Midwest Dynamics and Group Actions

Indiana U. /U. of Chicago/U. of Illinois at Chicago/Northwestern U. /U. of Michigan

7 June, 2021

Rigidity of foliations on surfaces and renormalization

Corinna Ulcigrai University of Zürich

- *F* orientable smooth foliation of compact
 S with g = 1.
- ► *F* minimal

- F orientable smooth foliation of compact
 S with g = 1.
- ► F minimal

 E.g. *F*₀ linear foliation (leaves are trajectories of the straight line flow);

- F orientable smooth foliation of compact
 S with g = 1.
- *F* minimal ⇒ *F* is topologically conjugate to *F*₀;

 E.g. *F*₀ linear foliation (leaves are trajectories of the straight line flow);

- *F* orientable smooth foliation of compact
 S with *g* = 1.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_0 ;

- E.g. *F*₀ linear foliation (leaves are trajectories of the straight line flow);
- If θ is the *angle* of the lines, $\alpha := \cot \theta$ is the *rotation number*;

- *F* orientable smooth foliation of compact
 S with *g* = 1.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_0 ;

- E.g. *F*₀ linear foliation (leaves are trajectories of the straight line flow);
- If θ is the *angle* of the lines, $\alpha := \cot \theta$ is the *rotation number*;
- Def: a foliation *F* is geometrically rigid if *F* topologically conjugate to *F*₀ implies that *F* is differentiably conjugate to *F*₀ (as foliations) [*C*⁰ ⇒ *C*¹ conjugacy].

- *F* orientable smooth foliation of compact
 S with *g* = 1.
- \mathcal{F} minimal $\Rightarrow \mathcal{F}$ is topologically conjugate to \mathcal{F}_0 ;

- E.g. *F*₀ linear foliation (leaves are trajectories of the straight line flow);
- If θ is the *angle* of the lines, $\alpha := \cot \theta$ is the *rotation number*;
- ▶ Def: a foliation \mathcal{F} is geometrically rigid if \mathcal{F} topologically conjugate to \mathcal{F}_0 implies that \mathcal{F} is differentiably conjugate to \mathcal{F}_0 (as foliations) [$\mathcal{C}^0 \Rightarrow \mathcal{C}^1$ conjugacy].
- For a full measure set of rotation numbers (i.e. for a.e. α) foliations in g = 1 are geometrically rigid [follows from M. Herman global theorem on circle diffeos.]

 F orientable smooth foliation of compact S with g = 2 with only Morse type saddles;

[Morse type (simple) saddles: leaves are level sets of f(x, y) = xy]

Theorem (Ghazouani-U', 2021)

Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_0 , then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.

Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

 F orientable smooth foliation of compact S with g = 2 with only Morse type saddles;

[Morse type (simple) saddles: leaves are level sets of f(x, y) = xy]

Theorem (Ghazouani-U', 2021)

 E.g. *F*₀ linear model: leaves are trajectories of the straight line flow on a translation surface;

Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_0 , then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.

Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

 F orientable smooth foliation of compact S with g = 2 with only Morse type saddles;

[Morse type (simple) saddles: leaves are level sets of f(x, y) = xy]

Theorem (Ghazouani-U', 2021)

 E.g. *F*₀ linear model: leaves are trajectories of the straight line flow on a translation surface;

Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_0 , then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.

Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

 F orientable smooth foliation of compact S with g = 2 with only Morse type saddles;

[Morse type (simple) saddles: leaves are level sets of f(x, y) = xy]

Theorem (Ghazouani-U', 2021)

 E.g. *F*₀ linear model: leaves are trajectories of the straight line flow on a translation surface;

Under a full measure arithmetic condition, if \mathcal{F} is topologically conjugate to \mathcal{F}_0 , then it is differentiably conjugate to it, i.e. \mathcal{F} is geometrically rigid.

[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]

F orientable, smooth, minimal foliation on *S* with *g* = 1.

- \mathcal{F} orientable, smooth, minimal foliation on S with g = 1.
- $S^1 \subset S$ transverse section;

- *F* orientable, smooth, minimal foliation on *S* with *g* = 1.
- $S^1 \subset S$ transverse section;

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

- *F* orientable, smooth, minimal foliation on *S* with *g* = 1.
- $S^1 \subset S$ transverse section; The Deinconformer $f \in S^1 \to S^1$

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

• E.g. \mathcal{F}_0 irrational *linear* foliation (angle θ);

- \mathcal{F} orientable, smooth, minimal foliation on S with g = 1.
- $S^1 \subset S$ transverse section;

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

- E.g. \mathcal{F}_0 irrational *linear* foliation (angle θ);
- The *Poincaré first return map* on *I* is $R_{\alpha} = x + \alpha \mod 1$, where $\alpha = \cot \theta$.

- \mathcal{F} orientable, smooth, minimal foliation on S with g = 1.
- $S^1 \subset S$ transverse section;

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

- E.g. \mathcal{F}_0 irrational *linear* foliation (angle θ);
- The *Poincaré first return map* on *I* is $R_{\alpha} = x + \alpha \mod 1$, where $\alpha = \cot \theta$.

- *F* orientable, smooth, minimal foliation on *S* with *g* = 1.
- $S^1 \subset S$ transverse section;

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

• E.g. \mathcal{F}_0 irrational *linear* foliation (angle θ);

• The *Poincaré first return map* on *I* is $R_{\alpha} = x + \alpha \mod 1$, where $\alpha = \cot \theta$.

• Def/recall: f and R_{α} are conjugate if there exists a orientation preserving, invertible $h: S^1 \to S^1$ (the conjugacy) such that

$$h \circ f = R_{\alpha} \circ h.$$

- \mathcal{F} orientable, smooth, minimal foliation on S with g = 1.
- $S^1 \subset S$ transverse section;

The Poincaré map $f: S^1 \rightarrow S^1$ is a circle diffeomorphism;

• E.g. \mathcal{F}_0 irrational *linear* foliation (angle θ);

- The *Poincaré first return map* on *I* is $R_{\alpha} = x + \alpha \mod 1$, where $\alpha = \cot \theta$.
- Def/recall: f and R_{α} are conjugate if there exists a orientation preserving, invertible $h: S^1 \to S^1$ (the conjugacy) such that

$$h \circ f = R_{\alpha} \circ h.$$

▶ The rotation number α of $f : S^1 \to S^1$ can be defined dynamically $(\alpha = \lim_{n \to \infty} \frac{f^n(x) - x}{n})$ or combinatorially (via continued fractions and the Euclidean algorithm).

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number α .

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number α .

(1) Combinatorics:

- if the rotation number $\alpha \notin \mathbb{Q}$, \exists [Poincaré Thm] $[\circ, \Box] \longrightarrow [\circ, \Box]$ surjective $h: S^1 \to S^1$ such that $h \circ f = R_\alpha \circ h$.

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number α .

(1) Combinatorics:

- $[0,1] \longrightarrow [0,1]$
- $\begin{array}{ccc} [\circ, 1 & & \downarrow & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$ surjective $h: S^1 \to S^1$ such that $h \circ f = R_{\alpha} \circ h$.
 - h could fail to be a conjugacy, if there are wandering intervals, i.e. $J \subset S^1$ s.t. $f^n(J)$, $n \in \mathbb{Z}$ are all disjoint (Denjoy counterexamples).

