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Rigidity of foliations in genus one.

I F orientable smooth foliation of compact
S with g = 1.

I F minimal

⇒ F is topologically conjugate
to F0;

I E.g. F0 linear foliation (leaves are
trajectories of the straight line flow);

I If θ is the angle of the lines, α := cot θ is
the rotation number;

I Def: a foliation F is geometrically rigid if F topologically conjugate to F0 implies
that F is differentiably conjugate to F0 (as foliations) [C0 ⇒ C1 conjugacy].

I For a full measure set of rotation numbers (i.e. for a.e. α) foliations in g = 1 are
geometrically rigid [follows from M. Herman global theorem on circle diffeos.]
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Rigidity of foliations in genus two.

I F orientable smooth foliation of
compact S with g = 2
with only Morse type saddles;

[Morse type (simple) saddles:

leaves are level sets of f (x , y) = xy ]

I E.g. F0 linear model: leaves are
trajectories of the straight line flow on
a translation surface;

Theorem (Ghazouani-U’, 2021)

Under a full measure arithmetic condition, if F is topologically conjugate to F0, then
it is differentiably conjugate to it, i.e. F is geometrically rigid.

[Full measure arithmetic condition: for almost measured foliation (a.e. IET)]
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Poincaré maps in genus one: circle diffeomorphisms

I F orientable, smooth, minimal foliation
on S with g = 1.

I S1 ⊂ S transverse section;

The Poincaré map f : S1 → S1 is a circle
diffeomorphism;

I E.g. F0 irrational linear foliation (angle θ);

I The Poincaré first return map on I is
Rα = x + α mod 1, where α = cot θ.

I Def/recall: f and Rα are conjugate if there exists a orientation preserving, invertible
h : S1 → S1 (the conjugacy) such that

h ◦ f = Rα ◦ h.

I The rotation number α of f : S1 → S1 can be defined dynamically (α = limn→∞
f n(x)−x

n
) or

combinatorially (via continued fractions and the Euclidean algorithm).
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Circle diffeomorphisms: a mini-survey of the classical theory.

Let f : S1 → S1 be a circle diffeomorphism with rotation number α.

(1) Combinatorics:

- if the rotation number α /∈ Q, ∃ [Poincaré Thm]
a topological semi-conjugacy, i.e. a continuous,
surjective h : S1 → S1 such that h ◦ f = Rα ◦ h.

- h could fail to be a conjugacy, if there are wandering
intervals, i.e. J ⊂ S1 s.t. f n(J), n ∈ Z are all disjoint
(Denjoy counterexamples).

[Idea: (f n(J))n∈Z are obtained by blow up of an orbit.]
a Denjoy flow (courtesy of

J.Carrard)

(2) Topology: if f is differentiable, e.g. f ∈ C2 (C1+ f ′ ∈ BV ), then f is a conjugacy ⇔
f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).

(3) Geometry: What is the regularity of h? Is h ∈ C1? Is h ∈ C∞?

(Rigidity: topology determines geometry)
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a topological semi-conjugacy, i.e. a continuous,
surjective h : S1 → S1 such that h ◦ f = Rα ◦ h.

- h could fail to be a conjugacy, if there are wandering
intervals, i.e. J ⊂ S1 s.t. f n(J), n ∈ Z are all disjoint
(Denjoy counterexamples).

[Idea: (f n(J))n∈Z are obtained by blow up of an orbit.]
a Denjoy flow (courtesy of

J.Carrard)

(2) Topology: if f is differentiable, e.g. f ∈ C2 (C1+ f ′ ∈ BV ), then f is a conjugacy ⇔
f is minimal [Denjoy theorem] (Combinatorics (+smoothness) determines topology).

(3) Geometry: What is the regularity of h? Is h ∈ C1? Is h ∈ C∞?

(Rigidity: topology determines geometry)



Circle diffeomorphisms: a mini-survey of the classical theory.

Let f : S1 → S1 be a circle diffeomorphism with rotation number α.

