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Normal numbers

Let A be the Lebesgue mea. on R.
For integer p > 2 let T),(z) = p -z mod 1.
Def (Borel) Let z € R.

© For integer p > 2, x is p-normal if {T}}(x)},, equidistributes:
. N
limy 3 32,21 07 (@) = Ao,

@ = is absolutely normal if it is p-normal for all p > 2.

Borel's normal number Theorem (1909)

A-a.e. x is abs. normal.

Weyl's criterion (1916)

x is p-normal iff for every integer q # 0,
lim,, o0 % Zﬁf:l exp(2migp"x) =0
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Q Let v be a Borel prob. mea. on R. When is v-a.e. x abs.
normal? p-normal?

Exp Let C'= Middle % Cantor set. No x € C'is 3-normal:
If {T5"(z)}n equi. for v

= supp(v) C C since T3(C) = C

=v LA

Multi. Independence For p,q # 0, write p # q iff }gi I’;; ¢ Q.

Theorem (Cassels, Schmidt 1960)

Let p~> >, X,37", X, lID, X; unbiased on {0,2}.
= p-a.e. x is p-normal for p ¢ 3.

Method Est. fast decay of L?(u) norms of trig. poly. as in Weyl's
cri.
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The Fourier transform

Definition Let v be a Borel prob. mea. on R.
For ¢ € R the Fourier transform of v at ¢ is

Fq(v) := /exp(2m’qx)du(x)

Definition

We call v a Rajchman measure if

lim Fy(v) =0

lg|—o0
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@ Riemann-Lebesgue Lemma = if v < )\ then

lim Fy(v) =0
lg|—o0
So, if v < A then v is Rajchman.
@ Wiener's Lemma = if v has atom then not Rajchman.
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Davenport-Erdds-LeVeque and Bernoulli convolutions

Theorem (Davenport-Erdds-LeVeque, 1963)
If 38 > 0, |F,(v)| = O (

TR
(loglog(|q]))” "
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Self-similar and self-conformal measures

Let {f1,..., fn}, fi = strict contraction of [—1,1] (an IFS),

p = (p1,...,pn) prob. vector, p; > 0.

3K C [-1,1], K # 0 compact s.t. K =J;", fi(K)

3!y, € Prob. mea.(K) s.t.

Vp = >y Di- fitp, where fiv = push-for. of v via f;.

O If every f; is affine, K = self similar set, v, = self similar

measure.
Exp: Fix 7 € (0,1) consider {r -z —1,r -z + 1} with

p=(3,3) = vp = Ber. Conv. with para. r.

@ If every f; is diff., K = self conformal set, 1, = self conformal
measure.
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Hochman-Shmerkin approach to normality: Scaling scenery

N

supp(p) € [-1,1].
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Hochman-Shmerkin approach to normality: Scaling scenery

supp(p) C [—1,1]. Let x € supp(u). Let ¢t > 0.
Hat *= [LB(z,e—t), translated by z,
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supp(p) C [—1,1]. Let x € supp(u). Let ¢t > 0.

[ot = HpB(ze-t) translated by z, scaled by €.

= 0 € supp(pte,t) € [—1,1].
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supp(p) C [—1,1]. Let x € supp(u). Let ¢t > 0.
[ot = HpB(ze-t) translated by z, scaled by €.
= 0 € supp(pt) € [—1,1].

i generates a dist. P if y-a.e. z, %fOT Op dt — P.
Exp Furstenberg (1967/2006), Hochman (2009),
Hochman-Shmerkin (2011)

Q@ Erg. Ty-inv. mea. h,(1,) > 0.
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Hochman-Shmerkin main argument

Let p % ¢, v Erg. Ty-inv. with h,(T,) > 0, or reg. self-conformal

1 N
= N Z0 5ﬂz,nlogp — P

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin

(2015), Hochman (2021)

v a.e. x is p-normal.
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Martingale differences Theorem.
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Let p % ¢, v Erg. Ty-inv. with h,(T,) > 0, or reg. self-conformal
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= N Z0 5ﬂz,nlogp — P

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin

(2015), Hochman (2021)

v a.e. z is p-normal.
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Let p % ¢, v Erg. Ty-inv. with h,(T,) > 0, or reg. self-conformal

1 N
= N Z0 5ﬂz,nlogp — P

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin

(2015), Hochman (2021)

v a.e. z is p-normal.

Martingale argument a.s. % Zgzo (5T£L(x) - Nw,nlogp) =0 Use:
Martingale differences Theorem.

Integral representation If Nik foio (5T5L(x) — 1 Then:
p=[pdP(p),

= u= )\[071].

