Pointwise normality and Fourier decay for self-conformal measures

Amir Algom

Penn State

Midwest dynamics and group actions seminar, 24.5.2021

通 と く ヨ と く ヨ と

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 の Q @

Let λ be the Lebesgue mea. on \mathbb{R} .

イロト イボト イヨト イヨト

э

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

 $\ \ \, {\rm For \ integer} \ p\geq 2,$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is p-normal if $\{T_p^n(x)\}_n$ equidistributes:

伺 と く ヨ と く ヨ と

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

伺 と く ヨ と く ヨ と 二 ヨ

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal

直 ト イヨ ト イヨト

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

- For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$
- 2 x is absolutely normal if it is p-normal for all $p \ge 2$.

直 ト イヨ ト イヨト

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal if it is p-normal for all $p \ge 2$.

Borel's normal number Theorem (1909)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal if it is p-normal for all $p \ge 2$.

Borel's normal number Theorem (1909)

 λ -a.e. x is abs. normal.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal if it is p-normal for all $p \ge 2$.

Borel's normal number Theorem (1909)

 λ -a.e. x is abs. normal.

Weyl's criterion (1916)

x is p-normal iff

< ロ > < 同 > < 回 > < 回 >

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal if it is p-normal for all $p \ge 2$.

Borel's normal number Theorem (1909)

 λ -a.e. x is abs. normal.

Weyl's criterion (1916)

x is p-normal iff for every integer $q \neq 0$,

(人間) とうり くうり

Let λ be the Lebesgue mea. on \mathbb{R} . For integer $p \geq 2$ let $T_p(x) = p \cdot x \mod 1$. Def (Borel) Let $x \in \mathbb{R}$.

• For integer $p \ge 2$, x is <u>p-normal</u> if $\{T_p^n(x)\}_n$ equidistributes: $\lim_N \frac{1}{N} \sum_{n=1}^N \delta_{T_p^n(x)} = \lambda_{[0,1]}$

2 x is absolutely normal if it is p-normal for all $p \ge 2$.

Borel's normal number Theorem (1909)

 λ -a.e. x is abs. normal.

Weyl's criterion (1916)

x is p-normal iff for every integer
$$q \neq 0$$
,

$$\lim_{n \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(2\pi i q p^n x) = 0$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Q Let ν be a Borel prob. mea. on \mathbb{R} .

イロト イポト イヨト イヨト 三日

 $\underline{\mathbf{Q}}$ Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal?

イロト イポト イヨト イヨト 三日

 $\underline{\mathbf{Q}}$ Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? p-normal?

イロト イポト イヨト イヨト 三日

<u>Q</u> Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? *p*-normal? Exp Let C = Middle $\frac{1}{3}$ Cantor set.

伺 ト イヨト イヨト

<u>Q</u> Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? p-normal? Exp Let C = Middle $\frac{1}{3}$ Cantor set. No $x \in C$ is 3-normal:

伺下 イヨト イヨト

<u>Q</u> Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? p-normal? Exp Let C = Middle $\frac{1}{3}$ Cantor set. No $x \in C$ is 3-normal: If $\{T_3^n(x)\}_n$ equi. for ν

 $\underline{\mathbf{Q}}$ Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? p-normal? Exp Let C = Middle $\frac{1}{3}$ Cantor set. No $x \in C$ is 3-normal: If $\{T_3^n(x)\}_n$ equi. for ν $\Rightarrow \operatorname{supp}(\nu) \subseteq C$ since $T_3(C) = C$

<u>Q</u> Let ν be a Borel prob. mea. on \mathbb{R} . When is ν -a.e. x abs. normal? p-normal? <u>Exp</u> Let C = Middle $\frac{1}{3}$ Cantor set. No $x \in C$ is 3-normal: If $\{T_3^n(x)\}_n$ equi. for ν \Rightarrow supp $(\nu) \subseteq C$ since $T_3(C) = C$ $\Rightarrow \nu \perp \lambda$.

 $\begin{array}{l} \underline{\mathsf{Q}} \mbox{ Let } \nu \mbox{ be a Borel prob. mea. on } \mathbb{R}. \mbox{ When is } \nu\mbox{-a.e. } x \mbox{ abs. normal? } p\mbox{-normal? } p\mbox{-normal. } p\mbox{-normal? } p\mbox{-normal. } p\mbox{-norm$

Theorem (Cassels, Schmidt 1960)

通 と く ヨ と く ヨ と

Theorem (Cassels, Schmidt 1960)

Let $\mu \sim \sum_{n=1}^{\infty} X_n 3^{-n}$, X_n IID, X_1 unbiased on $\{0, 2\}$.

通 ト イ ヨ ト イ ヨ ト

Theorem (Cassels, Schmidt 1960)

Let $\mu \sim \sum_{n=1}^{\infty} X_n 3^{-n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. $\Rightarrow \mu$ -a.e. x is p-normal for $p \not\sim 3$.

伺下 イヨト イヨト

Theorem (Cassels, Schmidt 1960)

Let $\mu \sim \sum_{n=1}^{\infty} X_n 3^{-n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. $\Rightarrow \mu$ -a.e. x is p-normal for $p \not\sim 3$.

<u>Method</u> Est. fast decay of $L^2(\mu)$ norms of trig. poly. as in Weyl's cri.

伺 ト イ ヨ ト イ ヨ ト

The Fourier transform

Amir Algom Pointwise normality and Fourier decay for self-conformal measure

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

<u>Definition</u> Let ν be a Borel prob. mea. on \mathbb{R} .

< 回 > < 回 > < 回 >

<u>Definition</u> Let ν be a Borel prob. mea. on \mathbb{R} . For $q \in \mathbb{R}$ the Fourier transform of ν at q is

$$\mathcal{F}_q(\nu) := \int \exp(2\pi i q x) d\nu(x)$$

<u>Definition</u> Let ν be a Borel prob. mea. on \mathbb{R} . For $q \in \mathbb{R}$ the Fourier transform of ν at q is

$$\mathcal{F}_q(\nu) := \int \exp(2\pi i q x) d\nu(x)$$

Definition

We call ν a Rajchman measure if

$$\lim_{|q|\to\infty}\mathcal{F}_q(\nu)=0$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Simple examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

$\begin{tabular}{ll} \hline \end{tabular} {\bf 0} & {\rm Riemann-Lebesgue} \ {\rm Lemma} \Rightarrow {\rm if} \ \nu \ll \lambda \ {\rm then} \ \end{tabular}$

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.
$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

2 Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.