(1) Combinatorics:

- if the rotation number α /∈ Q, ∃ [Poincaré Thm]
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Circle diffeomorphisms: local and global results.
Let f : S1 → S1 be a circle diffeomorphism with rotation number α /∈ Q.

Remark: To get rigidity, one needs to impose (full measure) arithmetic conditions on α.

(A) Local theory (f small perturbation of Rα): KAM theory

(Kolmogorov-Arnold-Moser)

- E.g. [Arnold] if α is Diophantine,

[i.e. |α− p
q
| ≥ C/q2+τ , for τ > 0, ∀ p ∈ Z, q ∈ N+]

and f is Cω-close (resp. C∞) to Rα, h is Cω (resp. C∞).

- Key step: Solve the cohomological equation

[i.e. linearized conjugacy problem: given (smooth) φ,

find (smooth) ψ s.t. ψ ◦ Rα − ψ = φ]

Rk: if α is Diophantine and
∫
φ = 0, it has a smooth solution.

(B) Global results (No closeness assumption):

- [Herman, Yoccoz] if α is Diophantine, f is C∞-conjugate
(so in particular C1-conjugate) to Rα (geometric rigidity).

[Renormalization approach: Khanin-Sinai, Khanin-Teplisnky]
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| ≥ C/q2+τ , for τ > 0, ∀ p ∈ Z, q ∈ N+]

and f is Cω-close (resp. C∞) to Rα, h is Cω (resp. C∞).

- Key step: Solve the cohomological equation

[i.e. linearized conjugacy problem: given (smooth) φ,

find (smooth) ψ s.t. ψ ◦ Rα − ψ = φ]

Rk: if α is Diophantine and
∫
φ = 0, it has a smooth solution.

(B) Global results (No closeness assumption):

- [Herman, Yoccoz] if α is Diophantine, f is C∞-conjugate
(so in particular C1-conjugate) to Rα (geometric rigidity).

[Renormalization approach: Khanin-Sinai, Khanin-Teplisnky]



Geometric rigidity in one dimensional dynamics.
Some examples of geometrically rigid dynamical systems (C0 ⇒ C1 conjugacy):

I Circle diffeomorphisms (and foliations in g = 1) with
Diophantine α [Herman, Yoccoz];

I Unimodal maps of [0, 1]:
I discovered by Feigenbaum, Coullet-Tresser in the ′70s;

I deep mathematical theory in the ′90s by Sullivan,
McMullen, Lyubich et al . . . ;

I Circle maps with singularities, i.e. with:

I critical points f ′(c) = 0 [de Faria-de Melo, Yampolsky . . . ]

I break points (f ′)+(b) 6= (f ′)−(b)
[Khanin, Khmelev, Teplinsky, Kocic, Mazzeo, . . . ]

I NEW: typical foliations on S with g = 2
(and corresponding Poincaré maps);
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Poincaré maps in higher genus: generalized interval exchange maps

GIET IET

I F orientable, smooth, minimal foliation
on S with g ≥ 2.

I I ⊂ S transverse arc (section);

I The Poincaré map T : I → I is a
Generalized Interval Exchange
Transformation (GIET); (invertible
piecewise diffeo)

I Def: T is of class Cr if each branch
Ti = T |Ii extends to Cr diffeo on Ii ;

I E.g. F0 minimal linear flow on a
translation surface;

I The Poincaré first return map T0 : I → I
is an (irreducible) (standard) Interval
Exchange Transformation (IET) .

I Def: T and T0 are conjugate iff there
exists a o. p. diffeomorphism h : I → I
(the conjugacy) such that

h ◦ T = T0 ◦ h.

[We say that T is linearizable.]
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GIETs: combinatorics and wandering intervals.

Let T : I → I be a Keane GIET
(no saddle connections).

(1) Combinatorics:

- The role of rotation number for T is played by a
combinatorial datum γ(T )
[Sequence of permutations, or path in Rauzy-Veech diagram]

- if γ(T ) = γ(T0) where T0 is a (minimal or Keane) IET,
then T is semi-conjugate to T0

[Ref: Yoccoz lecture notes];

a Denjoy-like linear flow

[E.g. by Jerome Carrard]

Affine IET

(2) Topology: T can have wandering intervals (T nJ)n∈Z and h
may fail to be a conjugacy, also if T if smooth, even affine!

