ \mathcal{C}^{1}-conjugate[G'-U']

An overview to conclude

$$
g=1
$$

$$
g=2
$$

Combinatorics

Topology

Geometry

- rotation number α;
- α irrational $+\mathcal{C}^{2} \Rightarrow$ \mathcal{C}^{0}-conjugacy [Denjoy thm]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
\rightarrow Still geometric rigidity: for a.e. $\gamma\left(T_{0}\right)$, $T, T_{0} C^{0}$-conjugate, $B(T)=B\left(T_{0}\right) \Rightarrow$ \mathcal{C}^{1}-conjugate[G'-U']

An overview to conclude

$$
g=1 \quad g=2
$$

Combinatorics

Topology

Geometry

- rotation number α;
- α irrational $+\mathcal{C}^{2} \Rightarrow$ \mathcal{C}^{0}-conjugacy [Denjoy thm]
- α Diophantine $\Rightarrow h \in \mathcal{C}^{1}$ (rigidity) [Herman, Yoccoz thm]

- rotation number

$$
\gamma(T)=\left(\pi^{(n)}\right)_{n \in \mathbb{N}}
$$

- Obstructions to topological conjugacy: for a.e. $\gamma\left(T_{0}\right)$, affine T with $\gamma(T)=\gamma\left(T_{0}\right)$ has wandering intervals [Marmi,Moussa, Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a e. $\gamma\left(T_{0}\right)$, \mathcal{C}^{1}-conjugate[G'-U']

An overview to conclude

$$
g=1
$$

Combinatorics

Topology

Geometry

- rotation number α;
- α irrational $+\mathcal{C}^{2} \Rightarrow$ \mathcal{C}^{0}-conjugacy [Denjoy thm]
- α Diophantine
$\Rightarrow h \in \mathcal{C}^{1}$ (rigidity)
[Herman, Yoccoz thm]

- rotation number

$$
\gamma(T)=\left(\pi^{(n)}\right)_{n \in \mathbb{N}}
$$

- Obstructions to topological conjugacy: for a.e. $\gamma\left(T_{0}\right)$, affine T with $\gamma(T)=\gamma\left(T_{0}\right)$ has wandering intervals [Marmi,Moussa, Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a e. $\gamma\left(T_{0}\right)$, $T, T_{0} C^{0}$-conjugate, $B(T)=B\left(T_{0}\right) \Rightarrow$ \mathcal{C}^{1}-conjugate[G'-U']

An overview to conclude

$$
g=1
$$

Combinatorics

Topology

Geometry

- rotation number α;
- α irrational $+\mathcal{C}^{2} \Rightarrow$ \mathcal{C}^{0}-conjugacy [Denjoy thm]
- α Diophantine
$\Rightarrow h \in \mathcal{C}^{1}$ (rigidity)
[Herman, Yoccoz thm]

- rotation number

$$
\gamma(T)=\left(\pi^{(n)}\right)_{n \in \mathbb{N}}
$$

- Obstructions to topological conjugacy: for a.e. $\gamma\left(T_{0}\right)$, affine T with $\gamma(T)=\gamma\left(T_{0}\right)$ has wandering intervals [Marmi,Moussa, Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
\Rightarrow Still geometric rigidity: for a.e. $\gamma\left(T_{0}\right)$, $T, T_{0} \mathcal{C}^{0}$-conjugate, \mathcal{C}^{1}-conjugate[G'-U']

An overview to conclude

$$
g=1 \quad g=2
$$

Combinatorics

Topology

Geometry

- rotation number α;
- α irrational $+\mathcal{C}^{2} \Rightarrow$ \mathcal{C}^{0}-conjugacy [Denjoy thm]
- α Diophantine
$\Rightarrow h \in \mathcal{C}^{1}$ (rigidity)
[Herman, Yoccoz thm]

- rotation number

$$
\gamma(T)=\left(\pi^{(n)}\right)_{n \in \mathbb{N}}
$$

- Obstructions to topological conjugacy: for a.e. $\gamma\left(T_{0}\right)$, affine T with $\gamma(T)=\gamma\left(T_{0}\right)$ has wandering intervals [Marmi,Moussa, Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma\left(T_{0}\right)$, $T, T_{0} \mathcal{C}^{0}$-conjugate, $B(T)=B\left(T_{0}\right) \Rightarrow$ \mathcal{C}^{1}-conjugate[G'-U']

Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz)
For a.e. T, if T_{0} is an affine IET such that:

- $\gamma(T)=\gamma\left(T_{0}\right)$ (same rotation number);
- $v:=\log \rho(T)$ belongs to $E_{2} \backslash E_{1}$ i.e. $\frac{\log \|B(0, n) v\|}{n}=\theta_{2}>0$, then T has wandering intervals.