★ ∃ → ★

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

- **2** Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.
- Let $\nu \sim \sum_{n=1}^{\infty} \frac{X_n}{3^n}$, X_n IID, X_1 unbiased on $\{0, 2\}$.

通 ト イ ヨ ト イ ヨ ト

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

- **2** Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.
- **3** Let $\nu \sim \sum_{n=1}^{\infty} \frac{X_n}{3^n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. Then ν is continuous and singular.

• • = • • = •

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

- **2** Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.
- **3** Let $\nu \sim \sum_{n=1}^{\infty} \frac{X_n}{3^n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. Then ν is continuous and singular. For every $m \in \mathbb{Z}$,

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

- **2** Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.
- **3** Let $\nu \sim \sum_{n=1}^{\infty} \frac{X_n}{3^n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. Then ν is continuous and singular. For every $m \in \mathbb{Z}$, $\mathcal{F}_m(\nu) = \mathcal{F}_{3m}(\nu)$.

$$\lim_{q|\to\infty}\mathcal{F}_q(\nu)=0$$

So, if $\nu \ll \lambda$ then ν is Rajchman.

- **2** Wiener's Lemma \Rightarrow if ν has atom then not Rajchman.
- Let $\nu \sim \sum_{n=1}^{\infty} \frac{X_n}{3^n}$, X_n IID, X_1 unbiased on $\{0, 2\}$. Then ν is continuous and singular. For every $m \in \mathbb{Z}$, $\mathcal{F}_m(\nu) = \mathcal{F}_{3m}(\nu)$. So ν not Rajchman.

Theorem (Davenport-Erdős-LeVeque, 1963)

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$

.

Theorem (Davenport-Erdős-LeVeque, 1963)

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

.

Theorem (Davenport-Erdős-LeVeque, 1963)

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

However Such bounds are hard to obtain!

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u>

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0, 1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased,

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0, 1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\}$ = family of Bernoulli Convolutions.

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0, 1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\}$ = family of Bernoulli Convolutions. <u>Q</u> For which r is $\nu_r \ll \lambda$?

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0,1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\} =$ family of Bernoulli Convolutions. <u>Q</u> For which r is $\nu_r \ll \lambda$? **Easy cases** $r < \frac{1}{2} \Rightarrow \nu_r \perp \lambda$,

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0,1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\} =$ family of Bernoulli Convolutions. <u>Q</u> For which r is $\nu_r \ll \lambda$? **Easy cases** $r < \frac{1}{2} \Rightarrow \nu_r \perp \lambda$, $\nu_{\frac{1}{2}} \sim \lambda_{[-2,2]}$

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0, 1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\}$ = family of Bernoulli Convolutions. <u>Q</u> For which r is $\nu_r \ll \lambda$? **Easy cases** $r < \frac{1}{2} \Rightarrow \nu_r \perp \lambda$, $\nu_{\frac{1}{2}} \sim \lambda_{[-2,2]}$ Thm (Erdős, 1939) r^{-1} is Pisot $\Rightarrow \nu_r$ not Rajchman

If
$$\exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{(\log \log(|q|))^{\beta+1}}\right)$
 $\Rightarrow \nu$ a.e. x is abs. normal.

<u>However</u> Such bounds are hard to obtain! <u>Bernoulli convolutions</u> For $r \in (0,1)$ let $\nu_r \sim \sum \pm r^n$, \pm IID unbiased, $\{\nu_r\}$ = family of Bernoulli Convolutions. <u>Q</u> For which r is $\nu_r \ll \lambda$? **Easy cases** $r < \frac{1}{2} \Rightarrow \nu_r \perp \lambda$, $\nu_{\frac{1}{2}} \sim \lambda_{[-2,2]}$ Thm (Erdős, 1939) r^{-1} is Pisot $\Rightarrow \nu_r$ not Rajchman $\Rightarrow \nu_r \perp \lambda$.

Let $\{f_1, ..., f_n\}$, f_i = strict contraction of [-1, 1] (an IFS),

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t.

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists ! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists ! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.
 $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$, where $f_i \nu$ = push-for. of ν via f_i .

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists ! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.
 $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$, where $f_i \nu$ = push-for. of ν via f_i .
1 If every f_i is affine, K = self similar set, $\nu_{\mathbf{p}}$ = self similar measure.

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists ! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.
 $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$, where $f_i \nu$ = push-for. of ν via f_i .
If every f_i is affine, K = self similar set, $\nu_{\mathbf{p}}$ = self similar measure.
 $\underline{\text{Exp: Fix } r \in (0, 1) \text{ consider } \{r \cdot x - 1, r \cdot x + 1\}$ with

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists !K \subseteq [-1, 1], K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists !\nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.
 $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$, where $f_i \nu$ = push-for. of ν via f_i .
If every f_i is affine, K = self similar set, $\nu_{\mathbf{p}}$ = self similar measure.
 $\underline{\text{Exp: Fix } r \in (0, 1) \text{ consider } \{r \cdot x - 1, r \cdot x + 1\}$ with $\overline{\mathbf{p}} = (\frac{1}{2}, \frac{1}{2}) \Rightarrow \nu_{\mathbf{p}}$ = Ber. Conv. with para. r .

Let
$$\{f_1, ..., f_n\}$$
, f_i = strict contraction of $[-1, 1]$ (an IFS),
 $\mathbf{p} = (p_1, ..., p_n)$ prob. vector, $p_i > 0$.
 $\exists ! K \subseteq [-1, 1]$, $K \neq \emptyset$ compact s.t. $K = \bigcup_{i=1}^n f_i(K)$
 $\exists ! \nu_{\mathbf{p}} \in \text{Prob. mea.}(K)$ s.t.
 $\nu_{\mathbf{p}} = \sum_{i=1}^n p_i \cdot f_i \nu_{\mathbf{p}}$, where $f_i \nu$ = push-for. of ν via f_i .
If every f_i is affine, K = self similar set, $\nu_{\mathbf{p}}$ = self similar measure.
 $\underline{\text{Exp: Fix } r \in (0, 1) \text{ consider } \{r \cdot x - 1, r \cdot x + 1\}$ with
 $\overline{\mathbf{p}} = (\frac{1}{2}, \frac{1}{2}) \Rightarrow \nu_{\mathbf{p}}$ = Ber. Conv. with para. r .