[*Idea*: $(f^n(J))_{n \in \mathbb{Z}}$ are obtained by *blow up* of an orbit.]

a Denjoy flow (courtesy of J.Carrard)

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number α .

(1) Combinatorics:

- $\begin{bmatrix} [o_{i}, 1] & \downarrow & \downarrow \\ \iota & \downarrow & \downarrow \\ [o_{i}, 1] & \underset{[o_{i}, 1]}{\longrightarrow} \begin{bmatrix} [o_{i}, 1] & \downarrow \\ \iota & \downarrow & \downarrow \\ \hline \end{bmatrix}$ if the rotation number $\alpha \notin \mathbb{Q}$, \exists [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h : S^{1} \rightarrow S^{1}$ such that $h \circ f = R_{\alpha} \circ h$.
 - h could fail to be a conjugacy, if there are wandering intervals, i.e. J ⊂ S¹ s.t. fⁿ(J), n ∈ Z are all disjoint (Denjoy counterexamples).

[*Idea:* $(f^n(J))_{n\in\mathbb{Z}}$ are obtained by *blow up* of an orbit.]

a Denjoy flow (courtesy of J.Carrard)

(2) Topology: if f is differentiable, e.g. $f \in C^2$ ($C^1 + f' \in BV$), then f is a conjugacy \Leftrightarrow f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number α .

(1) Combinatorics:

- $\begin{bmatrix} [o_i, 1] & \downarrow & \downarrow \\ k & \downarrow & \downarrow \\ [o_i, 1] & \downarrow & \downarrow \\ [o_i, 1] & \bigoplus_{k \to 0} \begin{bmatrix} [o_i, 1] \\ [o_i, 1] & \bigoplus_{k \to 0} \begin{bmatrix} [o_i, 1] \\ [o_i, 1] & \bigoplus_{k \to 0} \begin{bmatrix} [o_i, 1] \\ [o_i, 1] & \bigoplus_{k \to 0} \end{bmatrix} \end{bmatrix}$ if the rotation number $\alpha \notin \mathbb{Q}$, \exists [Poincaré Thm] a topological semi-conjugacy, i.e. a continuous, surjective $h : S^1 \to S^1$ such that $h \circ f = R_\alpha \circ h$.
 - h could fail to be a conjugacy, if there are wandering intervals, i.e. J ⊂ S¹ s.t. fⁿ(J), n ∈ Z are all disjoint (Denjoy counterexamples).

a Denjoy flow (*courtesy of J.Carrard*)

- (2) Topology: if f is differentiable, e.g. $f \in C^2$ ($C^1 + f' \in BV$), then f is a conjugacy \Leftrightarrow f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).
- (3) Geometry: What is the regularity of h? Is $h \in C^1$? Is $h \in C^{\infty}$?

(*Rigidity*: topology determines geometry)

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$. Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$. Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}):

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$. Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}):

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory

(Kolmogorov-Arnold-Moser)

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- - E.g. [Arnold] if α is Diophantine,

[i.e. $|lpha-rac{p}{q}|\geq C/q^{2+ au}$, for au> 0, $orall \ p\in\mathbb{Z}, q\in\mathbb{N}_+$]

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,

[i.e. $|\alpha - \frac{p}{q}| \ge C/q^{2+\tau}$, for $\tau > 0$, $\forall p \in \mathbb{Z}, q \in \mathbb{N}_+$] and f is \mathcal{C}^{ω} -close (resp. \mathcal{C}^{∞}) to R_{α} , h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory

(Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,

[i.e. $|\alpha - \frac{p}{q}| \ge C/q^{2+\tau}$, for $\tau > 0$, $\forall p \in \mathbb{Z}, q \in \mathbb{N}_+$] and f is \mathcal{C}^{ω} -close (resp. \mathcal{C}^{∞}) to R_{α} , h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

Key step: Solve the cohomological equation
[i.e. linearized conjugacy problem: given (smooth) φ,
find (smooth) ψ s.t. ψ ∘ R_α - ψ = φ]
Rk: if α is Diophantine and ∫ φ = 0, it has a smooth solution.

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory

(Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,

[i.e. $|\alpha - \frac{p}{q}| \ge C/q^{2+\tau}$, for $\tau > 0$, $\forall p \in \mathbb{Z}, q \in \mathbb{N}_+$] and f is \mathcal{C}^{ω} -close (resp. \mathcal{C}^{∞}) to R_{α} , h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

- Key step: Solve the cohomological equation

[i.e. *linearized* conjugacy problem: given (*smooth*) ϕ , find (smooth) ψ s.t. $\psi \circ R_{\alpha} - \psi = \phi$]

Rk: if α is Diophantine and $\int \phi = 0$, it has a smooth solution.

(B) Global results (No closeness assumption):

- [Herman, Yoccoz] if α is Diophantine, f is C^{∞} -conjugate (so in particular C^1 -conjugate) to R_{α} (geometric rigidity).

Let $f: S^1 \to S^1$ be a circle diffeomorphism with rotation number $\alpha \notin \mathbb{Q}$.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α .

(A) Local theory (f small perturbation of R_{α}): KAM theory (Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,

[i.e. $|\alpha - \frac{p}{q}| \ge C/q^{2+\tau}$, for $\tau > 0$, $\forall p \in \mathbb{Z}, q \in \mathbb{N}_+$] and f is \mathcal{C}^{ω} -close (resp. \mathcal{C}^{∞}) to R_{α} , h is \mathcal{C}^{ω} (resp. \mathcal{C}^{∞}).

- Key step: Solve the cohomological equation

[i.e. *linearized* conjugacy problem: given (*smooth*) ϕ , find (smooth) ψ s.t. $\psi \circ R_{\alpha} - \psi = \phi$]

Rk: if α is Diophantine and $\int \phi = 0$, it has a smooth solution.

(B) Global results (No closeness assumption):

- [Herman, Yoccoz] if α is Diophantine, f is C^{∞} -conjugate (so in particular C^1 -conjugate) to R_{α} (geometric rigidity).

[Renormalization approach: Khanin-Sinai, Khanin-Teplisnky]

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0,1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:
 - critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]
 - break points (f')⁺(b) ≠ (f')⁻(b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo,]
- NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0,1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s;
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:
 - critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]
 - break points (f')⁺(b) ≠ (f')[−](b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]
- NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0, 1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s;
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;

Circle maps with singularities, i.e. with:

• critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]

break points (f')⁺(b) ≠ (f')⁻(b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]

NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0, 1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s;
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;
- Circle maps with singularities, i.e. with:
 - critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]

break points (f')⁺(b) ≠ (f')⁻(b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...

NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0, 1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s;
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;

Circle maps with singularities, i.e. with:

- critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]
- break points (f')⁺(b) ≠ (f')⁻(b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]
- NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

Geometric rigidity in one dimensional dynamics.

Some examples of geometrically rigid dynamical systems ($C^0 \Rightarrow C^1$ conjugacy):

- Circle diffeomorphisms (and foliations in g = 1) with Diophantine α [Herman, Yoccoz];
- ► Unimodal maps of [0, 1]:
 - discovered by Feigenbaum, Coullet-Tresser in the '70s;
 - deep mathematical theory in the '90s by Sullivan, McMullen, Lyubich et al ...;

Circle maps with singularities, i.e. with:

• critical points f'(c) = 0 [de Faria-de Melo, Yampolsky ...]

break points (f')⁺(b) ≠ (f')⁻(b) [Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, ...]