Major advantage
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Hochman-Shmerkin main argument

Let p % ¢, v Erg. Ty-inv. with h,(T,) > 0, or reg. self-conformal

1 N
= N Z0 5ﬂz,nlogp — P

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin

(2015), Hochman (2021)

v a.e. z is p-normal.

Martingale argument a.s. % Zgzo (5T£L(x) - Nw,nlogp) =0 Use:
Martingale differences Theorem.

Integral representation If Nik foio (5T5L(x) — 1 Then:
p=[pdP(p),

= u= )\[071].

Major advantage Avoids F,(v).

Limitation Need K = |J;", fi(K) disjoint.
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® = {f1,.... fn} C*TVIFS.
® is uniformly contracting: max e ||f'||oc < 1
v =Y, pifiv non-atomic self conformal mea.
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® is uniformly contracting: max e ||f'||oc < 1
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Our setting

® = {f1,.... fn} C*TVIFS.
® is uniformly contracting: max e ||f'||oc < 1
v =Y, pifiv non-atomic self conformal mea.

Semi-group {fi, ..., fn}* = S-grp gen. by ® via composition.
The derivative cocycle ¢ : {f1,..., fu}* x [0,1] = R
c(g,x) = —logl|g'(x)]

Arithmetic assumption Vi, r € R,

{log |f' (y)| : where f(y) =y, fe€d}
does not belong to t + rZ.
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Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal

Amir Algom Pointwise normality and Fourier decay for self-conformal measure



Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.
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Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix z € K, g € ®°7,
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v-a.e. x is abs. normal and v is a Rajchman measure.
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v-a.e. x is abs. normal and v is a Rajchman measure.
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Amir Algom Pointwise normality and Fourier decay for self-conformal measure



Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix x € K, g € ®°", S,,(9) = ¢(g, x)
= —log|(fi 0.0 fi,) ()|

where (i1, ...,i,) ~ p™ Note S,, — o0

Amir Algom Pointwise normality and Fourier decay for self-conformal measure



Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix x € K, g € ®°", S,,(9) = ¢(g, x)
= —log|(fi 0.0 fi,) ()|

where (i1, ...,i,) ~ p™ Note S,, — o0

Meaning of arith. assump.
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Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix x € K, g € ®°", S,,(9) = ¢(g, x)
= —log|(fi 0.0 fi,) ()|

where (i1, ...,i,) ~ p™ Note S,, — o0

Meaning of arith. assump. S, avoids arithmetic progressions.
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v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix x € K, g € ®°", S,,(9) = ¢(g, x)
= —log|(fi 0.0 fi,) ()|

where (i1, ...,i,) ~ p™ Note S,, — o0

Meaning of arith. assump. S, avoids arithmetic progressions.
Stopping time For k > 0, w € {1,...,n},
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Theorem 1 (A. - Rodriguez Hertz - Wang)

v-a.e. x is abs. normal and v is a Rajchman measure.

A random walk Fix x € K, g € ®°", S,,(9) = ¢(g, x)
= —log|(fi 0.0 fi,) ()|

where (i1, ...,i,) ~ p™ Note S,, — o0

Meaning of arith. assump. S, avoids arithmetic progressions.
Stopping time For k > 0, w € {1,...,n},
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

: 1 N
Martingale argument % >, (6T;(xw) =Ty o fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

Martingale argument % Zﬁlzo (6T;(xw) =T o [, ( )1/> =0
p’ﬂ w

= Reduction To show v-a.e. p-normal

Suffices
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Let p > 2 be integer.

Martingale argument + Zﬁlzo (6T;(xw) —Tyo fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (TI? o fw‘Tpan/) =0 uni. in n.
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

Martingale argument + Zﬁlzo (6T;(xw) —Tyo fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (TI? o fw‘Tpan/) =0 uni. in n.

Note 7, (T3 o f01) ~ F, (v

Key idea | F, (V)]
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

Martingale argument + Zﬁlzo (6T;(xw) —Tyo fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (T o fw\fpnw) ) =0 uni. in n.

Note F, (T"ofT,, v) ~ Fq (v
Key idea |F, ()| S [ |F4 (759 - v)| dp™(g)
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

Martingale argument + Zﬁlzo (6T;(xw) —Tyo fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (T ofw‘T ) ) =0 uni. in n.

Note Fy (T} © fruv) = Fq (v)
Key idea | F, (V)| £ [ ‘.Fq( ~91(9) . )| dp"(g) (self conformality)
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

: 1 N
Martingale argument % >, (6T;(xw) =Ty o fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (T ofw‘ ) ) =0 uni. in n.
Note F, (T} o fronV V) & (V)
Key idea |F, (v \ ~u ‘Fq( ~91(9) . )| dp"(g) (self conformality)

<fk )+l |Fq(e7%-v)|dz
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

. 1 N
Martingale argument % >, (5T;(xw) =Ty o fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (T ofw‘ ) ) =0 uni. in n.

