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Rigidity of foliations in genus one.

» F orientable smooth foliation of compact » E.g. Fo linear foliation (leaves are
S with g = 1. trajectories of the straight line flow);

» F minimal = F is topologically conjugate > If 0 is the angle of the lines, o := cot @ is
to Fu; the rotation number,

» Def: a foliation F is geometrically rigid if F topologically conjugate to Fg implies
that F is differentiably conjugate to Fo (as foliations) [C° = C* conjugacy].

» For a full measure set of rotation numbers (i.e. for a.e. «) foliations in g =1 are
geometrically rigid [follows from M. Herman global theorem on circle diffeos.]
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Rigidity of foliations in genus two.

» F orientable smooth foliation of
compact S with g =2

> E.g. Fo linear model: leaves are
with only Morse type saddles;

trajectories of the straight line flow on
[Morse type (simple) saddles: a translation surface;

//]
Z,
leaves are level sets of f(x,y) = xy] i\\

Theorem (Ghazouani—U', 2021)

Under a full measure arithmetic condition, if F is topologically conjugate to Fy, then
it is differentiably conjugate to it, i.e. F is geometrically rigid.

[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]
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Poincaré maps in genus one: circle diffeomorphisms

& '

» F orientable, smooth, minimal foliation

on S with g =1. » E.g. Fp irrational linear foliation (angle 6);
> S! C S transverse section; » The Poincaré first return map on | is
The Poincaré map f : St — Sl is a circle Ro = x+a mod 1, where a = cot .

diffeomorphism;

» Def/recall: f and R, are conjugate if there exists a orientation preserving, invertible
h: S — S (the conjugacy) such that
hof =R,o0h.
» The rotation number a of f : S* — S* can be defined dynamically (o = lim,_ o Ln)_x) or
combinatorially (via continued fractions and the Euclidean algorithm).
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Circle diffeomorphisms: a mini-survey of the classical theory.

Let f : S* — S* be a circle diffeomorphism with rotation number .

(1) Combinatorics:

[0 oV _ if the rotation number a ¢ Q, 3 [Poincaré Thm]
'“l lk a topological semi-conjugacy, i.e. a continuous,
fo, N — [ surjective h : S' — S such that ho f = Ry o h.

- h could fail to be a conjugacy, if there are wandering
intervals, i.e. J C S s.t. f"(J), n € Z are all disjoint
(Denjoy counterexamples).

[Idea: (f"(J))nez are obtained by blow up of an orbit.] a Denjoy flow (courtesy of
J.Carrard)

(2) Topology: if f is differentiable, e.g. f € C? (C*+ f’ € BV), then f is a conjugacy <
f is minimal [Denjoy theorem|] (Combinatorics (+smoothness) determines topology).

(3) Geometry: What is the regularity of h? Is h € C1? Is h € C*°?
(Rigidity: topology determines geometry)
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Circle diffeomorphisms: local and global results.

Let f : S — S! be a circle diffeomorphism with rotation number o ¢ Q.
Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on «.
(A) Local theory (f small perturbation of R,): KAM theory
(Kolmogorov-Arnold-Moser)
- E.g. [Arnold] if a is Diophantine,
lie la=2|>C/q*", for7>0,VpeZqeNi]
and f is C¥-close (resp. C*°) to Ry, his C¥ (resp. C*).

- Key step: Solve the cohomological equation

[i.e. linearized conjugacy problem: given (smooth) &,
find (smooth) ¢ s.t. 1o Ry — ¢ = ¢]

Rk: if « is Diophantine and f¢> =0, it has a smooth solution.
(B) Global results (No closeness assumption):

- [Herman, Yoccoz] if a is Diophantine, f is C*°-conjugate
(so in particular C1-conjugate) to R, (geometric rigidity).

[Renormalization approach: Khanin-Sinai, Khanin-Teplisnky]
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Geometric rigidity in one dimensional dynamics.
Some examples of geometrically rigid dynamical systems (C° = C' conjugacy):

» Circle diffeomorphisms (and foliations in g = 1) with
Diophantine « [Herman, Yoccoz];

» Unimodal maps of [0,1]: :

> discovered by Feigenbaum, Coullet-Tresser in the '70s;

> deep mathematical theory in the '90s by Sullivan,
McMullen, Lyubich et al ...;

» Circle maps with singularities, i.e. with:

» critical points f’(c) = 0 [de Faria-de Melo, Yampolsky . ..]
> break points (f')*(b) # (f')~(b) #
[Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ]

» NEW: typical foliations on S with g =2
(and corresponding Poincaré maps);
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=

GIET
» F orientable, smooth, minimal foliation

on S with g > 2. > E.g. Fo minimal linear flow on a
translation surface;

IET

» | C S transverse arc (section);
» The Poincaré€ first return map Ty : | — |
is an (irreducible) (standard) Interval

Exchange Transformation (IET) .