NEW: typical foliations on S with g = 2 (and corresponding *Poincaré maps*);

• \mathcal{F} orientable, smooth, minimal foliation on S with $g \ge 2$.

▶ $I \subset S$ transverse arc (section);

- ➤ F orientable, smooth, minimal foliation on S with g ≥ 2.
- ▶ $I \subset S$ transverse arc (section);

- ➤ *F* orientable, smooth, minimal foliation on *S* with *g* ≥ 2.
- ▶ $I \subset S$ transverse arc (section);

E.g. *F*₀ minimal *linear* flow on a translation surface;

- ➤ F orientable, smooth, minimal foliation on S with g ≥ 2.
- $I \subset S$ transverse arc (section);

- E.g. *F*₀ minimal *linear* flow on a translation surface;
- ► The Poincaré first return map T₀ : I → I is an (irreducible) (standard) Interval Exchange Transformation (IET).

- GIET F orientable, smooth, minimal foliation on S with $g \ge 2$.
- $I \subset S$ transverse arc (section);
- ► The Poincaré map T : I → I is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)

- E.g. *F*₀ minimal *linear* flow on a translation surface;
- ► The Poincaré first return map T₀ : I → I is an (irreducible) (standard) Interval Exchange Transformation (IET).

- GIET F orientable, smooth, minimal foliation on S with $g \ge 2$.
- $I \subset S$ transverse arc (section);
- ► The Poincaré map T : I → I is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)
- Def: T is of class C^r if each branch $T_i = T|_{I_i}$ extends to C^r diffeo on $\overline{I_i}$;

- E.g. *F*₀ minimal *linear* flow on a translation surface;
- ► The Poincaré first return map T₀ : I → I is an (irreducible) (standard) Interval Exchange Transformation (IET).

- GIET F orientable, smooth, minimal foliation on S with $g \ge 2$.
- $I \subset S$ transverse arc (section);
- ► The Poincaré map T : I → I is a Generalized Interval Exchange Transformation (GIET); (invertible piecewise diffeo)
- Def: T is of class C^r if each branch $T_i = T|_{I_i}$ extends to C^r diffeo on $\overline{I_i}$;

- E.g. *F*₀ minimal *linear* flow on a translation surface;
- ► The Poincaré first return map T₀ : I → I is an (irreducible) (standard) Interval Exchange Transformation (IET).
- Def: T and T₀ are conjugate iff there exists a o. p. diffeomorphism h : I → I (the conjugacy) such that

 $h \circ T = T_0 \circ h.$

Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for T is played by a combinatorial datum $\gamma(T)$

[Sequence of permutations, or path in Rauzy-Veech diagram]

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for T is played by a combinatorial datum $\gamma(T)$

[Sequence of permutations, or path in Rauzy-Veech diagram]

- if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for T is played by a combinatorial datum $\gamma(T)$

[Sequence of permutations, or path in Rauzy-Veech diagram]

if γ(T) = γ(T₀) where T₀ is a (minimal or Keane) IET, then T is semi-conjugate to T₀
 [*Ref:* Yoccoz lecture notes];

Topology: T can have wandering intervals (TⁿJ)_{n∈Z} and h may fail to be a conjugacy,

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for *T* is played by a combinatorial datum γ(*T*)
 [Sequence of permutations, or path in Rauzy-Veech diagram]
 - if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

a Denjoy-*like* linear flow [*E.g. by Jerome Carrard*]

(2) Topology: T can have wandering intervals (TⁿJ)_{n∈Z} and h may fail to be a conjugacy,

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for *T* is played by a combinatorial datum γ(*T*)
 [Sequence of permutations, or path in Rauzy-Veech diagram]
 - if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

a Denjoy-*like* linear flow [*E.g. by Jerome Carrard*]

(2) Topology: T can have wandering intervals (TⁿJ)_{n∈Z} and h may fail to be a conjugacy,

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for *T* is played by a combinatorial datum γ(*T*)
 [Sequence of permutations, or path in Rauzy-Veech diagram]
 - if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

a Denjoy-*like* linear flow [*E.g. by Jerome Carrard*]

(2) Topology: T can have wandering intervals (TⁿJ)_{n∈Z} and h may fail to be a conjugacy, also if T if smooth, even affine!

Affine IET

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for *T* is played by a combinatorial datum γ(*T*)
 [Sequence of permutations, or path in Rauzy-Veech diagram]
 - if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

a Denjoy-*like* linear flow [*E.g. by Jerome Carrard*]

- (2) Topology: T can have wandering intervals (TⁿJ)_{n∈Z} and h may fail to be a conjugacy, also if T if smooth, even affine!
 - ∃ affine IETs (AIETs) with wandering intervals [n.u.e. first example by Levitt, (families of) periodic type, u.e. AIETs by Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];

Affine IET

- Let $T : I \rightarrow I$ be a *Keane* GIET (no saddle connections).
- (1) Combinatorics:
 - The role of *rotation number* for *T* is played by a combinatorial datum γ(*T*)
 [Sequence of permutations, or path in Rauzy-Veech diagram]
 - if $\gamma(T) = \gamma(T_0)$ where T_0 is a (minimal or Keane) IET, then T is semi-conjugate to T_0 [*Ref:* Yoccoz lecture notes];

a Denjoy-*like* linear flow [*E.g. by Jerome Carrard*]

may fail to be a conjugacy, also if T if smooth, even affine!

- ∃ affine IETs (AIETs) with wandering intervals [n.u.e. first example by Levitt, (families of) periodic type, u.e. AIETs by Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];

(2) Topology: T can have wandering intervals $(T^n J)_{n \in \mathbb{Z}}$ and h

Affine IET

- most AIETs have wandering intervals [Marmi-Moussa-Yoccoz];

(3) Geometry: when are *T* and *T*₀ smoothly conjugated?

.

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

.

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

• Cohomological equation (for T_0 IET) [given ψ , find φ s.t. $\varphi \circ T_0 - \varphi = \psi$ (*)]

.

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_0 IET) [given ψ , find φ s.t. $\varphi \circ T_0 - \varphi = \psi$ (*)]
 - Forni, 1997: for a.e. T₀, there are obstructions to solve (*) (space of solutions has *finite* codimension).

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T_0 IET) [given ψ , find φ s.t. $\varphi \circ T_0 - \varphi = \psi$ (*)]
 - Forni, 1997: for a.e. T₀, there are obstructions to solve (*) (space of solutions has *finite* codimension).
 - Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (*Roth-type*).

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T₀ IET) [given ψ, find φ s.t. φ ∘ T₀ − φ = ψ (★)]
 - Forni, 1997: for a.e. T₀, there are obstructions to solve (*) (space of solutions has *finite* codimension).
 - Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (*Roth-type*).

Local linearization:

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T₀ IET) [given ψ, find φ s.t. φ ∘ T₀ − φ = ψ (★)]
 - Forni, 1997: for a.e. T₀, there are obstructions to solve (*) (space of solutions has *finite* codimension).
 - Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (*Roth-type*).

- Local linearization:
 - Marmi-Moussa-Yoccoz, 2012: for a.e. IET T_0 , the GIETs C^5 -*close* to T_0 (+simple deformations) which are C^2 conjugate have finite codim;

- (3) Geometry: when are *T* and *T*₀ smoothly conjugated?
 - (A) Local theory: assume T is C^r -close to T_0 and a *simple* perturbation (perturb away from discontinuties).