2 If every f_i is diff., K = self conformal set, $\nu_p =$ self conformal measure.

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Hochman-Shmerkin approach to normality: Scaling scenery

 $\mathrm{supp}(\mu)\subseteq [-1,1].$

 $\operatorname{supp}(\mu) \subseteq [-1,1]$. Let $x \in \operatorname{supp}(\mu)$.

 $\operatorname{supp}(\mu) \subseteq [-1,1]$. Let $x \in \operatorname{supp}(\mu)$. Let $t \ge 0$.

$$\operatorname{supp}(\mu) \subseteq [-1,1]$$
. Let $x \in \operatorname{supp}(\mu)$. Let $t \ge 0$.
 $\mu_{x,t} := \mu_{B(x,e^{-t})}$,

• • = • • = •

 $\operatorname{supp}(\mu) \subseteq [-1, 1]$. Let $x \in \operatorname{supp}(\mu)$. Let $t \ge 0$. $\mu_{x,t} := \mu_{B(x,e^{-t})}$, translated by x,

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\operatorname{supp}(\mu) \subseteq [-1,1]$. Let $x \in \operatorname{supp}(\mu)$. Let $t \ge 0$. $\mu_{x,t} := \mu_{B(x,e^{-t})}$, translated by x, scaled by e^t .

```
\begin{split} & \mathsf{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \mathsf{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \mathsf{supp}(\mu_{x,t}) \subseteq [-1,1]. \end{split}
```

```
\operatorname{supp}(\mu) \subseteq [-1, 1]. Let x \in \operatorname{supp}(\mu). Let t \ge 0.
\mu_{x,t} := \mu_{B(x,e^{-t})}, translated by x, scaled by e^t.
\Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1, 1].
\mu generates a dist. P if \mu-a.e. x,
```
$\begin{aligned} \sup p(\mu) &\subseteq [-1, 1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ \mu_{x,t} &:= \mu_{B(x, e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ &\Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1, 1]. \\ \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \end{aligned}$

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \operatorname{Exp} \text{ Furstenberg (1967/2006),} \end{split}$$

伺 ト イヨ ト イヨト

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \operatorname{Exp Furstenberg} (1967/2006), \text{ Hochman (2009)}, \end{split}$$

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \underline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \underline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

• Erg.
$$T_q$$
-inv. mea. $h_{\nu}(T_q) > 0$.

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \overline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

 $\label{eq:constraint} \blacksquare \mbox{ Erg. } T_q\mbox{-inv. mea. } h_\nu(T_q) > 0. \mbox{ Use: Rokhlin extension.}$

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \overline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

- $\label{eq:constraint} \blacksquare \mbox{ Erg. } T_q\mbox{-inv. mea. } h_\nu(T_q) > 0. \mbox{ Use: Rokhlin extension.}$
- 2 Regular self-conformal mea.

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \overline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

- $\label{eq:constraint} \blacksquare \mbox{ Erg. } T_q\mbox{-inv. mea. } h_\nu(T_q) > 0. \mbox{ Use: Rokhlin extension.}$
- **2** Regular self-conformal mea. Regular: $K = \bigcup_{i=1}^{n} f_i(K)$ is disjoint.

$$\begin{split} & \operatorname{supp}(\mu) \subseteq [-1,1]. \text{ Let } x \in \operatorname{supp}(\mu). \text{ Let } t \geq 0. \\ & \mu_{x,t} := \mu_{B(x,e^{-t})}, \text{ translated by } x, \text{ scaled by } e^t. \\ & \Rightarrow 0 \in \operatorname{supp}(\mu_{x,t}) \subseteq [-1,1]. \\ & \mu \text{ generates a dist. } P \text{ if } \mu\text{-a.e. } x, \frac{1}{T} \int_0^T \delta_{\mu_{x,t}} dt \to P. \\ & \overline{\operatorname{Exp}} \text{ Furstenberg (1967/2006), Hochman (2009),} \\ & \overline{\operatorname{Hochman-Shmerkin (2011)}} \end{split}$$

- $\label{eq:constraint} \blacksquare \mbox{ Erg. } T_q\mbox{-inv. mea. } h_\nu(T_q) > 0. \mbox{ Use: Rokhlin extension.}$
- **2** Regular self-conformal mea. Regular: $K = \bigcup_{i=1}^{n} f_i(K)$ is disjoint.

Let $p \not\sim q$,

э

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or

伺 ト イヨ ト イヨ ト

3

Let $p \not \sim q$, ν Erg. $T_q\mbox{-inv.}$ with $h_\nu(T_q) > 0,$ or reg. self-conformal +

通 と く ヨ と く ヨ と

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$.

伺 と く ヨ と く ヨ と 二 ヨ

Let
$$p \not\sim q$$
, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$.
 $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

Martingale argument a.s.
$$\frac{1}{N}\sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n\log p}\right) = 0$$

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

Martingale argument a.s.
$$\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n \log p} \right) = 0$$
 Use:
Martingale differences Theorem.