Note F, (T} o frnv) = (V)

Key idea |F, (v \ ~u ‘Fq( ~91(9) . )| dp"(g) (self conformality)
1

S fk )+ |Fq(e7%-v)|dz

Cruaafstep
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Normality and Fourier decay for self conformal measures

Let p > 2 be integer.

. 1 N
Martingale argument % >, (5T;(xw) =Ty o fw‘Tpn(w)u> =0
= Reduction To show v-a.e. p-normal

Suffices lim, F, (T o fw‘ ) ) =0 uni. in n.

Note F, (T} o fronV V) & (V)

Key idea |F, (v \ ~u ‘Fq( ~91(9) . )| dp"(g) (self conformality)
S e F (e ) d

Cruaaf step use CLT and LLT of Beniost-Quint.
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The case of self similar measures

Def (Breuillard, 2005)
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer max;eqq, .y d(log|r| -z +y, Z) > |Q

x|t
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer max;eqq, .y d(log|r| -z +y, Z) > |Q

x|t
Geo. meaning
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyGR maX;c(1,..n} d( log |TZ| T+ Y, Z) > o

EL
Geo. meaning S, quantitatively avoids arith. progressions.
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > ﬁ
Geo. meaning S, quantitatively avoids arith. progressions.

@ Holds for Leb.-a.e. {log|ri],...,log|r|}
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <

= Jzff
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > ﬁ
Geo. meaning S, quantitatively avoids arith. progressions.
© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <

= Jzff
Geo. meaning S, quantitatively avoids arith. progressions.
© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.
Theorem 2 (A. - Rodriguez Hertz - Wang)
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Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <
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Geo. meaning S, quantitatively avoids arith. progressions.
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Theorem 2 (A. - Rodriguez Hertz - Wang)
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <

= Jzff
Geo. meaning S, quantitatively avoids arith. progressions.
© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.
Theorem 2 (A. - Rodriguez Hertz - Wang)

Q If 3r; A1y, g€ CY = gr-ae x is abs. normal
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <

= Jzff
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

Q If 3Ir; £ 1j, g€ C = gr-a.e x is abs. normal and gv
Rajchamn.
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyer maX;c(1,..n} d(log|ri| -z +y, Z) > <

= Jzff
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)
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@ If Dio. =
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyGR maX;c(1,..n} d( log |TZ| T+ Y, Z) > o

EL
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

Q If 3Ir; £ 1j, g€ C = gr-a.e x is abs. normal and gv
Rajchamn.

@ If Dio. = 38> 0, |F,(v)| = O (W)
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyGR maX;c(1,..n} d( log |TZ| T+ Y, Z) > o

EL
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

Q If 3Ir; £ 1j, g€ C = gr-a.e x is abs. normal and gv
Rajchamn.

@ If Dio. = 38> 0, |F,(v)| = O (W)

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman
1984
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The case of self similar measures

Def (Breuillard, 2005) ® = {r; - = + t;}; is self similar.
contractions {71, ..., 7, }.
® is Diophantine if 31,C > 0 V|x| > 1

infyGR maX;c(1,..n} d( log |TZ| T+ Y, Z) > o

EL
Geo. meaning S, quantitatively avoids arith. progressions.

© Holds for Leb.-a.e. {log|ri,...,log|r,|} .
@ Holds if log |1, ...,log |ry| are rationally ind. alg. numbers.

Let v be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

Q If 3Ir; £ 1j, g€ C = gr-a.e x is abs. normal and gv
Rajchamn.

@ If Dio. = 38> 0, |F,(v)| = O (W)

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman
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Analytic IFS's

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:
3 self conformal measure v not a Rajchman or not normal.
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Then @ is C* conjugate to a self similar IFS:
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Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.

Unified proof of Rajchman property for C* IFS’s
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.

Unified proof of Rajchman property for C* IFS’s as in
Bourgain and Dyatlov (2017),
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.

Unified proof of Rajchman property for C* IFS’s as in
Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020)
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.

Unified proof of Rajchman property for C* IFS’s as in
Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020) , and
in some cases of Li. (2018, 2021)
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1,..., fn} be a uni. contracting C* IFS such that:

3 self conformal measure v not a Rajchman or not normal.
Then @ is C* conjugate to a self similar IFS:

dg € C¥,r>0s.t. {gofiog '} is a self-similar IFS, with all
contractions ~ r.