» The Poincaré map T : | — | is a
Generalized Interval Exchange
Transformation (GIET); (invertible

piecewise diffeo) » Def. T and Ty are conjugate iff there
> Def T is of class C" if each branch exists a 0. p. diffeomorphism h: [ — |
T; = T|; extends to C" diffeo on I;; (the conjugacy) such that

hoT = Tyoh.
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GIETs: combinatorics and wandering intervals.

Let T:/ — I be a Keane GIET
(no saddle connections).

(1) Combinatorics:
- The role of rotation number for T is played by a
combinatorial datum ~(T)
[Sequence of permutations, or path in Rauzy-Veech diagram]

- if 9(T) = v(To) where Tg is a (minimal or Keane) IET, -
then T is semi-conjugate to Ty a Denjoy-like linear flow
[Ref: Yoccoz lecture notes]; [E.g. by Jerome Carrard]

(2) Topology: T can have wandering intervals (T"J)pez and h
/f may fail to be a conjugacy, also if T if smooth, even affine!
o - T affine IETs (AIETs) with wandering intervals [n.u.e. first

5 example by Levitt, (families of) periodic type, u.e. AIETs by
Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];

L~

Affine IET - most AIETs have wandering intervals [Marmi-Moussa-Yoccoz];
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[given ¢, find @ s.t. o To —p = (x)]

- Forni, 1997: for a.e. Ty, there are
obstructions to solve (x) (space of
solutions has finite codimension).

- Marmi-Moussa-Yoccoz, 2005: full
measure arithmetic condition on the
IET (Roth-type).




Local theory and cohomological equation obstructions.

(3) Geometry: when are T and Ty smoothly

conjugated? | /
‘.
(A) Local theory: assume T is C'-close “ /
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» Local linearization:

- Marmi-Moussa-Yoccoz, 2012: for
a.e. [ET Ty, the GIETs C®-close to
To (+simple deformations) which are
C? conjugate have finite codim;

- Ghazouani, 2020: for Ty hyperbolic
periodic-type, the GIETs C3-close to
To (+simple def.) C! conjugate to it
have codim (d — 1) + (g — 1);
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Rigidity of GIETs in genus two.

Theorem (Ghazouani-U’, 2021)

For a full measure set of IETs Ty with d = 4,5 intervals /
(Poincaré sections of g = 2, 7 irreducible), //

If T is a GIET of class C* with B(T)= B(T,) = 0 topologically
conjugate to Tg, then the conjugacy is C* (geometric rigidity).

proves Marmi-Moussa-Yoccoz conjecture in g = 2; l /
Cor: results on foliations (Morse saddles = B(T) = 0); /

Remarks: >
>
> global result (no closeness assumption);
>
>

Optimal regularity is conjecturally C**< (not C*°) I Z
general case: most results already hold for any d > 2;

Proof: Tools from Teichtiller dynamics, and Tools from one dimensional dynamics

» Rauzy-Veech > Oseledets thm; > dynamical » Schwartzian
induction; > Lyapunov exponents partitions; derivative;

> KZ-cocycle; (A > 0); » non linearity; » Distorsion bounds;
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> the rotation number y(T), which is
the sequence (7("),cn;
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> average slope Important remarks:
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Theorem (Dynamical dichotomy, Ghazouani-U’, 2021) —
For any d > 2, for a full measure set of rotation numbers v(T), 3 (ng)ken s. t.

(1) either we have recurrence, i.e. 3C > 0 s.t. ||w("™)|| < C Vk
(and (R"(T))nen is recurrent to a Ct-bounded set K);

(2) or (R"(T))nen diverges and we have affine shadowing, i.e. there exists v (the
shadow) s.t- 1, _ B(0, n)v|| < C.||B(0, V][, Ve > 0.