- ∃ affine IETs (AIETs) with wandering intervals [n.u.e. first

example by Levitt, (families of) periodic type, u.e. AIETs by

Camelier-Gutierrez, Cobo, Bressaud-Hubert-Maass];

- most AIETs have wandering intervals [Marmi-Moussa-Yoccoz];
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Local theory and cohomological equation obstructions.

(3) Geometry: when are T and T0 smoothly
conjugated?

(A) Local theory: assume T is Cr -close
to T0 and a simple perturbation
(perturb away from discontinuties).

[Seminal works: Forni,
Marmi-Moussa-Yoccoz]

I Cohomological equation (for T0 IET)

[given ψ, find ϕ s.t. ϕ ◦ T0 − ϕ = ψ (?)]

- Forni, 1997: for a.e. T0, there are
obstructions to solve (?) (space of
solutions has finite codimension).

- Marmi-Moussa-Yoccoz, 2005: full
measure arithmetic condition on the
IET (Roth-type)

.

I Local linearization:

- Marmi-Moussa-Yoccoz, 2012: for
a.e. IET T0, the GIETs C5-close to
T0 (+simple deformations) which are
C2 conjugate have finite codim;

- Ghazouani, 2020: for T0 hyperbolic
periodic-type, the GIETs C3-close to
T0 (+simple def.) C1 conjugate to it
have codim (d − 1) + (g − 1);
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obstructions to solve (?) (space of
solutions has finite codimension).

- Marmi-Moussa-Yoccoz, 2005: full
measure arithmetic condition on the
IET (Roth-type).

I Local linearization:

- Marmi-Moussa-Yoccoz, 2012: for
a.e. IET T0, the GIETs C5-close to
T0 (+simple deformations) which are
C2 conjugate have finite codim;

- Ghazouani, 2020: for T0 hyperbolic
periodic-type, the GIETs C3-close to
T0 (+simple def.) C1 conjugate to it
have codim (d − 1) + (g − 1);
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Global theory: rigidity conjecture.

Geometric rigidity: if T and T0 are topologically conjugate (h ∈ C0),
are they differentiably conjugate (h ∈ C1)?

I Conjecture [Marmi-Moussa-Yoccoz]: if T and T0 are C0-conjugate and have the
same boundary B(T ) = B(T0), then T and T0 are C1-conjugate.

I Def: the boundary B(T ) is a C1-conjugacy invariant s.t:

- B(T ) = (B(T )i )1≤i≤κ ∈Rκ, κ number of saddles;

- for pi saddle, B(T )i is a sum of the one-sided derivatives
of f := logDT at the endpoints corresponding to pi , e.g. :

B(T )1 = f (u0)+ − f (u2)− + f (u2)+ − f (u4)− + f (u4)+

B(T )2 = f (u1)+ − f (u1)− + f (u3)+ − f (u3)+ − f (u5)−

I Remarks: BTi gives holonomy around the saddle pi ;

- T0 IET ⇒ B(T0)i = 0 ∀ i (from definition);

- B(T )i = 0 when pi is a Morse singularity (holonomy zero);
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Rigidity of GIETs in genus two.

Theorem (Ghazouani-U’, 2021)

For a full measure set of IETs T0 with d = 4, 5 intervals
(Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C3 with B(T )= B(T0) = 0 topologically
conjugate to T0, then the conjugacy is C1 (geometric rigidity).

Remarks: I proves Marmi-Moussa-Yoccoz conjecture in g = 2;

I Cor: results on foliations (Morse saddles ⇒ B(T ) = 0);

I global result (no closeness assumption);

I Optimal regularity is conjecturally C1+α (not C∞)

I general case: most results already hold for any d ≥ 2;

Proof: Tools from Teichüller dynamics, and Tools from one dimensional dynamics
I Rauzy-Veech

induction;

I KZ-cocycle;

I Oseledets thm;

I Lyapunov exponents
(λg > 0);

I dynamical
partitions;

I non linearity;

I Schwartzian
derivative;

I Distorsion bounds;
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(Poincaré sections of g = 2, π irreducible),

If T is a GIET of class C3 with B(T )= B(T0) = 0 topologically
conjugate to T0, then the conjugacy is C1 (geometric rigidity).