[*Seminal works:* Forni, Marmi-Moussa-Yoccoz]

- Cohomological equation (for T₀ IET) [given ψ, find φ s.t. φ ∘ T₀ − φ = ψ (★)]
 - Forni, 1997: for a.e. T₀, there are obstructions to solve (*) (space of solutions has *finite* codimension).
 - Marmi-Moussa-Yoccoz, 2005: full measure arithmetic condition on the IET (*Roth-type*).

- Local linearization:
 - Marmi-Moussa-Yoccoz, 2012: for a.e. IET T_0 , the GIETs C^5 -*close* to T_0 (+simple deformations) which are C^2 conjugate have finite codim;
 - Ghazouani, 2020: for T_0 hyperbolic periodic-type, the GIETs C^3 -close to T_0 (+simple def.) C^1 conjugate to it have codim (d-1) + (g-1);

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T)=(B(T)_i)_{1\leq i\leq\kappa}\in\mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. : $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$
 - $B(T)_2 = f(u_1)^+ f(u_1)^- + f(u_3)^+ f(u_3)^+ f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

- ► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.
 - Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \leq i \leq \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. : $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^+ + f(u_6)^+ - f(u_6)^+ - f(u_6)^+ - f(u_6)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

- ► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.
 - Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:

 $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}, \ \kappa \text{ number of saddles};$ for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. : $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_6)^+$ $B(T)_2 = f(u_1)^+ - f(u_5)^- + f(u_5)^+ - f(u_5)^+ - f(u_6)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. : $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, B(T)_i is a sum of the one-sided derivatives of f := log DT at the endpoints corresponding to p_i, e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$
Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Remarks: BT_i gives holonomy around the saddle p_i;

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

Remarks: BT_i gives holonomy around the saddle p_i;

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

- Remarks: BT_i gives holonomy around the saddle p_i;
 - $T_0 | \text{ET} \Rightarrow B(T_0)_i = 0 \forall i \text{ (from definition)};$

Geometric rigidity: if T and T_0 are topologically conjugate ($h \in C^0$), are they differentiably conjugate ($h \in C^1$)?

► Conjecture [Marmi-Moussa-Yoccoz]: if T and T_0 are C^0 -conjugate and have the same boundary $B(T) = B(T_0)$, then T and T_0 are C^1 -conjugate.

- Def: the boundary B(T) is a C^1 -conjugacy invariant s.t:
 - $B(T) = (B(T)_i)_{1 \le i \le \kappa} \in \mathbb{R}^{\kappa}$, κ number of saddles;
 - for p_i saddle, $B(T)_i$ is a sum of the one-sided derivatives of $f := \log DT$ at the endpoints corresponding to p_i , e.g. :

 $B(T)_1 = f(u_0)^+ - f(u_2)^- + f(u_2)^+ - f(u_4)^- + f(u_4)^+$ $B(T)_2 = f(u_1)^+ - f(u_1)^- + f(u_3)^+ - f(u_3)^+ - f(u_5)^-$

- Remarks: BT_i gives holonomy around the saddle p_i;
 - $T_0 | \text{ET} \Rightarrow B(T_0)_i = 0 \forall i \text{ (from definition)};$
 - $B(T)_i = 0$ when p_i is a Morse singularity (holonomy zero);

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **proves** Marmi-Moussa-Yoccoz conjecture in g = 2:
- Cor: results on foliations (*Morse saddles* \Rightarrow *B*(*T*) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **proves** Marmi-Moussa-Yoccoz conjecture in g = 2:
- Cor: results on foliations (*Morse saddles* \Rightarrow *B*(*T*) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow *B*(*T*) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any $d \ge 2$;

- Rauzv-Veech

- ► Oseledets thm:
- Lyapunov exponents

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

Remarks:

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

Proof: Tools from Teichüller dynamics, and

- Rauzv-Veech

► Oseledets thm:

Lyapunov exponents

Tools from one dimensional dynamics

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

Remarks:

- **•** proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $\mathcal{C}^{1+\alpha}$ (not \mathcal{C}^{∞})
- general case: most results already hold for any d > 2;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech induction:
- KZ-cocvcle:

- Oseledets thm:
- Lyapunov exponents $(\lambda_{\sigma} > 0)$:

Tools from one dimensional dynamics

- dvnamical

- Schwartzian
- non linearity: Distorsion bounds:

Theorem (Ghazouani-U', 2021)

For a full measure set of IETs T_0 with d = 4,5 intervals (Poincaré sections of $g = 2, \pi$ irreducible),

If T is a GIET of class C^3 with $B(T) = B(T_0) = 0$ topologically conjugate to T_0 , then the conjugacy is C^1 (geometric rigidity).

Remarks:

- ▶ proves Marmi-Moussa-Yoccoz conjecture in g = 2;
- Cor: results on foliations (*Morse saddles* \Rightarrow B(T) = 0);
- global result (no closeness assumption);
- Optimal regularity is conjecturally $C^{1+\alpha}$ (not C^{∞})
- general case: most results already hold for any $d \ge 2$;

Proof: Tools from Teichüller dynamics, and

- Rauzy-Veech induction;
- KZ-cocycle;

- Oseledets thm;
- Lyapunov exponents (λ_g > 0);

Tools from one dimensional dynamics

- dynamical partitions;
- non linearity;
- Schwartzian derivative;
- Distorsion bounds;

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

Renormalization: Rauzy-Veech induction for GIET The algorithm produces:

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- > $T^{(n)}$ is and induced *d*-GIET.

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - ► the rotation number $\gamma(T)$, which is the sequence $(\pi^{(n)})_{n \in \mathbb{N}}$; [where $\pi^{(n)}$ is the *permutation* of $T^{(n)}$]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

- ▶ Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ► The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

Idea: induce on shorter sections;

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- ► The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

 a sequence of (products of) matrices B(0, n) (RV-cocycle)
 [where B(0, n)_{ij} := number of pieces of j tower inside I_i⁽⁰⁾]

Idea: induce on shorter sections;

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

 a sequence of (products of) matrices B(0, n) (RV-cocycle)
 [where B(0, n)_{ij} := number of pieces of j tower inside I_i⁽⁰⁾]

Idea: induce on shorter sections;

- Let $T^{(0)} := T$ GIET, $I^{(0)} := I$;
- ▶ Define nested $I^{(n)} \subset I^{(n-1)}, n \in \mathbb{N}$, s.t.
- ▶ $T^{(n)}$ is and induced *d*-GIET.

- The algorithm produces:
 - the rotation number γ(T), which is the sequence (π⁽ⁿ⁾)_{n∈ℕ}; [where π⁽ⁿ⁾ is the *permutation* of T⁽ⁿ⁾]
 - a sequence of dynamical partitions; [into floors of Rohlin towers]

 a sequence of (products of) matrices B(0, n) (RV-cocycle)
 [where B(0, n)_{ij} := number of pieces of j tower inside I_i⁽⁰⁾]

Scaling invariants

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(T)$ be $T^{(n)}$ normalized.

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

For any $d\geq 2$, for a full measure set of rotation numbers $\gamma({\mathcal T}),$ \exists $(n_k)_{k\in \mathbb{N}}$ s. t.