Strategy to prove rigidity (C° = C1)



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds. Consider two cases:



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, ||w(™)|| < C] =



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, ||w(™)|| < C] =

> L < plm) <y (a priori bounds);



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
» dei(R"(T),IETs) — 0 exponentially;

(exponential convergence of renormalization)



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:
(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
» dei(R"(T),IETs) — 0 exponentially;
(exponential convergence of renormalization)

> T is C'-conjugate to To;



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
> dei(R™(T), IETs) — 0 exponentially;
(exponential convergence of renormalization)

> T is C'-conjugate to To;

» follows Herman's
strategy,



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:
» follows Herman's

(1) Recurrent case: [at special times, ||w(™)|| < C] =
strategy;

> L < plm) <y (a priori bounds);
. »> one-dimensional
» dei(R"(T),IETs) — 0 exponentially; dynamics techniques:

(exponential convergence of renormalization)

> T is C'-conjugate to To;



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds.

(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
> dei(R™(T), IETs) — 0 exponentially;
(exponential convergence of renormalization)

> T is C'-conjugate to To;

Consider two cases:

» follows Herman's
strategy,

» one-dimensional
dynamics techniques;

(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v]



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds.

(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
> dei(R™(T), IETs) — 0 exponentially;
(exponential convergence of renormalization)

> T is C'-conjugate to To;

Consider two cases:

» follows Herman's
strategy,

» one-dimensional
dynamics techniques;

(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v]

(a) if the shadowing AIET has wandering intervals (with

exponentially distorted towers), then also the GIET T

has wandering intervals;



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds
(1) Recurrent case: [at special times, ||w(™)|| < C] =
> L < plm) <y (a priori bounds);
» dei(R"(T),IETs) — 0 exponentially;
(exponential convergence of renormalization)

> T is C'-conjugate to To;

. Consider two cases:

» follows Herman's
strategy,

» one-dimensional
dynamics techniques;

(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v]

(a) if the shadowing AIET has wandering intervals (with

exponentially distorted towers), then also the GIET T

has wandering intervals;

(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with
wandering intervals) to get (a) in g = 2;



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, ||w(™)|| < C] = » follows Herman's
) o strategy,
> L < plm) <y (a priori bounds);

» dei(R"(T),IETs) — 0 exponentially;

(exponential convergence of renormalization)

» one-dimensional
dynamics techniques;

> T is C'-conjugate to To;

(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v]

(a) if the shadowing AIET has wandering intervals (with
exponentially distorted towers), then also the GIET T
has wandering intervals;

(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with
wandering intervals) to get (a) in g = 2;

Case (2) cannot happen when T and Ty are topologically conjugated (no wandering
intervals). So we are in Case (1)! 0



Strategy to prove rigidity (C° = C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:

» follows Herman's

(1) Recurrent case: [at special times, ||w(™)|| < C] =
strategy;

> L < plm) <y (a priori bounds);
» dei(R"(T),IETs) — 0 exponentially;

(exponential convergence of renormalization)

» one-dimensional
dynamics techniques;

> T is C'-conjugate to To;

(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v] > Remark: only this
(a) if the shadowing AIET has wandering intervals (with restricts result to
exponentially distorted towers), then also the GIET T g=2
has wandering intervals; [(MMY requires v to
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with project on Az; this is
wandering intervals) to get (a) in g = 2; always true in g = 2)]

Case (2) cannot happen when T and Ty are topologically conjugated (no wandering
intervals). So we are in Case (1)! 0



Strategy to prove rigidity (C° = C1)

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, ||w(™)|| < C] = » follows Herman's
) o strategy,
> L < plm) <y (a priori bounds);

» dei(R"(T),IETs) — 0 exponentially;

(exponential convergence of renormalization)

» one-dimensional
dynamics techniques;

» Remark: valid for any

> T is C'-conjugate to To; d>2
(2) Affine shadowing case: [3 v shadow s.t. w(") ~ B(0, n)v] > Remark: only this
(a) if the shadowing AIET has wandering intervals (with restricts result to
exponentially distorted towers), then also the GIET T g=2
has wandering intervals; [(MMY requires v to
(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with project on Az; this is
wandering intervals) to get (a) in g = 2; always true in g = 2)]

Case (2) cannot happen when T and Ty are topologically conjugated (no wandering
intervals). So we are in Case (1)! 0



Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w("™|| < C]




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w(™)|| < C]