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

Martingale argument a.s.
$$\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n \log p} \right) = 0$$
 Use:
Martingale differences Theorem.
Integral representation If $\frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu$ Then:

(b) a (B) b (a) (B) b

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n \log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}} \text{ If } \frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu \text{ Then:} \\ \overline{\mu = \int \rho \, dP(\rho),} \end{array}$

合 ア・ チョ ア・ チョン

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n \log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}} \text{ If } \frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu \text{ Then:} \\ \overline{\mu} = \int \rho \, dP(\rho), \\ \Rightarrow \end{array}$

通 ト イ ヨ ト イ ヨ ト

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n\log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}} \\ \underline{\mu = \int \rho \, dP(\rho),} \\ \Rightarrow \mu = \lambda_{[0,1]}. \end{array}$

通 ト イ ヨ ト イ ヨ ト

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n\log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}} \text{ If } \frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu \text{ Then:} \\ \overline{\mu} = \int \rho \, dP(\rho), \\ \Rightarrow \mu = \lambda_{[0,1]}. \\ \overline{\text{Major advantage}} \end{array}$

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n\log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}} \text{ If } \frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu \text{ Then:} \\ \mu = \int \rho \, dP(\rho), \\ \Rightarrow \mu = \lambda_{[0,1]}. \\ \overline{\text{Major advantage Avoids }} \mathcal{F}_q(\nu). \end{array}$

通 ト イ ヨ ト イ ヨ ト

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_{p}^{n}(x)} - \mu_{x,n \log p} \right) = 0 \text{ Use:} \\ \overline{\text{Martingale differences Theorem.}} \\ \underline{\text{Integral representation}}_{\mu = \int \rho \, dP(\rho), \\ \Rightarrow \mu = \lambda_{[0,1]}. \\ \underline{\text{Major advantage}} \text{ Avoids } \mathcal{F}_{q}(\nu). \\ \underline{\text{Limitation}} \end{array}$

通 ト イ ヨ ト イ ヨ ト

Let $p \not\sim q$, ν Erg. T_q -inv. with $h_{\nu}(T_q) > 0$, or reg. self-conformal $+ \exists i, f_i(x) = x, f'_i(x) \not\sim p$. $\Rightarrow \frac{1}{N} \sum_{0}^{N} \delta_{\mu_{x,n \log p}} \rightarrow P$

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin (2015), Hochman (2021)

 ν a.e. x is p-normal.

 $\begin{array}{l} \underline{\text{Martingale argument}} \text{ a.s. } \frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x)} - \mu_{x,n\log p} \right) = 0 \text{ Use:} \\ \hline \text{Martingale differences Theorem.} \\ \underline{\text{Integral representation}} \text{ If } \frac{1}{N_k} \sum_{n=0}^{N_k} \delta_{T_p^n(x)} \rightarrow \mu \text{ Then:} \\ \hline \mu = \int \rho \, dP(\rho), \\ \Rightarrow \mu = \lambda_{[0,1]}. \\ \underline{\text{Major advantage Avoids }} \mathcal{F}_q(\nu). \\ \underline{\text{Limitation Need }} K = \bigcup_{i=1}^n f_i(K) \text{ disjoint.} \end{array}$

通 と く ヨ と く ヨ と

Our setting

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Our setting

$$\Phi = \{f_1, ..., f_n\} C^{1+\gamma}$$
 IFS.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

 $\Phi = \{f_1, ..., f_n\} \ C^{1+\gamma} \ \mathsf{IFS}.$ $\Phi \text{ is uniformly contracting:}$

- (同) (回) (回) (回) (回)

$$\begin{split} \Phi &= \{f_1,...,f_n\} \ C^{1+\gamma} \ \mathsf{IFS}. \\ \Phi \ \text{is uniformly contracting:} \ \max_{f \in \Phi} ||f'||_\infty < 1 \end{split}$$

▲御▶ ▲臣▶ ★臣▶ ― 臣

Semi-group $\{f_1, ..., f_n\}^* =$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国

Semi-group $\{f_1, ..., f_n\}^* = S$ -grp gen. by Φ via composition.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\frac{\text{Semi-group}}{\text{The derivative cocycle}} \{f_1, ..., f_n\}^* = \text{S-grp gen. by } \Phi \text{ via composition.}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\begin{array}{l} \underline{\mathsf{Semi-group}} \; \{f_1,...,f_n\}^* = \mathsf{S-grp} \; \mathsf{gen.} \; \; \mathsf{by} \; \Phi \; \mathsf{via} \; \mathsf{composition}. \\ \hline \mathsf{The} \; \mathsf{derivative} \; \mathsf{cocycle} \; c : \{f_1,...,f_n\}^* \times [0,1] \to \mathbb{R} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $\underbrace{ \underbrace{ \mathsf{Semi-group}}_{\text{The derivative cocycle}} \{f_1,...,f_n\}^* = \mathsf{S-grp gen. by } \Phi \text{ via composition.} }_{c(g,x) = -\log |g'(x)|} c: \{f_1,...,f_n\}^* \times [0,1] \to \mathbb{R}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $\underbrace{ \underbrace{ \mathsf{Semi-group}}_{\text{The derivative cocycle}} \{f_1,...,f_n\}^* = \mathsf{S-grp gen. by } \Phi \text{ via composition.} }_{c(g,x) = -\log |g'(x)|} \\ c(g,x) = -\log |g'(x)| \\ c(g,x) = -\log |g'(x$

Arithmetic assumption $\forall t, r \in \mathbb{R}$,

伺 ト イ ヨ ト イ ヨ ト ニ ヨ
$$\begin{split} \Phi &= \{f_1, ..., f_n\} \ C^{1+\gamma} \ \mathsf{IFS}. \\ \Phi \ \text{is uniformly contracting: } \max_{f \in \Phi} ||f'||_{\infty} < 1 \\ \nu &= \sum_i p_i f_i \nu \ \text{non-atomic self conformal mea.} \end{split}$$

 $\underbrace{ \underbrace{ \mathsf{Semi-group}}_{\text{The derivative cocycle}} \{f_1,...,f_n\}^* = \mathsf{S-grp gen. by } \Phi \text{ via composition.} }_{c(g,x) = -\log |g'(x)|} \\ c(g,x) = -\log |g'(x)| \\ c(g,x) = -\log |g'(x$

 $\frac{\text{Arithmetic assumption } \forall t, r \in \mathbb{R},}{\left\{ \log |f'(y)| : \text{ where } f(y) = y, \quad f \in \Phi \right\}}$

伺 とう きょう とう うう

$$\begin{split} \Phi &= \{f_1, ..., f_n\} \ C^{1+\gamma} \ \mathsf{IFS}. \\ \Phi \ \text{is uniformly contracting: } \max_{f \in \Phi} ||f'||_{\infty} < 1 \\ \nu &= \sum_i p_i f_i \nu \ \text{non-atomic self conformal mea.} \end{split}$$