- (1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});
- (2) or $(\mathcal{R}^n(\mathcal{T}))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$
Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized. Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- (1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});
- (2) or $(\mathcal{R}^n(\mathcal{T}))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Scaling invariants Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized.

Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- (1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall R^{(n_k)}|| < C \forall R^{(n_k)$
- (2) or $(\mathcal{R}^n(T))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} - B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Scaling invariants Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized.

Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- either we have recurrence, i.e. ∃C > 0 s.t. ||ω^(n_k)|| ≤ C ∨ (and (Rⁿ(T))_{n∈ℕ} is recurrent to a C¹-bounded set K);
- (2) or $(\mathcal{R}^n(T))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Scaling invariants Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^{n}(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized.

Key quantities:

average slope

Important remarks:

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- either we have recurrence, i.e. ∃C > 0 s.t. ||ω^(n_k)|| ≤ C ∖ (and (Rⁿ(T))_{n∈ℕ} is recurrent to a C¹-bounded set K);
- (2) or $(\mathcal{R}^n(T))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} - B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(T)$ be $T^{(n)}$ normalized. Key quantities: Important remarks:

average slope

 $\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I^{(n)}|}\right) \quad \stackrel{\text{if } T \text{ is an AIET,}}{\omega^{(n)} = B(0, n) \,\omega^{(0)}}:$

► log-slope vector:
$$\omega^{(n)} := \log \rho^{(n)}$$
.
 $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized. Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

► log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$ Important remarks:

- if T is an AIET, $\omega^{(n)} = B(0, n) \, \omega^{(0)};$
- ► for *T* GIET, linear approximation error: $|\omega^{(n+1)}-\omega^{(n)}| \le N_T ||B(n, n+1)||$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

For any $d \ge 2$, for a full measure set of rotation numbers $\gamma(T)$, $\exists (n_k)_{k \in \mathbb{N}}$ s. t.

(1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});

(2) or $(\mathcal{R}^n(\mathcal{T}))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} - B(0,n)v|| \le C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized. Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

► log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$ Important remarks:

- if T is an AIET, $\omega^{(n)} = B(0, n) \, \omega^{(0)};$
- ► for *T* GIET, linear approximation error: $|\omega^{(n+1)} - \omega^{(n)}| \le N_T ||B(n, n+1)||$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- (1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});
- (2) or $(\mathcal{R}^n(\mathcal{T}))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} B(0,n)v|| \le C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized. Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

► log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$ Important remarks:

- if T is an AIET, $\omega^{(n)} = B(0, n) \, \omega^{(0)};$
- ► for *T* GIET, linear approximation error: $|\omega^{(n+1)}-\omega^{(n)}| \le N_T ||B(n, n+1)||$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

For any $d \ge 2$, for a full measure set of rotation numbers $\gamma(T)$, $\exists (n_k)_{k \in \mathbb{N}}$ s. t.

(1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});

(2) or $(\mathcal{R}^n(T))_{n\in\mathbb{N}}$ diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. $||\omega^{(n)} - B(0,n)v|| \leq C_{\epsilon} ||B(0,n)v||^{\epsilon}, \quad \forall \epsilon > 0.$

Use an acceleration \mathcal{R} of RV. Let $\mathcal{R}^n(\mathcal{T})$ be $\mathcal{T}^{(n)}$ normalized. Key quantities:

average slope

$$\rho^{(n)} = \left(\frac{|T^{(n)}(I_1^{(n)})|}{|I_1^{(n)}|}, \dots, \frac{|T^{(n)}(I_d^{(n)})|}{|I_d^{(n)}|}\right)$$

► log-slope vector: $\omega^{(n)} := \log \rho^{(n)}$. $[\omega^{(n)} := (\log \rho_1^{(n)}, \dots, \log \rho_d^{(n)})]$ Important remarks:

- if T is an AIET, $\omega^{(n)} = B(0, n) \, \omega^{(0)};$
- ► for *T* GIET, linear approximation error: $|\omega^{(n+1)}-\omega^{(n)}| \le N_T ||B(n, n+1)||$

Theorem (Dynamical dichotomy, Ghazouani-U', 2021)

- (1) either we have recurrence, i.e. $\exists C > 0 \text{ s.t. } ||\omega^{(n_k)}|| \leq C \forall k$ (and $(\mathcal{R}^n(T))_{n \in \mathbb{N}}$ is recurrent to a \mathcal{C}^1 -bounded set \mathcal{K});
- (2) or (Rⁿ(T))_{n∈ℕ} diverges and we have affine shadowing, i.e. there exists v (the shadow) s.t. ||ω⁽ⁿ⁾ B(0, n)v|| ≤ C_ε||B(0, n)v||^ε, ∀ε > 0.

Assume that T is such that the dynamical dichotomy holds. Consider two cases

(1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
- d_{C¹}(Rⁿ(T), IETs) → 0 exponentially;
 (exponential convergence of renormalization
- T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
- d_{C¹}(Rⁿ(T), IETs) → 0 exponentially;
 (exponential convergence of renormalization
- T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow

- $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
- d_{C¹}(Rⁿ(T), IETs) → 0 exponentially;
 (exponential convergence of renormalization)
- T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially;
 (exponential convergence of renormalization
 - T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - ► $d_{C^1}(\mathcal{R}^n(T), IET_s) \rightarrow 0$ exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - ► $d_{C^1}(\mathcal{R}^n(T), IET_s) \to 0$ exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;
- (2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - ► $d_{C^1}(\mathcal{R}^n(T), IET_s) \to 0$ exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;
- (2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$
 - (a) if the shadowing AIET has *wandering intervals* (with *exponentially distorted towers*), then also the GIET *T* has wandering intervals;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that T is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially;
 (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;
- (2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$
 - (a) if the shadowing AIET has *wandering intervals* (with *exponentially distorted towers*), then also the GIET *T* has wandering intervals;
 - (b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in g = 2;

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - d_{C¹}(Rⁿ(T), IETs) → 0 exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

(2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$

- (a) if the shadowing AIET has *wandering intervals* (with *exponentially distorted towers*), then also the GIET *T* has wandering intervals;
- (b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in g = 2;

Case (2) cannot happen when T and T_0 are topologically conjugated (no wandering intervals). So we are in Case (1)!

- follows Herman's strategy;
- one-dimensional dynamics techniques;

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - ► $d_{C^1}(\mathcal{R}^n(T), IET_s) \to 0$ exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;

(2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$

- (a) if the shadowing AIET has *wandering intervals* (with *exponentially distorted towers*), then also the GIET *T* has wandering intervals;
- (b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in g = 2;

 follows Herman's strategy;

 one-dimensional dynamics techniques;

 Remark: only this restricts result to g = 2

> [(MMY requires v to project on λ_2 ; this is always true in g = 2)]

Case (2) cannot happen when T and T_0 are topologically conjugated (no wandering intervals). So we are in Case (1)!