Remarks: I proves Marmi-Moussa-Yoccoz conjecture in g = 2;

I Cor: results on foliations (Morse saddles ⇒ B(T ) = 0);

I global result (no closeness assumption);

I Optimal regularity is conjecturally C1+α (not C∞)

I general case: most results already hold for any d ≥ 2;

Proof: Tools from Teichüller dynamics, and Tools from one dimensional dynamics
I Rauzy-Veech

induction;

I KZ-cocycle;

I Oseledets thm;

I Lyapunov exponents
(λg > 0);

I dynamical
partitions;

I non linearity;

I Schwartzian
derivative;

I Distorsion bounds;



Renormalization: Rauzy-Veech induction for GIET
I Idea: induce on shorter sections;

I Let T (0) := T GIET, I (0) := I ;

I Define nested I (n) ⊂ I (n−1), n ∈ N, s.t.

I T (n) is and induced d-GIET.

I The algorithm produces:

I the rotation number γ(T ), which is
the sequence (π(n))n∈N;
[where π(n) is the permutation of T (n)]

I a sequence of dynamical partitions;
[into floors of Rohlin towers]

I a sequence of (products of) matrices
B(0, n) (RV-cocycle)

[

where B(0, n)i j := number of pieces of
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Scaling invariants
Use an acceleration R of RV. Let Rn(T ) be T (n) normalized.

Key quantities:
I average slope

ρ(n) =

(
|T (n)(I

(n)
1 )|

|I (n)1 |
, . . . ,

|T (n)(I
(n)
d )|

|I (n)d |

)

I log-slope vector: ω(n):= log ρ(n).

[ω(n) := (log ρ
(n)
1 , . . . , log ρ

(n)
d )]

Important remarks:

I if T is an AIET,
ω(n) = B(0, n)ω(0);

I for T GIET, linear
approximation error:

|ω(n+1)−ω(n)| ≤ NT ||B(n, n+1)||

Theorem (Dynamical dichotomy, Ghazouani-U’, 2021)

For any d ≥ 2, for a full measure set of rotation numbers γ(T ), ∃ (nk)k∈N s. t.

(1) either we have recurrence, i.e. ∃C > 0 s.t. ||ω(nk )|| ≤ C ∀k
(and (Rn(T ))n∈N is recurrent to a C1-bounded set K);

(2) or (Rn(T ))n∈N diverges and we have affine shadowing, i.e. there exists v (the
shadow) s.t. ||ω(n) − B(0, n)v || ≤ Cε||B(0, n)v ||ε, ∀ε > 0.
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Scaling invariants
Use an acceleration R of RV. Let Rn(T ) be T (n) normalized.

Key quantities:
I average slope

ρ(n) =

(
|T (n)(I

(n)
1 )|

|I (n)1 |
, . . . ,

|T (n)(I
(n)
d )|

|I (n)d |

)

I log-slope vector: ω(n):= log ρ(n).

[ω(n) := (log ρ
(n)
1 , . . . , log ρ

(n)
d )]

Important remarks:

I if T is an AIET,
ω(n) = B(0, n)ω(0);

I for T GIET, linear
approximation error:

|ω(n+1)−ω(n)| ≤ NT ||B(n, n+1)||

Theorem (Dynamical dichotomy, Ghazouani-U’, 2021)

For any d ≥ 2, for a full measure set of rotation numbers γ(T ), ∃ (nk)k∈N s. t.

(1) either we have recurrence, i.e. ∃C > 0 s.t. ||ω(nk )|| ≤ C ∀k
(and (Rn(T ))n∈N is recurrent to a C1-bounded set K);

(2) or (Rn(T ))n∈N diverges and we have affine shadowing, i.e. there exists v (the
shadow) s.t. ||ω(n) − B(0, n)v || ≤ Cε||B(0, n)v ||ε, ∀ε > 0.