 $\underbrace{ \underbrace{ \mathsf{Semi-group}}_{\text{The derivative cocycle}} \{f_1,...,f_n\}^* = \mathsf{S-grp gen. by } \Phi \text{ via composition.} }_{c(g,x) = -\log |g'(x)|} \\ c(g,x) = -\log |g'(x)| \\ c(g,x) = -\log |g'(x$

 $\begin{array}{l} \mbox{Arithmetic assumption }\forall t,r\in\mathbb{R},\\ \hline \hline \{\log |f'(y)|: \mbox{ where } f(y)=y, \quad f\in\Phi\}\\ \mbox{does not belong to }t+r\mathbb{Z}. \end{array}$

伺 とう きょう とう うう

Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

 ν -a.e. x is abs. normal

伺 ト イヨト イヨト

Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

 $\nu\text{-a.e.}~x$ is abs. normal and ν is a Rajchman measure.

伺 ト イヨ ト イヨト

u-a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$,

通 ト イ ヨ ト イ ヨ ト

u-a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$

通 ト イ ヨ ト イ ヨ ト

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$

伺 とう きょう とう うう

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

쉐 이 이 글 이 이 글 이

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

Meaning of arith. assump.

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

Meaning of arith. assump. S_n avoids arithmetic progressions.

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

 $\label{eq:stable} \underbrace{ \begin{array}{c} \mbox{Meaning of arith. assump. } S_n \mbox{ avoids arithmetic progressions.} \\ \hline \mbox{Stopping time For } k>0, \ \omega\in\{1,...,n\}^{\mathbb{N}}, \end{array} }$

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

A random walk Fix
$$x \in K$$
, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$
= $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$
where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

 $\label{eq:constraint} \begin{array}{l} \underline{\mbox{Meaning of arith. assump.}} & S_n \mbox{ avoids arithmetic progressions.} \\ \underline{\mbox{Stopping time For } k > 0, \ \omega \in \{1,...,n\}^{\mathbb{N}}, \\ \overline{\tau_k(\omega)} := \min\{m: S_m(f_{\omega|_m}) > k\}, \end{array}$

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

 $\label{eq:constraint} \begin{array}{l} \underline{\mbox{Meaning of arith. assump.}} & S_n \mbox{ avoids arithmetic progressions.} \\ \underline{\mbox{Stopping time For } k > 0, \ \omega \in \{1,...,n\}^{\mathbb{N}}, \\ \overline{\tau_k(\omega)} := \min\{m: S_m(f_{\omega|_m}) > k\}, \ f_{\omega|_m} = f_{\omega_1} \circ \ldots \circ f_{\omega_m}. \end{array}$

 ν -a.e. x is abs. normal and ν is a Rajchman measure.

<u>A random walk</u> Fix $x \in K$, $g \in \Phi^{\circ n}$, $S_n(g) = c(g, x)$ = $-\log |(f_{i_1} \circ ... \circ f_{i_n})'(x)|$ where $(i_1, ..., i_n) \sim \mathbf{p}^n$ Note $S_n \to \infty$

 $\label{eq:constraint} \begin{array}{l} \underline{\mbox{Meaning of arith. assump.}} & S_n \mbox{ avoids arithmetic progressions.} \\ \underline{\mbox{Stopping time For } k > 0, \ \omega \in \{1,...,n\}^{\mathbb{N}}, \\ \overline{\tau_k(\omega)} := \min\{m: S_m(f_{\omega|_m}) > k\}, \ f_{\omega|_m} = f_{\omega_1} \circ \ldots \circ f_{\omega_m}. \end{array}$

Normality and Fourier decay for self conformal measures

伺下 イヨト イヨト

Normality and Fourier decay for self conformal measures

Let $p \ge 2$ be integer.

• • = • • = •

Let $p \ge 2$ be integer. Martingale argument

• • = • • = •

Let $p \ge 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$

b 4 3 b 4 3 b

Let $p \ge 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$

 \Rightarrow <u>Reduction</u> To show ν -a.e. *p*-normal

Let $p \ge 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\begin{array}{l} \text{Let }p\geq 2 \text{ be integer.} \\ \underline{\text{Martingale argument}} & \frac{1}{N}\sum_{n=0}^{N}\left(\delta_{T_{p}^{n}(x_{\omega})}-T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \\ \Rightarrow & \underline{\text{Reduction}} \text{ To show }\nu\text{-a.e. }p\text{-normal} \\ \text{Suffices }\lim_{q}\mathcal{F}_{q}\left(T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \text{ uni. in }n. \end{array}$

 $\begin{array}{l} \text{Let }p\geq 2 \text{ be integer.} \\ \underline{\text{Martingale argument}} & \frac{1}{N}\sum_{n=0}^{N}\left(\delta_{T_{p}^{n}(x_{\omega})}-T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \\ \Rightarrow \underline{\text{Reduction}} \text{ To show }\nu\text{-a.e. }p\text{-normal} \\ \text{Suffices }\lim_{q}\mathcal{F}_{q}\left(T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \text{ uni. in }n. \\ \underline{\text{Note }} \mathcal{F}_{q}\left(T_{p}^{n}\circ f_{\tau_{p}^{n}}\nu\right) \end{array}$

 $\begin{array}{l} \text{Let }p\geq 2 \text{ be integer.} \\ \underline{\text{Martingale argument}} & \frac{1}{N}\sum_{n=0}^{N}\left(\delta_{T_{p}^{n}(x_{\omega})}-T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \\ \Rightarrow & \underline{\text{Reduction}} \text{ To show }\nu\text{-a.e. }p\text{-normal} \\ \text{Suffices }\lim_{q}\mathcal{F}_{q}\left(T_{p}^{n}\circ f_{\omega|_{\tau_{p}^{n}(\omega)}}\nu\right)=0 \text{ uni. in }n. \\ & \underline{\text{Note }}\mathcal{F}_{q}\left(T_{p}^{n}\circ f_{\tau_{p}^{n}}\nu\right)\approx\mathcal{F}_{q}\left(\nu\right) \end{array}$

Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_p^n} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ Key idea $|\mathcal{F}_q \left(\nu \right)|$ Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_p^n} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ <u>Key idea</u> $|\mathcal{F}_q \left(\nu \right)| \lesssim \int |\mathcal{F}_q \left(e^{-S_n(g)} \cdot \nu \right)| d\mathbf{p}^n(g)$ Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_p^n(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_p^n} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ <u>Key idea</u> $|\mathcal{F}_q \left(\nu \right)| \lesssim \int |\mathcal{F}_q \left(e^{-S_n(g)} \cdot \nu \right)| d\mathbf{p}^n(g)$ (self conformality) Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_{p^n}} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ <u>Key idea</u> $|\mathcal{F}_q \left(\nu \right)| \lesssim \int |\mathcal{F}_q \left(e^{-S_n(g)} \cdot \nu \right)| d\mathbf{p}^n(g)$ (self conformality) $\stackrel{k}{\lesssim} \int_{k(n)}^{k(n)+1} |\mathcal{F}_q \left(e^{-z} \cdot \nu \right)| dz$ Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_{p^n}} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ <u>Key idea</u> $|\mathcal{F}_q \left(\nu \right)| \lesssim \int |\mathcal{F}_q \left(e^{-S_n(g)} \cdot \nu \right)| d\mathbf{p}^n(g)$ (self conformality) $\stackrel{\leq}{\lesssim} \int_{k(n)}^{k(n)+1} |\mathcal{F}_q \left(e^{-z} \cdot \nu \right)| dz$ Crucial step Let $p \geq 2$ be integer. <u>Martingale argument</u> $\frac{1}{N} \sum_{n=0}^{N} \left(\delta_{T_p^n(x_\omega)} - T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ $\Rightarrow \underline{\text{Reduction}}$ To show ν -a.e. p-normal Suffices $\lim_q \mathcal{F}_q \left(T_p^n \circ f_{\omega|_{\tau_{p^n}(\omega)}} \nu \right) = 0$ uni. in n. <u>Note</u> $\mathcal{F}_q \left(T_p^n \circ f_{\tau_{p^n}} \nu \right) \approx \mathcal{F}_q \left(\nu \right)$ <u>Key idea</u> $|\mathcal{F}_q \left(\nu \right)| \lesssim \int |\mathcal{F}_q \left(e^{-S_n(g)} \cdot \nu \right)| d\mathbf{p}^n(g)$ (self conformality) $\lesssim \int_{k(n)}^{k(n)+1} |\mathcal{F}_q \left(e^{-z} \cdot \nu \right)| dz$ Crucial step use CLT and LLT of Beniost-Quint.

Def (Breuillard, 2005)

日本・モト・モト

э

Def (Breuillard, 2005) $\Phi = \{r_i \cdot x + t_i\}_i$ is self similar.

向下 イヨト イヨト ニヨ

 $\underbrace{\frac{\text{Def (Breuillard, 2005)}}{\text{contractions } \{r_1, ..., r_n\}} \Phi = \{r_i \cdot x + t_i\}_i \text{ is self similar.}$

向下 イヨト イヨト ニヨ

 $\frac{\text{Def (Breuillard, 2005)}}{\text{contractions } \{r_1, ..., r_n\}.} \Phi = \{r_i \cdot x + t_i\}_i \text{ is self similar.}$ $\Phi \text{ is Diophantine}$

伺 と く ヨ と く ヨ と 二 ヨ

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \end{array}$

.

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

.

 $\begin{array}{l} \underbrace{\text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \ \forall |x| \gg 1 \end{array}$

 $\inf_{y \in \mathbb{R}} \max_{i \in \{1, \dots, n\}} d(\log |r_i| \cdot x + y, \mathbb{Z}) \ge \frac{C}{|x|^l}$

.
$\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}}\max_{i\in\{1,\dots n\}}d(\log|r_i|\cdot x+y,\,\mathbb{Z})\geq \tfrac{C}{|x|^l}\\ \text{Geo. meaning} \end{split}$$

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log |r_i|\cdot x+y,\,\mathbb{Z}) \geq \frac{C}{|x|^l}\\ \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\frac{\text{Def (Breuillard, 2005)}}{\text{contractions } \{r_1, ..., r_n\}.} \Phi \text{ is Diophantine if } \exists l, C > 0 \ \forall |x| \gg 1$

 $\inf_{y \in \mathbb{R}} \max_{i \in \{1,...n\}} d(\log |r_i| \cdot x + y, \mathbb{Z}) \ge \frac{C}{|x|^l}$ Geo. meaning S_n quantitatively avoids arith. progressions. Holds for Leb.-a.e. $\{\log |r_1|, ..., \log |r_n|\}$

 $\begin{array}{l} \underline{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1,...,r_n\}. \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

- Holds for Leb.-a.e. $\{ \log |r_1|, ..., \log |r_n| \}$.
- **2** Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

 $\begin{array}{l} \underline{\text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \ \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

- Holds for Leb.-a.e. $\{ \log |r_1|, ..., \log |r_n| \}$.
- **2** Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log |r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\bullet \quad \text{Holds for Leb.-a.e. } \{ \log |r_1|, ..., \log |r_n| \} \ .$

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

伺下 イヨト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log |r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\textcircled{\ }$ Holds for Leb.-a.e. $\{\log |r_1|,...,\log |r_n|\}$.

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

1 If $\exists r_i \not\sim r_j, g \in C^{1+\gamma}$

直 ト イヨ ト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log |r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\textcircled{\ }$ Holds for Leb.-a.e. $\{\log |r_1|,...,\log |r_n|\}$.

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

1 If $\exists r_i \not\sim r_j$, $g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal

直 ト イヨ ト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log |r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\textcircled{\ }$ Holds for Leb.-a.e. $\{\log |r_1|,...,\log |r_n|\}$.

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

伺 ト イヨト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ \\ \hline \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\bullet \quad \text{Holds for Leb.-a.e. } \left\{ \log |r_1|,...,\log |r_n| \right\} \ .$

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

2 If Dio.
$$\Rightarrow$$

伺 ト イヨト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ \\ \hline \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\textcircled{\ }$ Holds for Leb.-a.e. $\{\log |r_1|,...,\log |r_n|\}$.