Assume that \mathcal{T} is such that the dynamical dichotomy holds. Consider two cases:

- (1) Recurrent case: [at special times, $||\omega^{(n_k)}|| \leq C$] \Rightarrow
 - $\frac{1}{\nu} \leq \rho^{(n_k)} \leq \nu$ (a priori bounds);
 - ► $d_{C^1}(\mathcal{R}^n(T), IET_s) \to 0$ exponentially; (exponential convergence of renormalization)
 - T is C^1 -conjugate to T_0 ;
- (2) Affine shadowing case: $[\exists v \text{ shadow s.t. } \omega^{(n)} \sim B(0, n)v]$
 - (a) if the shadowing AIET has *wandering intervals* (with *exponentially distorted towers*), then also the GIET *T* has wandering intervals;
 - (b) Exploit Marmi-Moussa-Yoccoz (on AIETs with wandering intervals) to get (a) in g = 2;

 follows Herman's strategy;

- one-dimensional dynamics techniques;
- ► Remark: valid for any d ≥ 2;
- Remark: only this restricts result to g = 2

[(MMY requires v to project on λ_2 ; this is always true in g = 2)]

Case (2) cannot happen when T and T_0 are topologically conjugated (no wandering intervals). So we are in Case (1)!

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - **•** profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0, 1]$;
 - Classical distorsion bounds control $|\varphi_i^n(x)/\varphi_i^n(y)| \ \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no *B* assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3 T}{DT} \frac{3}{2} \left(\frac{D^2 T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n;
 profiles φⁿ_i are T⁽ⁿ⁾_i rescaled to be in Diff⁺[0, 1];
 - Classical *distorsion bounds* control $|\varphi_i^n(x)/\varphi_i^n(y)| \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no *B* assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3 T}{DT} \frac{3}{2} \left(\frac{D^2 T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n;
 profiles φⁿ_i are T⁽ⁿ⁾_i rescaled to be in Diff⁺[0, 1];
 - Classical distorsion bounds control |φ_iⁿ(x)/φ_iⁿ(y)| ∀x, y, ∀n;
 The assumption on ω^(n_k) controls the shape at n_k;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3T}{DT} \frac{3}{2} \left(\frac{D^2T}{DT}\right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n;
 profiles φⁿ_i are T⁽ⁿ⁾_i rescaled to be in Diff⁺[0, 1];
 - Classical distorsion bounds control |φ_iⁿ(x)/φ_iⁿ(y)| ∀x, y, ∀n;
 The assumption on ω^(n_k) controls the shape at n_k;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3T}{DT} \frac{3}{2} \left(\frac{D^2T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n;
 profiles φⁿ_i are T⁽ⁿ⁾_i rescaled to be in Diff⁺[0, 1];
 - Classical distorsion bounds control |φ_iⁿ(x)/φ_iⁿ(y)| ∀x, y, ∀n;
 The assumption on ω^(n_k) controls the shape at n_k;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3 T}{DT} \frac{3}{2} \left(\frac{D^2 T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0, 1]$;
 - Classical distorsion bounds control |φ_iⁿ(x)/φ_iⁿ(y)| ∀x, y, ∀n;
 The assumption on ω^(n_k) controls the shape at n_k;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3T}{DT} \frac{3}{2} \left(\frac{D^2T}{DT}\right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0, 1]$;
 - ► Classical *distorsion bounds* control $|\varphi_i^n(x)/\varphi_i^n(y)| \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3 T}{DT} \frac{3}{2} \left(\frac{D^2 T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0, 1]$;
 - ► Classical *distorsion bounds* control $|\varphi_i^n(x)/\varphi_i^n(y)| \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3 T}{DT} \frac{3}{2} \left(\frac{D^2 T}{DT} \right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - **•** profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0, 1]$;
 - Classical *distorsion bounds* control $|\varphi_i^n(x)/\varphi_i^n(y)| \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3T}{DT} \frac{3}{2} \left(\frac{D^2T}{DT}\right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0;$
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

- 1. Show a priori bounds at $(n_k)_k$ [i.e. $\frac{1}{C} \leq DT^{(n)} \leq C$];
 - Consider separately *shape* and *profile* coordinates:
 - the shape is the affine IET with log-slope ω_n ;
 - **•** profiles φ_i^n are $T_i^{(n)}$ rescaled to be in $Diff^+[0,1]$;
 - Classical *distorsion bounds* control $|\varphi_i^n(x)/\varphi_i^n(y)| \forall x, y, \forall n;$
 - The assumption on $\omega^{(n_k)}$ controls the shape at n_k ;
- 2. Convegence to Moebius IET: no B assumption!
 - Tool: Schwarzian derivative $S(T) := \frac{D^3T}{DT} \frac{3}{2} \left(\frac{D^2T}{DT}\right)^2$;
 - Show: mesh of dynamical partition goes to zero;
- 3. Convergence to AIET: requires $\sum_{s=1}^{\kappa} B(T)_s = 0 \Leftrightarrow \int \eta_T = 0$;
 - Tool: non-linearity $\eta_T(x) := D \log DT(x) = \frac{D^2 T}{DT}$;
 - Show: that the total non-linearity $\int |\eta_T(x)| dx$ goes to 0;
- 4. Convergence to IETs: requires B(T) = 0 assumption;

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;

• Assume A has g exponents $\lambda_i > 1$;

- ▶ Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
- Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$v := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

• General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;

• Assume A has g exponents $\lambda_i > 1$;

- Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
- Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$v := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

• General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.

Divergent case: building the shadow

[Assume we are in Case 2. Goal: build the shadow v.]

• Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;

• Assume A has g exponents $\lambda_i > 1$;

- Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
- Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$v := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

• General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.
[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$v := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - ▶ Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$\mathbf{v} := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$\mathbf{v} := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);

Show that the series *converges* + use *telescopic* nature to show it works.

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$\mathbf{v} := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{e_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);

Show that the series *converges* + use *telescopic* nature to show it works.

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$\mathbf{v} := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{\mathbf{e}_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

[Assume we are in Case 2. Goal: build the shadow v.]

- Example: periodic type case, i.e. $B(0, np) = A^n$, for any *n*, where A > 0;
 - Assume A has g exponents $\lambda_i > 1$;
 - Split $\mathbb{R}^d = E^s \oplus E^c \oplus E^u$ (positive/neutral/negative eigenvalues);
 - Denote by P_u the projection on E^u ;

Definition (Shadow in periodic case)

$$\mathbf{v} := \sum_{i=1}^{\infty} A^{-i} \left(P_u(\underbrace{\omega^{(i)} - A \, \omega^{(i-1)}}_{\mathbf{e}_i}) \right) + P_u(\omega^{(0)}).$$

Idea: (bring back and collect future 'errors')

• $e_i := \omega^{(i)} - A \omega^{(i-1)}$ linear approximation *error* at step *i*;

- bring $P_u(e_i)$ back to initial step via A^{-i} (which contracts E^u);
- Show that the series *converges* + use *telescopic* nature to show it works.