Strategy to prove rigidity (C0 ⇒ C1)
Assume that T is such that the dynamical dichotomy holds. Consider two cases:

(1) Recurrent case: [at special times, ||ω(nk )|| ≤ C ] ⇒
I 1

ν ≤ ρ
(nk ) ≤ ν (a priori bounds);

I dC1(Rn(T ), IETs)→ 0 exponentially;

(exponential convergence of renormalization)

I T is C1-conjugate to T0;

I follows Herman’s
strategy;

I one-dimensional
dynamics techniques;

I Remark: valid for any
d ≥ 2;

(2) Affine shadowing case: [∃ v shadow s.t. ω(n) ∼ B(0, n)v ]

(a) if the shadowing AIET has wandering intervals (with
exponentially distorted towers), then also the GIET T
has wandering intervals;

(b) Exploit Marmi-Moussa-Yoccoz (on AIETs with
wandering intervals) to get (a) in g = 2;

I Remark: only this
restricts result to
g = 2

[(MMY requires v to

project on λ2; this is

always true in g = 2)]

Case (2) cannot happen when T and T0 are topologically conjugated (no wandering
intervals). So we are in Case (1)! �
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Convergence of renormalization in the recurrent case

Assume to be in the recurrent case [at special times, ||ω(nk )|| ≤ C ]

1. Show a priori bounds at (nk)k [i.e. 1
C
≤ DT (n) ≤ C ];

I Consider separately shape and profile coordinates:

I the shape is the affine IET with log-slope ωn;
I profiles ϕn

i are T
(n)
i rescaled to be in Diff +[0, 1];

I Classical distorsion bounds control |ϕn
i (x)/ϕn

i (y)| ∀x , y , ∀n;

I The assumption on ω(nk ) controls the shape at nk ;

2. Convegence to Moebius IET: no B assumption!
I Tool: Schwarzian derivative S(T ) := D3T

DT
− 3

2

(
D2T
DT

)2
;

I Show: mesh of dynamical partition goes to zero;

3. Convergence to AIET: requires
∑κ

s=1 B(T )s = 0 ⇔
∫
ηT = 0;

I Tool: non-linearity ηT (x) := D log DT (x) = D2T
DT

;
I Show: that the total non-linearity

∫
|ηT (x)|dx goes to 0;

4. Convergence to IETs: requires B(T ) = 0 assumption;
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Divergent case: building the shadow
[Assume we are in Case 2. Goal: build the shadow v .]

I Example: periodic type case, i.e. B(0, np) = An, for any n, where A > 0;

I Assume A has g exponents λi > 1;

I Split Rd = E s ⊕ E c ⊕ E u (positive/neutral/negative eigenvalues);

I Denote by Pu the projection on E u;

Definition (Shadow in periodic case)

v :=
∞∑
i=1

A−i (Pu(ω(i) − Aω(i−1)︸ ︷︷ ︸
ei

)) + Pu(ω(0)).

I Idea: (bring back and collect future ’errors’)

I ei := ω(i) − Aω(i−1) linear approximation error at step i ;
I bring Pu(ei ) back to initial step via A−i (which contracts E u);
I Show that the series converges + use telescopic nature to show it works.

I General case: requires arithmetic condition. Exploits hyperbolicity of KZ cocycle.
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The arithmetic condition

Condition on the rotation number γ(T ) = γ(T0) (valid for full measure set of IET T0):
I Assume T is Oseledets generic; consider an effective Oseledets acceleration R;
I Let B(0, n) be the matrices of the acceleration.