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

• If $\exists r_i \not\sim r_j$, $g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal and $g\nu$ Rajchamn.

2 If Dio.
$$\Rightarrow \exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{\log(|q|)^{\beta}}\right)$.

伺 ト イヨト イヨト

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\bullet \quad \text{Holds for Leb.-a.e. } \left\{ \log |r_1|, ..., \log |r_n| \right\} \ .$

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

• If $\exists r_i \not\sim r_j$, $g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal and $g\nu$ Rajchamn.

2 If Dio.
$$\Rightarrow \exists \beta > 0$$
, $|\mathcal{F}_q(\nu)| = O\left(\frac{1}{\log(|q|)^{\beta}}\right)$.

Related: Hochman-Shmerkin (2015),

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ & \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\bullet \quad \text{Holds for Leb.-a.e. } \left\{ \log |r_1|, ..., \log |r_n| \right\} \ .$

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

• If $\exists r_i \not\sim r_j$, $g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal and $g\nu$ Rajchamn.

$$earlier 0 \text{ If Dio.} \Rightarrow \exists \beta > 0, |\mathcal{F}_q(\nu)| = O\left(\frac{1}{\log(|q|)^\beta}\right).$$

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019),

Def (Breuillard, 2005) $\Phi = \{r_i \cdot x + t_i\}_i$ is self similar. contractions $\{r_1, \dots, r_n\}$. Φ is Diophantine if $\exists l, C > 0 \ \forall |x| \gg 1$

 $\inf_{y \in \mathbb{R}} \max_{i \in \{1, \dots, n\}} d(\log |r_i| \cdot x + y, \mathbb{Z}) \ge \frac{C}{|x|!}$ Geo. meaning S_n quantitatively avoids arith. progressions.

1 Holds for Leb.-a.e. $\{\log |r_1|, ..., \log |r_n|\}$.

2 Holds if $\log |r_1|, \dots, \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

• If $\exists r_i \not\sim r_j, g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal and $g\nu$ Rajchamn.

$$\textbf{ 0 If Dio. } \Rightarrow \exists \beta > 0, \ |\mathcal{F}_q(\nu)| = O\left(\frac{1}{\log(|q|)^{\beta}}\right).$$

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman (1984)

 $\begin{array}{l} \underbrace{ \text{Def (Breuillard, 2005)}}_{\text{contractions } \{r_1, ..., r_n\}. \end{array} \\ \Phi \text{ is Diophantine if } \exists l, C > 0 \; \forall |x| \gg 1 \end{array}$

$$\begin{split} \inf_{y\in\mathbb{R}} \max_{i\in\{1,\dots n\}} d(\log|r_i|\cdot x+y,\,\mathbb{Z}) \geq \tfrac{C}{|x|^l}\\ \\ \hline \text{Geo. meaning } S_n \text{ quantitatively avoids arith. progressions.} \end{split}$$

 $\textcircled{\ }$ Holds for Leb.-a.e. $\{\log |r_1|,...,\log |r_n|\}$.

2 Holds if $\log |r_1|, ..., \log |r_n|$ are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

• If $\exists r_i \not\sim r_j$, $g \in C^{1+\gamma} \Rightarrow g\nu$ -a.e x is abs. normal and $g\nu$ Rajchamn.

$$\textbf{2 If Dio.} \Rightarrow \exists \beta > 0, |\mathcal{F}_q(\nu)| = O\left(\frac{1}{\log(|q|)^{\beta}}\right).$$

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman (1984), Mosquera-Shmerkin (2018).

Analytic IFS's

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that:

- (同) (回) (回) (回) (回)

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS:

(日本) (日本) (日本) 日

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS,

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Unified proof of Rajchman property for C^{ω} IFS's

伺下 イヨト イヨト

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Unified proof of Rajchman property for C^{ω} IFS's as in Bourgain and Dyatlov (2017),

< 回 > < 回 > < 回 >

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Unified proof of Rajchman property for C^{ω} IFS's as in Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020)

< 回 > < 回 > < 回 >

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Unified proof of Rajchman property for C^{ω} IFS's as in Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020), and in some cases of Li. (2018, 2021)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let $\{f_1, ..., f_n\}$ be a uni. contracting C^{ω} IFS such that: \exists self conformal measure ν not a Rajchman or not normal. Then Φ is C^{ω} conjugate to a self similar IFS: $\exists g \in C^{\omega}, r > 0$ s.t. $\{g \circ f_i \circ g^{-1}\}_i$ is a self-similar IFS, with all contractions $\sim r$.

Unified proof of Rajchman property for C^{ω} IFS's as in Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020), and in some cases of Li. (2018, 2021) But, without poly. rate.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$

L

Let $\{f_1,...f_n\}$ as in Thm 1, with a prob. vector ${\bf p}$ and self conformal mea. $\nu.$ Let

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$
et $\mathbb{P} = \mathbf{p}^{\mathbb{N}} \in \mathcal{P}(\{1, ..., n\}^{\mathbb{N}}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$

Let $\mathbb{P} = \mathbf{p}^{\mathbb{N}} \in \mathcal{P}(\{1, ..., n\}^{\mathbb{N}})$. Then $\nu = \text{push-for. of } \mathbb{P}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$

Let $\mathbb{P} = \mathbf{p}^{\mathbb{N}} \in \mathcal{P}(\{1, ..., n\}^{\mathbb{N}})$. Then $\nu = \text{push-for. of } \mathbb{P}$. We define a cocycle $c : \{1, ..., n\}^* \times \{1, ..., n\}^{\mathbb{N}} \to \mathbb{R}$

同 ト イヨ ト イヨ ト ニヨ

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$

Let $\mathbb{P} = \mathbf{p}^{\mathbb{N}} \in \mathcal{P}(\{1, ..., n\}^{\mathbb{N}})$. Then $\nu = \text{push-for. of } \mathbb{P}$. We define a cocycle $c : \{1, ..., n\}^* \times \{1, ..., n\}^{\mathbb{N}} \to \mathbb{R}$

$$c(a,\omega) = -\log|f'_a(x_\omega)|$$

同 ト イヨ ト イヨ ト ニヨ

$$\omega \in \{1, ..., n\}^{\mathbb{N}} \mapsto x_{\omega} := \lim_{m \to \infty} f_{\omega_1} \circ \circ \circ f_{\omega_m}(0) \in K$$

Let $\mathbb{P} = \mathbf{p}^{\mathbb{N}} \in \mathcal{P}(\{1, ..., n\}^{\mathbb{N}})$. Then $\nu = \text{push-for. of } \mathbb{P}$. We define a cocycle $c : \{1, ..., n\}^* \times \{1, ..., n\}^{\mathbb{N}} \to \mathbb{R}$

$$c(a,\omega) = -\log|f'_a(x_\omega)|$$

We call this the derivative cocycle.