1. Show a priori bounds at (nk)x [i.e. £ < DT < CJ;




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w(™)|| < C]

1. Show a priori bounds at (nk)x [i.e. £ < DT < CJ;

2. Convegence to Moebius IET: no B assumption!




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w("™|| < C]

1. Show a priori bounds at (nk)x [i.e. £ < DT < CJ;

2. Convegence to Moebius IET: no B assumption!

3. Convergence to AIET: requires 3¢  B(T)s =0




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w("™|| < C]

1. Show a priori bounds at (nk)x [i.e. £ < DT < CJ;

2. Convegence to Moebius IET: no B assumption!

3. Convergence to AIET: requires 3¢  B(T)s =0

4. Convergence to |[ETs: requires B(T) = 0 assumption;




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w(™)|| < C]
1. Show a priori bounds at (nk)x [i.e. £ < DT™ < CJ;

» Consider separately shape and profile coordinates:

» the shape is the affine IET with log-slope wp;
> profiles ] are Ti(") rescaled to be in Difft]0,1];

2. Convegence to Moebius IET: no B assumption!

3. Convergence to AIET: requires 3¢  B(T)s =0

4. Convergence to IETs: requires B(T) = 0 assumption;




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w(™)|| < C]
1. Show a priori bounds at (nk)x [i.e. £ < DT™ < CJ;

» Consider separately shape and profile coordinates:

» the shape is the affine IET with log-slope wp;
> profiles ] are Ti(") rescaled to be in Difft]0,1];

» Classical distorsion bounds control o} (x)/e](y)| Vx,y,Vn;
» The assumption on w(™) controls the shape at ny;

2. Convegence to Moebius IET: no B assumption!

3. Convergence to AIET: requires 3¢  B(T)s =0

4. Convergence to IETs: requires B(T) = 0 assumption;




Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||w(™)|| < C]
1. Show a priori bounds at (nk)x [i.e. £ < DT™ < CJ;

» Consider separately shape and profile coordinates:

» the shape is the affine IET with log-slope wp;
> profiles ] are Ti(") rescaled to be in Difft]0,1];

» Classical distorsion bounds control o} (x)/e](y)| Vx,y,Vn;
» The assumption on w(™) controls the shape at ny;

2. Convegence to Moebius IET: no B assumption!

3. Convergence to AIET: requires 3¢  B(T)s =0

4. Convergence to IETs: requires B(T) = 0 assumption;




Convergence of renormalization in the recurrent case 7

Assume to be in the recurrent case [at special times, |[w(™)]| < C] //

1. Show a priori bounds at (nk)x [i.e. £ < DT™ < CJ; A

» Consider separately shape and profile coordinates:

» the shape is the affine IET with log-slope wp; /
> profiles ¢ are T\" rescaled to be in Diff [0, 1]; /

» Classical distorsion bounds control |¢f(x)/¢7(y)| Vx,y,Vn; [/

» The assumption on w(™) controls the shape at ny;

2. Convegence to Moebius IET: no B assumption!

2
» Tool: Schwarzian derivative S(T) := % -3 (%) ; /
» Show: mesh of dynamical partition goes to zero; L

3. Convergence to AIET: requires 3¢  B(T)s =0

4. Convergence to IETs: requires B(T) = 0 assumption;



Convergence of renormalization in the recurrent case 7

Assume to be in the recurrent case [at special times, |[w(™)]| < C] //

1. Show a priori bounds at (nk)x [i.e. £ < DT™ < CJ; ]

» Consider separately shape and profile coordinates:

» the shape is the affine IET with log-slope wp; /
> profiles ¢ are T\" rescaled to be in Diff [0, 1]; /

» Classical distorsion bounds control |¢f(x)/¢7(y)| Vx,y,Vn; [

» The assumption on w(™) controls the shape at ny;

2. Convegence to Moebius IET: no B assumption!

2
» Tool: Schwarzian derivative S(T) := % -3 (%) ; /
» Show: mesh of dynamical partition goes to zero; L~

3. Convergence to AIET: requires 37 B(T)s =0 < [nr =0;

» Tool: non-linearity nr(x) := Dlog DT (x) = %; l
» Show: that the total non-linearity [ |nt(x)|dx goes to 0; /

4. Convergence to IETs: requires B(T) = 0 assumption;
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[Assume we are in Case 2. Goal: build the shadow v.]
» Example: periodic type case, i.e. B(0,np) = A", for any n, where A > 0;

» Assume A has g exponents \; > 1;
> Split RY = E° @ E€ @ EY (positive/neutral /negative eigenvalues);
» Denote by P, the projection on EY;

Definition (Shadow in periodic case) N /

v _ZA (Py(w) — Awl=1)) 4+ Py (w(©). L~ /

€i

» Idea: (bring back and collect future ‘errors’)
» = w) — Awl=1) linear approximation error at step i;
> bring P,(e;) back to initial step via A~/ (which contracts E¥);
» Show that the series converges + use telescopic nature to show it works.