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

Assume T is Oseledets generic; consider an effective Oseledets acceleration R;
Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every
$$\epsilon > 0$$
, $||B(n_k, n_{k+1})|| \leq C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

$$\sum_{n=1}^{m_{k}} ||B(n,n_{k})_{|E_{s}^{(n)}}|| \, ||P_{s}^{(n)}|| \, ||B(n-1,n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \text{ (Backward series)}$$

 $\sum_{n=n_k+1}^{\infty} ||B(n_k, n)_{|E_u^{(n)}||}^{-1} || \, ||P_u^{(n)}|| \, ||B(n-1, n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \quad \text{(Forward series)}$

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R} ;
- Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every
$$\epsilon > 0$$
, $||B(n_k, n_{k+1})|| \le C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

$$\sum_{n=1}^{m_{k}} ||B(n,n_{k})_{|E_{s}^{(n)}}|| \, ||P_{s}^{(n)}|| \, ||B(n-1,n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \text{ (Backward series)}$$

 $\sum_{n=n_k+1}^{\infty} ||B(n_k,n)_{|E_u^{(n)}||}^{-1} || \, ||P_u^{(n)}|| \, ||B(n-1,n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \quad \text{(Forward series)}$

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R} ;
- Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every
$$\epsilon > 0$$
, $||B(n_k, n_{k+1})|| \leq C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

 $\sum_{k=1}^{m_{s}} ||B(n, n_{k})_{|E_{s}^{(n)}}|| \, ||P_{s}^{(n)}|| \, ||B(n-1, n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \text{ (Backward series)}$

 $\sum_{n=n_k+1}^{\infty} ||B(n_k,n)_{|E_u^{(n)}||}^{-1} || \, ||P_u^{(n)}|| \, ||B(n-1,n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \quad \text{(Forward series)}$

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R} ;
- Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every $\epsilon > 0$, $||B(n_k, n_{k+1})|| \le C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

 $\sum_{k=1}^{m} ||B(n,n_k)|_{|E_s^{(n)}|}|||P_s^{(n)}|| ||B(n-1,n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \text{ (Backward series)}$

 $\sum_{n=n_k+1}^{\infty} ||B(n_k, n)_{|E_u^{(n)}||}^{-1} || \, ||P_u^{(n)}|| \, ||B(n-1, n)|| \le C, \qquad \text{for all } k \in \mathbb{N}; \quad (\text{Forward series})$

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R} ;
- Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every $\epsilon > 0$, $||B(n_k, n_{k+1})|| \le C_\epsilon e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

 $\sum_{k=1}^{\infty} ||B(n,n_k)|_{|E_s^{(n)}|}| ||P_s^{(n)}|| ||B(n-1,n)|| \leq C, \quad \text{for all } k \in \mathbb{N}; \text{ (Backward series)}$

 $\sum_{n=n_k+1}^{\infty} ||B(n_k, n)_{|E_u^{(n)}||}^{-1} || \, ||P_u^{(n)}|| \, ||B(n-1, n)|| \le C, \qquad \text{for all } k \in \mathbb{N}; \quad (\text{Forward series})$

 \sim

Condition on the rotation number $\gamma(T) = \gamma(T_0)$ (valid for full measure set of IET T_0):

- Assume T is Oseledets generic; consider an effective Oseledets acceleration \mathcal{R} ;
- Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

 $\gamma(T_0)$ satisfy the (*RDC*) if there exists a *linearly growing* sequence $(n_k)_{k \in \mathbb{N}}$ of effective Oseledets times such that:

(i) at time n_k , one has a double occurrence AA of A > 0;

(ii) for every
$$\epsilon > 0$$
, $||B(n_k, n_{k+1})|| \le C_{\epsilon} e^{\epsilon k}$;

(iii) the exists a uniform C > 0 such that for all k

$$\sum_{n=1}^{n_{\kappa}} ||B(n,n_k)_{|E_s^{(n)}}|| \, ||P_s^{(n)}|| \, ||B(n-1,n)|| \qquad \leq C, \qquad \text{for all } k \in \mathbb{N}; \text{ (Backward series)}$$

$$\sum_{n=n_k+1}^{\infty} ||B(n_k, n)_{|E_u^{(n)}|}^{-1}|| \, ||P_u^{(n)}|| \, ||B(n-1, n)|| \leq C, \quad \text{ for all } k \in \mathbb{N}; \quad \text{(Forward series)}$$

g = 1

Combinatorics

Topology

Geometry

• α irrational + $C^2 \Rightarrow$ C^0 -conjugacy [Denjoy thm]

 \blacktriangleright rotation number α :

• α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

g = 2

rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$

- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma(T_0)$, $T, T_0 C^0$ -conjugate, $B(T) = B(T_0) \Rightarrow$ C^1 -conjugate[G'-U']

g = 1

Combinatorics

Topology

Geometry

• α irrational + $C^2 \Rightarrow$ C^0 -conjugacy [Denjoy thm]

 \blacktriangleright rotation number α :

• α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

- rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$
- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. γ(T₀), T, T₀ C⁰-conjugate, B(T) = B(T₀) ⇒ C¹-conjugate[G'-U']

g = 1

Combinatorics

• rotation number α ;

Topology

Geometry

- $\begin{array}{l} \alpha \text{ irrational} + \mathcal{C}^2 \Rightarrow \\ \mathcal{C}^0\text{-conjugacy} \\ \text{[Denjoy thm]} \end{array}$
- α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

- rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$
- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma(T_0)$, $T, T_0 C^0$ -conjugate, $B(T) = B(T_0) \Rightarrow$ C^1 -conjugate[G'-U']

g = 1

Combinatorics

Topology

i opology

Geometry

• α irrational + $C^2 \Rightarrow$ C^0 -conjugacy [Denjoy thm]

 \blacktriangleright rotation number α :

• α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

- rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$
- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. γ(T₀), T, T₀ C⁰-conjugate, B(T) = B(T₀) ⇒ C¹-conjugate[G'-U']

g=1

Combinatorics

Topology

Geometry

• α irrational + $C^2 \Rightarrow$ C^0 -conjugacy [Denjoy thm]

 \blacktriangleright rotation number α :

• α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

- rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$
- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma(T_0)$, $T, T_0 C^0$ -conjugate, $B(T) = B(T_0) \Rightarrow$ C^1 -conjugate[G'-U']

g = 1

 \blacktriangleright rotation number α :

 $\blacktriangleright \alpha \text{ irrational} + \mathcal{C}^2 \Rightarrow$

 C^0 -conjugacy

[Denjoy thm]

Combinatorics

Topology

Geometrv

• α Diophantine $\Rightarrow h \in C^1$ (rigidity) [Herman, Yoccoz thm]

- rotation number $\gamma(T) = (\pi^{(n)})_{n \in \mathbb{N}}$
- Obstructions to topological conjugacy: for a.e. γ(T₀), affine T with γ(T) = γ(T₀) has wandering intervals [Marmi,Moussa,Yoccoz]
- Obstructions to differentiable conjugacy [Forni, Marmi-Moussa-Yoccoz, Ghazouani]
- Still geometric rigidity: for a.e. $\gamma(T_0)$, $T, T_0 C^0$ -conjugate, $B(T) = B(T_0) \Rightarrow$ C^1 -conjugate[G'-U']

Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz) For a.e. T, if T_0 is an affine IET such that: $\gamma(T) = \gamma(T_0)$ (same rotation number); $v := \log \rho(T)$ belongs to $E_2 \setminus E_1$ i.e. $\frac{\log ||B(0,n)v||}{n} = \theta_2 > 0$, then T has wandering intervals.

To show: the result also holds for every v s.t. $\frac{\log ||B(0,n)v||}{n} = \theta_i > 0.$

To show this, [MMY] prove that for a sequence $(n_\ell)_\ell$, the partitions \mathcal{P}_{n_ℓ} are exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t.

$$|T^{i}F_{0}| = |T^{k_{0}+i}I_{j}^{(n)}| \leq C \exp(-c|i|^{\gamma})|F_{0}|.$$

$$\begin{array}{l} \text{In particular, for every } 1 \leq j \leq d \\ \text{Leb}(\mathcal{P}_n^j) \leq C \max_{0 \leq k < q_j^{(n)}} \left| \mathcal{T}^k(l_j^{(n)}) \right| = C \max \left\{ \text{Leb}(\mathcal{T}^k(l_j^{(n)}), \quad 0 \leq k < q_j^{(n)} \right\} \end{array}$$

[*Remark*: This implies that *T* cannot be minimal.]

Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz) For a.e. T, if T_0 is an affine IET such that: $\gamma(T) = \gamma(T_0)$ (same rotation number); $v := \log \rho(T)$ belongs to $E_2 \setminus E_1$ i.e. $\frac{\log ||B(0,n)v||}{n} = \theta_2 > 0$, then T has wandering intervals.

To show: the result also holds for every v s.t. $\frac{\log ||B(0,n)v||}{n} = \theta_i > 0.$

To show this, [MMY] prove that for a sequence $(n_\ell)_\ell$, the partitions \mathcal{P}_{n_ℓ} are exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t.

$$|T^{i}F_{0}| = |T^{k_{0}+i}I_{j}^{(n)}| \leq C \exp(-c|i|^{\gamma})|F_{0}|.$$

$$\begin{array}{l} \text{In particular, for every } 1 \leq j \leq d \\ \text{Leb}(\mathcal{P}_n^j) \leq C \max_{0 \leq k < q_j^{(n)}} \left| \mathcal{T}^k(l_j^{(n)}) \right| = C \max \left\{ \text{Leb}(\mathcal{T}^k(l_j^{(n)}), \quad 0 \leq k < q_j^{(n)} \right\} \end{array}$$

[*Remark*: This implies that *T* cannot be minimal.]

Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz) For a.e. T, if T_0 is an affine IET such that: $> \gamma(T) = \gamma(T_0)$ (same rotation number); $> v := \log \rho(T)$ belongs to $E_2 \setminus E_1$ i.e. $\frac{\log ||B(0,n)v||}{n} = \theta_2 > 0$, then T has wandering intervals.

To show: the result also holds for every v s.t. $\frac{\log ||B(0,n)v||}{n} = \theta_i > 0.$

To show this, [MMY] prove that for a sequence $(n_\ell)_\ell$, the partitions \mathcal{P}_{n_ℓ} are *exponentially distorted*, i.e. for every *j* there exists a floor of the *j*-tower s.t.

$$|T^{i}F_{0}| = |T^{k_{0}+i}I_{j}^{(n)}| \leq C \exp(-c|i|^{\gamma})|F_{0}|.$$

$$\begin{array}{l} \text{In particular, for every } 1 \leq j \leq d \\ & \operatorname{Leb}(\mathcal{P}_n^j) \leq C \max_{0 \leq k < q_j^{(n)}} \left| \mathcal{T}^k(I_j^{(n)}) \right| = C \max{\{\operatorname{Leb}(\mathcal{T}^k(I_j^{(n)}), \quad 0 \leq k < q_j^{(n)}\}.} \end{array} \end{array}$$

5444

[Remark: This implies that T cannot be minimal.]

E.g.: uses of the double occurrence AA of a positive matrix A > 0.

Proposition: $\mathsf{mesh}(\mathcal{P}_{n_k}) \leq C
u^k$ for u < 1 (i.e. the mesh decay exponentially), where:

• \mathcal{P}_n denotes the *n*th dynamical partition;

• $mesh(\mathcal{P}) := is$ the lenght of largest interval;

- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - ▶ By a priori bounds, $DT^{(n)}$ is bounded above/below throughout $n_0 \le n \le n_1$;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

E.g.: uses of the double occurrence AA of a positive matrix A > 0. Proposition: mesh $(\mathcal{P}_{n_k}) \leq C\nu^k$ for $\nu < 1$ (i.e. the mesh decay exponentially), where:

• \mathcal{P}_n denotes the n^{th} dynamical partition;

▶ mesh(P) := is the lenght of largest interval;

- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - ▶ By a priori bounds, $DT^{(n)}$ is bounded above/below throughout $n_0 \le n \le n_1$;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- \mathcal{P}_n denotes the n^{th} dynamical partition;
- ▶ mesh(P) := is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - ▶ By a priori bounds, $DT^{(n)}$ is bounded above/below throughout $n_0 \le n \le n_1$;
 - Matrix A after n₁ ⇒ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- \mathcal{P}_n denotes the n^{th} dynamical partition;
- mesh(P) := is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - ▶ By a priori bounds, DT⁽ⁿ⁾ is bounded above/below throughout n₀ ≤ n ≤ n₁;
 - Matrix A after n₁ ⇒ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- \mathcal{P}_n denotes the n^{th} dynamical partition;
- $\operatorname{mesh}(\mathcal{P}) :=$ is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - By a priori bounds, DT⁽ⁿ⁾ is bounded above/below throughout n₀ ≤ n ≤ n₁;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- ▶ \mathcal{P}_n denotes the *n*th dynamical partition;
- $\operatorname{mesh}(\mathcal{P}) :=$ is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - By a priori bounds, DT⁽ⁿ⁾ is bounded above/below throughout n₀ ≤ n ≤ n₁;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- \mathcal{P}_n denotes the n^{th} dynamical partition;
- $\operatorname{mesh}(\mathcal{P}) :=$ is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - By a priori bounds, DT⁽ⁿ⁾ is bounded above/below throughout n₀ ≤ n ≤ n₁;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

- \mathcal{P}_n denotes the n^{th} dynamical partition;
- mesh(P) := is the lenght of largest interval;
- Consider times n₀ < n₁ before and in the middle of the occurrence AA:
 - By a priori bounds, DT⁽ⁿ⁾ is bounded above/below throughout n₀ ≤ n ≤ n₁;
 - Matrix A after $n_1 \Rightarrow$ base intervals are comparable;
 - Matrix A before n₁ + a priori bouds ⇒ floors above n₁ are all comparable
 - ► Distorsion bounds ⇒ ratios are preseved within each tower;
- Conclude that between n₀ and n₁ the mesh drops by a constant factor.

Extra: Effective Oseledets estimates

Given T, let \hat{T} an Oseledets generic *extension*, so that we have *splittings*:

$$\mathbb{R}^d = E_s^{(n)} \oplus E_c^{(n)} \oplus E_u^{(n)}, \qquad \forall n \in \mathbb{N}.$$

Definition (Effective Oseledets sequence)

A sequence $(k_m)_{m\in\mathbb{N}}$ is an *effective Oseledets sequence* if for s $C_1 > 0, \theta > 0, \epsilon > 0, c_2(\epsilon) > 0$ we have:

$$\begin{aligned} ||B(n_k,n)|_{E_s^{(n_k)}}||_{\infty} &\leq C_1 e^{-\theta(n-n_k)} & \text{for every } n \geq n_k, \end{aligned} \tag{EO1} \\ ||B(n,n_k)^{-1}|_{E_u^{(n_k)}}||_{\infty} &\leq C_1 e^{-\theta(n_k-n)} & \text{for every } n \leq n_k, \end{aligned} \tag{EO2} \\ |\angle (E_x^{(n)}, E_y^{(n)})| \geq c_2 \ e^{-\epsilon|n-n_k|}, & \text{for all } n \in \mathbb{Z}, \text{distinct } x, y \in \{s, c, u\}; \end{aligned} \tag{EO3} \\ \lim_{k \to +\infty} \frac{\log ||B(n_k, n_{k+1})||}{k} = 0. \end{aligned}$$