Image: A Image: A

A random walk

Amir Algom Pointwise normality and Fourier decay for self-conformal measure

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 の Q @

Let
$$X_1(\omega) := c(\omega_1, \sigma(\omega)) = -\log |f'_{\omega_1}(x_{\sigma(\omega)})|$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 の Q @

Let
$$X_1(\omega) := c(\omega_1, \sigma(\omega)) = -\log |f'_{\omega_1}(x_{\sigma(\omega)})|$$
 and $X_n(\omega) = X_1 \circ \sigma^{n-1}(\omega).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 の Q @
Let
$$X_1(\omega) := c(\omega_1, \sigma(\omega)) = -\log |f'_{\omega_1}(x_{\sigma(\omega)})|$$
 and
 $X_n(\omega) = X_1 \circ \sigma^{n-1}(\omega).$
Random walk
 $S_n(\omega) = X_1(\omega) + \dots + X_n(\omega) = -\log |f'_{\omega|_n}(x_{\sigma^n(\omega)})|$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Let
$$X_1(\omega) := c(\omega_1, \sigma(\omega)) = -\log |f'_{\omega_1}(x_{\sigma(\omega)})|$$
 and
 $X_n(\omega) = X_1 \circ \sigma^{n-1}(\omega).$
Random walk
 $S_n(\omega) = X_1(\omega) + \ldots + X_n(\omega) = -\log |f'_{\omega|_n}(x_{\sigma^n(\omega)})|$
Stopping time For $k \in \mathbb{N}$ and $\omega \in \{1, \ldots, n\}^{\mathbb{N}}$ "stopping time"

$$\tau_k(\omega) := \min\{m : S_m(\omega) \ge k\}$$

Let
$$X_1(\omega) := c(\omega_1, \sigma(\omega)) = -\log |f'_{\omega_1}(x_{\sigma(\omega)})|$$
 and
 $X_n(\omega) = X_1 \circ \sigma^{n-1}(\omega).$
Random walk
 $S_n(\omega) = X_1(\omega) + \ldots + X_n(\omega) = -\log |f'_{\omega|_n}(x_{\sigma^n(\omega)})|$
Stopping time For $k \in \mathbb{N}$ and $\omega \in \{1, \ldots, n\}^{\mathbb{N}}$ "stopping time"
 $\tau_k(\omega) := \min\{m : S_m(\omega) \ge k\}$

 $\underline{\mathsf{May assume}} \ \mathsf{For} \ k \in \mathbb{N} \ \mathsf{and} \ \omega, \quad S_{\tau_k(\omega)}(\omega) \in [k,k+1]$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$.

イロト イポト イヨト イヨト 三日

```
Let q \in \mathbb{R} be large, choose k \approx \log |q|.
M_s(t) = s \cdot t
```

Let
$$q \in \mathbb{R}$$
 be large, choose $k \approx \log |q|$.
 $M_s(t) = s \cdot t$
Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega)$

Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality. Local equidistribution $\int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega) = \int_k^{k+1} |\mathcal{F}_q(M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q \left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality. Local equidistribution $\int \left| \mathcal{F}_q \left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega) = \int_k^{k+1} |\mathcal{F}_q (M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Use: CLT and LLT for cocycles, proved by Benoist-Quint. Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k}(\omega)}(\omega)} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality. Local equidistribution $\int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k}(\omega)}(\omega)} \nu \right) \right|^2 d\mathbb{P}(\omega) = \int_k^{k+1} |\mathcal{F}_q(M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Use: CLT and LLT for cocycles, proved by Benoist-Quint. Oscillatory integral $|\mathcal{F}_q(\nu)|^2 \leq \int_k^{k+1} |\mathcal{F}_q(M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q \left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality. Local equidistribution $\int \left| \mathcal{F}_q \left(M_{e^{-S_{\tau_k(\omega)}(\omega)}} \nu \right) \right|^2 d\mathbb{P}(\omega) = \int_k^{k+1} |\mathcal{F}_q (M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Use: CLT and LLT for cocycles, proved by Benoist-Quint. Oscillatory integral $|\mathcal{F}_q(\nu)|^2 \leq \int_k^{k+1} |\mathcal{F}_q (M_{e^{-z}}\nu)|^2 dz + o(q,k)$ Use: Hochman's Lemma: Let $\theta \in \mathcal{P}(\mathbb{R})$.

Let $q \in \mathbb{R}$ be large, choose $k \approx \log |q|$. $M_s(t) = s \cdot t$ Linerization $|\mathcal{F}_q(\nu)|^2 \leq \int \left| \mathcal{F}_q\left(M_{e^{-S_{\tau_k}(\omega)}(\omega)} \nu \right) \right|^2 d\mathbb{P}(\omega)$ Use: self-conformality. Local equidistribution Use: CLT and LLT for cocycles, proved by Benoist-Quint. Oscillatory integral $|\mathcal{F}_{q}(\nu)|^{2} \leq \int_{\mu}^{k+1} |\mathcal{F}_{q}(M_{e^{-z}}\nu)|^{2} dz + o(q,k)$ Use: Hochman's Lemma: Let $\theta \in \mathcal{P}(\mathbb{R})$. Then for any r > 0

$$\int_0^1 |\mathcal{F}_q(M_{e^{-t}}\theta)|^2 dt \le \frac{e^2}{r \cdot |q|} + \int \theta(B_r(y)) d\theta(y)$$