To show: the result also holds for every v s.t. $\frac{\log \|B(0, n) v\|}{n}=\theta_{i}>0$
To show this, $[M M Y]$ prove that for a sequence $\left(n_{\ell}\right)_{\ell}$, the partitions $\mathcal{P}_{n_{\ell}}$ are exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t.

Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz)
For a.e. T, if T_{0} is an affine IET such that:

- $\gamma(T)=\gamma\left(T_{0}\right)$ (same rotation number);
- $v:=\log \rho(T)$ belongs to $E_{2} \backslash E_{1}$ i.e. $\frac{\log \|B(0, n) v\|}{n}=\theta_{2}>0$,
then T has wandering intervals.
To show: the result also holds for every v s.t. $\frac{\log \|B(0, n) v\|}{n}=\theta_{i}>0$.
To show this, $[M M Y]$ prove that for a sequence $\left(n_{\ell}\right)_{\ell}$, the partitions $\mathcal{P}_{n_{\ell}}$ are
exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t.

Extra：Wandering intervals and distorted towers

Theorem（Marmi，Moussa，Yoccoz）

For a．e．T ，if T_{0} is an affine IET such that：
－$\gamma(T)=\gamma\left(T_{0}\right)$（same rotation number）；
－$v:=\log \rho(T)$ belongs to $E_{2} \backslash E_{1}$ i．e．$\frac{\log \|B(0, n) v\|}{n}=\theta_{2}>0$ ，
then T has wandering intervals．
To show：the result also holds for every v s．t．$\frac{\log \|B(0, n) v\|}{n}=\theta_{i}>0$ ．
To show this，$[M M Y]$ prove that for a sequence $\left(n_{\ell}\right)_{\ell}$ ，the partitions $\mathcal{P}_{n_{\ell}}$ are exponentially distorted，i．e．for every j there exists a floor of the j－tower s．t．

$$
\left|T^{i} F_{0}\right|=\left|T^{k_{0}+i} l_{j}^{(n)}\right| \leq C \exp \left(-c|i|^{\gamma}\right)\left|F_{0}\right| .
$$

In particular，for every $1 \leq j \leq d$
$\operatorname{Leb}\left(\mathcal{P}_{n}^{j}\right) \leq C \max _{0 \leq k<q_{j}^{(n)}}\left|T^{k}\left(l_{j}^{(n)}\right)\right|=C \max \left\{\operatorname{Leb}\left(T^{k}\left(l_{j}^{(n)}\right), \quad 0 \leq k<q_{j}^{(n)}\right\}\right.$.
会者息
［Remark：This implies that T cannot be minimal．］

Extra: exponential decay of the dynamical partitions mesh

 E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$. Proposition: mesh $\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- mesh $(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the
middle of the occurrence $A A$:
\rightarrow By a priori bounds, $D T^{(n)}$ is bounded
above/below throughout $n_{0} \leq n \leq n_{1}$;
 - Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
 - Matrix A before $n_{1}+$ a priori bouds \Rightarrow
floors above n_{1} are all comparable
 - Distorsion bounds \Rightarrow
ratios are preseved within each tower;
- Conclude that between n_{0} and n_{1} the mesh
drops by a constant factor

Extra: exponential decay of the dynamical partitions mesh
E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
\rightarrow Consider times $n_{0}<n_{1}$ before and in the middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
- Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
- Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
- Distorsion bounds \Rightarrow
ratios are preseved within each tower;
- Conclude that between n_{0} and n_{1} the mesh drops by a constant factor

Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the middle of the occurrence $A A$:


```
\begin{tabular}{rl} 
& By a priori bounds, \(D T(n)\) is bounded \\
& above/below throughout \(n_{0} \leq n \leq n_{1} ;\) \\
\(>\) & Matrix \(A\) after \(n_{1} \Rightarrow\) \\
& base intervals are comparable; \\
\(>\) & Matrix \(A\) before \(n_{1}+\) a priori bouds \(\Rightarrow\) \\
& floors above \(n_{1}\) are all comparable \\
& Distorsion bounds \(\Rightarrow\) \\
& ratios are preseved within each tower; \\
Conclude that between \(n_{0}\) and \(n_{1}\) the mesh \\
drops by a constant factor.
\end{tabular}
Conclude that between \(n_{0}\) and \(n_{1}\) the mesh drops by a constant factor
```


Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
\rightarrow Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
- Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
- Distorsion bounds \Rightarrow
ratios are preseved within each tower;
\rightarrow Conclude that between n_{0} and n_{1} the mesh

Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the
 middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
- Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
\rightarrow Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
- Distorsion bounds \Rightarrow
ratios are preseved within each tower;
$>$ Conclude that between n_{0} and n_{1} the mesh

Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the
 middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
- Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
- Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
\rightarrow Distorsion bounds \Rightarrow
ratios are preseved within each tower;
- Conclude that between n_{0} and n_{1} the mesh

Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the
 middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
- Matrix A after $n_{1} \Rightarrow$
base intervals are comparable;
- Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
- Distorsion bounds \Rightarrow ratios are preseved within each tower;
\rightarrow Conclude that between n_{0} and n_{1} the mesh drops by a constant factor

Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence $A A$ of a positive matrix $A>0$.

Proposition: $\operatorname{mesh}\left(\mathcal{P}_{n_{k}}\right) \leq C \nu^{k}$ for $\nu<1$ (i.e. the mesh decay exponentially), where:

- \mathcal{P}_{n} denotes the $n^{\text {th }}$ dynamical partition;
- $\operatorname{mesh}(\mathcal{P}):=$ is the lenght of largest interval;
- Consider times $n_{0}<n_{1}$ before and in the
 middle of the occurrence $A A$:
- By a priori bounds, $D T^{(n)}$ is bounded above/below throughout $n_{0} \leq n \leq n_{1}$;
- Matrix A after $n_{1} \Rightarrow$ base intervals are comparable;
- Matrix A before $n_{1}+$ a priori bouds \Rightarrow floors above n_{1} are all comparable
- Distorsion bounds \Rightarrow ratios are preseved within each tower;
- Conclude that between n_{0} and n_{1} the mesh drops by a constant factor.

Extra: Effective Oseledets estimates

Given T, let \hat{T} an Oseledets generic extension, so that we have splittings:

$$
\mathbb{R}^{d}=E_{s}^{(n)} \oplus E_{c}^{(n)} \oplus E_{u}^{(n)}, \quad \forall n \in \mathbb{N} .
$$

Definition (Effective Oseledets sequence)

A sequence $\left(k_{m}\right)_{m \in \mathbb{N}}$ is an effective Oseledets sequence if for s
$C_{1}>0, \theta>0, \epsilon>0, c_{2}(\epsilon)>0$ we have:

$$
\begin{aligned}
\left|\left|B\left(n_{k}, n\right)\right|_{E_{s}^{\left(n_{k}\right)}} \|_{\infty} \leq C_{1} e^{-\theta\left(n-n_{k}\right)}\right. & \text { for every } n \geq n_{k}, \\
\left\|\left.B\left(n, n_{k}\right)^{-1}\right|_{E_{u}^{\left(n_{k}\right)}}\right\|_{\infty} \leq C_{1} e^{-\theta\left(n_{k}-n\right)} & \text { for every } n \leq n_{k}, \\
\left|\angle\left(E_{x}^{(n)}, E_{y}^{(n)}\right)\right| \geq c_{2} e^{-\epsilon\left|n-n_{k}\right|}, & \text { for all } n \in \mathbb{Z}, \operatorname{distinct} x, y \in\{s, c, u\} ; \\
\lim _{k \rightarrow+\infty} \frac{\log | | B\left(n_{k}, n_{k+1}\right) \|}{k}=0 . &
\end{aligned}
$$

[^0]: - Tool:
 - Show: that the total non-linearity $\int\left|\eta_{T}(x)\right| d x$ goes to 0 ;