Unified proof of Rajchman property for C* IFS’s as in
Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020) , and
in some cases of Li. (2018, 2021) But, without poly. rate.
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v.
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK

Let P=pY € P({1,...,n}Y).
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Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK

Let P =pN € P({1,...,n}Y). Then v = push-for. of P.
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK

Let P =pN € P({1,...,n}Y). Then v = push-for. of P.
We define a cocycle ¢ : {1,...,n}* x {1,...,n}N - R
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK

Let P =pN € P({1,...,n}Y). Then v = push-for. of P.
We define a cocycle ¢ : {1,...,n}* x {1,...,n}N - R

c(a,w) = —log |fC/L('TW)’
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Symbolic setup

Let {f1,...fn} asin Thm 1, with a prob. vector p and self
conformal mea. v. Let

w € {1,...,n}N = Ty = ry}gnoo fwl 600 fwm(()) eK

Let P =pN € P({1,...,n}Y). Then v = push-for. of P.
We define a cocycle ¢ : {1,...,n}* x {1,...,n}N - R
c(a,w) = —log|fo(ww)|

We call this the derivative cocycle.
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A random walk
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A random walk

Let X1 (w) := c(w1,0(w)) = —log|f,, (To(w))]
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A random walk

Let X1 (w) := c(w1,0(w)) = —log|f,, (To(w))| and
Xn(w) = X1 00" (w).
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A random walk

Let Xi(w) := c(w1,0(w)) = —log|f., (Ts())| and
Xn(w) = X1 00" Hw).

Random walk

Sn(w) = Xl(w) + ...+ Xn(w) = —log ’f‘:}|n (:L'o-n(w)) |
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A random walk

Let Xi(w) := c(w1,0(w)) = —log|f., (Ts())| and

Xn(w) = X1 00" (w).

Random walk

Su(@) = X1(@) + o+ Xa(w) = —log |f, (aon) |
Stopping time For k € N and w € {1,...,n}" "stopping time"

Tk(w) = min{m : Sm(w) > k}
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A random walk

Let Xi(w) := c(w1,0(w)) = —log|f., (Ts())| and

Xn(w) = X1 00" (w).

Random walk

Su(@) = X1(@) + o+ Xa(w) = —log |f, (aon) |
Stopping time For k € N and w € {1,...,n}" "stopping time"

Tk(w) = min{m : Sm(w) > k}

May assume For k € Nand w, S, (,)(w) € [k, k+ 1]
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t

Linerization |F,(v <f‘]-' (M ka(uﬂw)”)‘ dP(w)
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t

2
Linerization |F,(v)|? < f‘]-'q (Me,sfk(w)mu)‘ dP(w)
Use: self-conformality.
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t

2
Linerization | 7,(v)|* < [ |7, (M -s,, v)| dP(w)
Use: self-conformality.
Local equidistribution

2
S| Fa (M s o) [ dP@) = [ 1, (M) dz + ofa, b)
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t

2
Linerization | 7,(v)|* < [ |7, (M -s,, v)| dP(w)
Use: self-conformality.

Local equidistribution

J 17 (M s o] dB@) = 55 1y (M) d= + ofg, B)
Use: CLT and LLT for cocycles, proved by Benoist-Quint.
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t
2
Linerization | F,(v)|? < [ ‘}'q (M ,sfk(w)mu)‘ dP(w)
&
Use: self-conformality.
Local equidistribution

J 17 (M s o] dB@) = 55 1y (M) d= + ofg, B)
Use: CLT and LLT for cocycles, proved by Benoist- Qumt
Oscillatory integral | F,(v)|2 < [FT!|F, (M.--v)* d= + o(q, k)
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Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t
2
Linerization | F,(v)|? < [ ‘}'q (M ,sfk(w)mu)‘ dP(w)
&
Use: self-conformality.
Local equidistribution

I|Fa (Me_sw)wu)‘ dP(w) = [F*|Fy (M,—-v)P dz + o{q, k)
Use: CLT and LLT for cocycles, proved by Benoist- Qumt
Oscillatory integral | F,(v)|2 < [FT!|F, (M.--v)* d= + o(q, k)
Use: Hochman's Lemma: Let 6 € 77( ).

Amir Algom Pointwise normality and Fourier decay for self-conformal measure



Sketch of idea

Let ¢ € R be large, choose k = log |q|.
My(t)=s-t

2
Linerization |F,(v)|? < f‘}'q (Me,sfk(w)mu)‘ dP(w)
Use: self-conformality.
Local equidistribution
J 17 (M s o] dB@) = 55 1y (M) d= + ofg, B)
Use: CLT and LLT for cocycles, proved by Benoist- Qumt
Oscillatory integral | F,(v)|2 < [FT!|F, (M.--v)* d= + o(q, k)
Use: Hochman's Lemma: Let 6 € 77( ). Then for any r > 0

JHFLO et [ 0(B(y)d0(y)
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