Definition (Regular Diophantine condition, or RDC)

γ(T0) satisfy the (RDC ) if there exists a linearly growing sequence (nk)k∈N of effective
Oseledets times such that:

(i) at time nk , one has a double occurrence AA of A > 0;

(ii) for every ε > 0, ||B(nk , nk+1)|| ≤ Cεe
εk ;

(iii) the exists a uniform C > 0 such that for all k
nk∑
n=1

||B(n, nk)|E (n)
s
|| ||P(n)

s || ||B(n − 1, n)|| ≤ C , for all k ∈ N; (Backward series)

∞∑
n=nk+1

||B(nk , n)−1
|E (n)

u

|| ||P(n)
u || ||B(n − 1, n)|| ≤ C , for all k ∈ N; (Forward series)
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An overview to conclude
g = 1 g = 2

Combinatorics I rotation number α;
I rotation number

γ(T ) = (π(n))n∈N

Topology
I α irrational + C2 ⇒
C0-conjugacy
[Denjoy thm]

I Obstructions to topological conjugacy: for
a.e. γ(T0), affine T with γ(T ) = γ(T0) has
wandering intervals [Marmi,Moussa,Yoccoz]

Geometry
I α Diophantine
⇒ h ∈ C1 (rigidity)
[Herman,Yoccoz thm]

I Obstructions to differentiable conjugacy
[Forni, Marmi-Moussa-Yoccoz, Ghazouani]

I Still geometric rigidity: for a.e. γ(T0),
T ,T0 C0-conjugate, B(T ) = B(T0) ⇒
C1-conjugate[G’-U’]
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Extra: Wandering intervals and distorted towers

Theorem (Marmi, Moussa, Yoccoz)

For a.e. T , if T0 is an affine IET such that:

I γ(T ) = γ(T0) (same rotation number);

I v := log ρ(T ) belongs to E2\E1 i.e. log ||B(0,n)v ||
n = θ2 > 0,

then T has wandering intervals.

To show: the result also holds for every v s.t. log ||B(0,n)v ||
n = θi > 0.

To show this, [MMY ] prove that for a sequence (n`)`, the partitions Pn` are
exponentially distorted, i.e. for every j there exists a floor of the j-tower s.t.

|T iF0| = |T k0+i I
(n)
j | ≤ C exp(−c|i |γ) |F0|.

In particular, for every 1 ≤ j ≤ d

Leb(P j
n) ≤ C max

0≤k<q
(n)
j

∣∣∣T k(I
(n)
j )
∣∣∣ = C max {Leb(T k(I

(n)
j ), 0 ≤ k < q

(n)
j }.

[Remark: This implies that T cannot be minimal.]
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Extra: exponential decay of the dynamical partitions mesh
E.g.: uses of the double occurrence AA of a positive matrix A > 0.
Proposition: mesh(Pnk ) ≤ Cνk for ν < 1 (i.e. the mesh decay exponentially), where:

I Pn denotes the nth dynamical partition;

I mesh(P) := is the lenght of largest interval;

I Consider times n0 < n1 before and in the
middle of the occurrence AA:
I By a priori bounds, DT (n) is bounded

above/below throughout n0 ≤ n ≤ n1;
I Matrix A after n1 ⇒

base intervals are comparable;
I Matrix A before n1 + a priori bouds ⇒

floors above n1 are all comparable
I Distorsion bounds ⇒

ratios are preseved within each tower;

I Conclude that between n0 and n1 the mesh
drops by a constant factor.
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Extra: Effective Oseledets estimates

Given T , let T̂ an Oseledets generic extension, so that we have splittings:

Rd = E
(n)
s ⊕ E

(n)
c ⊕ E

(n)
u , ∀n ∈ N.

Definition (Effective Oseledets sequence)

A sequence (km)m∈N is an effective Oseledets sequence if for s
C1 > 0, θ > 0, ε > 0, c2(ε) > 0 we have:

||B(nk , n)|
E

(nk )
s
||∞ ≤ C1e

−θ(n−nk ) for every n ≥ nk , (EO1)

||B(n, nk)−1|
E

(nk )
u
||∞ ≤ C1e

−θ(nk−n) for every n ≤ nk , (EO2)

|∠(E
(n)
x ,E

(n)
y )| ≥ c2 e−ε|n−nk |, for all n ∈ Z,distinct x , y ∈ {s, c, u}; (EO3)

lim
k→+∞

log ||B(nk , nk+1)||
k

= 0. (EO4)