» General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.
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The arithmetic condition

Condition on the rotation number v(T) = ~(Tp) (valid for full measure set of IET Tp):
» Assume T is Oseledets generic; consider an effective Oseledets acceleration R;
» Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

v(To) satisfy the (RDC) if there exists a linearly growing sequence (ng)ken of effective
Oseledets times such that:

(i) at time ng, one has a double occurrence AA of A > 0;
(i) for every € > 0, ||B(nk, nk41)|| < Ceek;
(i) the exists a uniform C > 0 such that for all k

Nk
> 11B(n, ) ol |P[1|B(n — 1, n)]| < C, for all ke N; (Backward series)
n=1

o0
> HB(nk,n)‘_El(n)H I[P|B(n—1,n)]] < C, for all keN; (Forward series)
n=nk+1 Y
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An overview to conclude
g=1

Combinatorics » rotation number «;

> « irrational + C? =

Topology C%-conjugacy
[Denjoy thm]
» « Diophantine
Geometry = h e C (rigidity)

[Herman,Yoccoz thm]

R

g=2

» rotation number
IHT) = (7)o

» Obstructions to topological conjugacy: for
a.e. v(Tp), affine T with v(T) = ~(Top) has
wandering intervals [Marmi,Moussa, Yoccoz]

» Obstructions to differentiable conjugacy
[Forni, Marmi-Moussa-Yoccoz, Ghazouani]

> Still geometric rigidity: for a.e. v(To),
T, To C%conjugate, B(T) = B(Ty) =
C'-conjugate[G'-U’]

i
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Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz)
For a.e. T, if Tg is an affine IET such that:
» (T)=~(To) (same rotation number);

» v :=logp(T) belongs to E;\E; ie. w =0,>0,
then T has wandering intervals.

To show: the result also holds for every v s.t. M =0;>0.

To show this, [MMY'] prove that for a sequence (ny)¢, the partitions P, are

exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t. @
| T'Fo| = | T 1| < Cexp(—clil”) | Fol. @ @ /ﬂ

In particular, for every 1 < j < d
= Cmax{Leb(T*(I"), 0<k<q"}. g é é
=]

Leb(P]) < C max | TH(I")
[Remark: This implies that T cannot be minimal.]

0§k<q/(.")
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Extra: exponential decay of the dynamical partitions mesh

E.g.: uses of the double occurrence A A of a positive matrix A > 0.
Proposition: mesh(P,,) < Cvk for v < 1 (i.e. the mesh decay exponentially), where:

» P, denotes the n'" dynamical partition;

> mesh(P) := is the lenght of largest interval; \ []

» Consider times ng < ni before and in the -
middle of the occurrence AA:
» By a priori bounds, DT is bounded
above/below throughout ng < n < ny;
» Matrix A after n =
base intervals are comparable;
> Matrix A before ny + a priori bouds =
floors above n; are all comparable
» Distorsion bounds = }
ratios are preseved within each tower; ;
|
|

» Conclude that between ng and ny the mesh |
drops by a constant factor.




Extra: Effective Oseledets estimates

Given T, let T an Oseledets generic extension, so that we have splittings:

R =EMN g EMN @ EM. wneN.

Definition (Effective Oseledets sequence)
A sequence (km)men is an effective Oseledets sequence if for s
C1 > 0,0 >0,e >0, c(e) > 0 we have:

||B(nk, ”)‘E(nk)Hoo < CGye fn—md) for every n > ny, (EO1
|B(n, ”k)_l‘Eyk)Hoo < Cre (m=n) for every n < ny, (EO2

)

)

|4(E,£"), E}gn))| > ¢y el for all n € Z,distinct x, y € {s, c, u}; (EO3)
)

. log || B(nk, nik+1)|] —o. (EO4
k=00 k



