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Normal numbers

Let λ be the Lebesgue mea. on R.
For integer p ≥ 2 let Tp(x) = p · x mod 1.
Def (Borel) Let x ∈ R.

1 For integer p ≥ 2, x is p-normal if {Tnp (x)}n equidistributes:

limN
1
N

∑N
n=1 δTnp (x) = λ[0,1]

2 x is absolutely normal if it is p-normal for all p ≥ 2.

Borel’s normal number Theorem (1909)

λ-a.e. x is abs. normal.

Weyl’s criterion (1916)

x is p-normal iff for every integer q 6= 0,
limn→∞

1
N

∑N
n=1 exp(2πiqpnx) = 0
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Normal numbers in fractals

Q Let ν be a Borel prob. mea. on R. When is ν-a.e. x abs.
normal? p-normal?
Exp Let C = Middle 1

3 Cantor set. No x ∈ C is 3-normal:
If {Tn3 (x)}n equi. for ν
⇒ supp(ν) ⊆ C since T3(C) = C
⇒ ν ⊥ λ.
Multi. Independence For p, q 6= 0, write p 6∼ q iff log |p|

log |q| /∈ Q.

Theorem (Cassels, Schmidt 1960)

Let µ ∼
∑∞

n=1Xn3−n, Xn IID, X1 unbiased on {0, 2}.
⇒ µ-a.e. x is p-normal for p 6∼ 3.

Method Est. fast decay of L2(µ) norms of trig. poly. as in Weyl’s
cri.
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The Fourier transform

Definition Let ν be a Borel prob. mea. on R.
For q ∈ R the Fourier transform of ν at q is

Fq(ν) :=

∫
exp(2πiqx)dν(x)

Definition

We call ν a Rajchman measure if

lim
|q|→∞

Fq(ν) = 0
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Simple examples

1 Riemann-Lebesgue Lemma ⇒ if ν � λ then

lim
|q|→∞

Fq(ν) = 0

So, if ν � λ then ν is Rajchman.

2 Wiener’s Lemma ⇒ if ν has atom then not Rajchman.

3 Let ν ∼
∑∞

n=1
Xn
3n , Xn IID, X1 unbiased on {0, 2}. Then ν is

continuous and singular. For every m ∈ Z, Fm(ν) = F3m(ν).
So ν not Rajchman.
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Davenport-Erdős-LeVeque and Bernoulli convolutions

Theorem (Davenport-Erdős-LeVeque, 1963)

If ∃β > 0, |Fq(ν)| = O
(

1
(log log(|q|))β+1

)
⇒ ν a.e. x is abs. normal.

However Such bounds are hard to obtain!
Bernoulli convolutions For r ∈ (0, 1) let νr ∼

∑
±rn, ± IID

unbiased, {νr} = family of Bernoulli Convolutions.
Q For which r is νr � λ?
Easy cases r < 1

2 ⇒ νr ⊥ λ, ν 1
2
∼ λ[−2,2]

Thm (Erdős, 1939) r−1 is Pisot ⇒ νr not Rajchman ⇒ νr ⊥ λ.
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Thm (Erdős, 1939) r−1 is Pisot ⇒ νr not Rajchman ⇒ νr ⊥ λ.

Amir Algom Pointwise normality and Fourier decay for self-conformal measures
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Self-similar and self-conformal measures

Let {f1, ..., fn}, fi = strict contraction of [−1, 1] (an IFS),

p = (p1, ..., pn) prob. vector, pi > 0.
∃!K ⊆ [−1, 1],K 6= ∅ compact s.t. K =

⋃n
i=1 fi(K)

∃!νp ∈ Prob. mea.(K) s.t.
νp =

∑n
i=1 pi · fiνp, where fiν = push-for. of ν via fi.

1 If every fi is affine, K = self similar set, νp = self similar
measure.
Exp: Fix r ∈ (0, 1) consider {r · x− 1, r · x+ 1} with

p = (1
2 ,

1
2) ⇒ νp = Ber. Conv. with para. r.

2 If every fi is diff., K = self conformal set, νp = self conformal
measure.
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Hochman-Shmerkin approach to normality: Scaling scenery

supp(µ) ⊆ [−1, 1].

Let x ∈ supp(µ). Let t ≥ 0.
µx,t := µB(x,e−t), translated by x, scaled by et.
⇒ 0 ∈ supp(µx,t) ⊆ [−1, 1].

µ generates a dist. P if µ-a.e. x, 1
T

∫ T
0 δµx,tdt→ P .

Exp Furstenberg (1967/2006), Hochman (2009),
Hochman-Shmerkin (2011)

1 Erg. Tq-inv. mea. hν(Tq) > 0. Use: Rokhlin extension.

2 Regular self-conformal mea.
Regular: K =

⋃n
i=1 fi(K) is disjoint.
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Hochman-Shmerkin main argument

Let p 6∼ q,

ν Erg. Tq-inv. with hν(Tq) > 0, or reg. self-conformal
+ ∃i, fi(x) = x, f ′i(x) 6∼ p.
⇒ 1

N

∑N
0 δµx,n log p

→ P

Theorem Host (1995), Lindenstrauss (2001), Hochman-Shmerkin
(2015), Hochman (2021)

ν a.e. x is p-normal.

Martingale argument a.s. 1
N

∑N
n=0

(
δTnp (x) − µx,n log p

)
= 0 Use:

Martingale differences Theorem.
Integral representation If 1

Nk

∑Nk
n=0 δTnp (x) → µ Then:

µ =
∫
ρ dP (ρ),

⇒ µ = λ[0,1].
Major advantage Avoids Fq(ν).
Limitation Need K =

⋃n
i=1 fi(K) disjoint.
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Our setting

Φ = {f1, ..., fn} C1+γ IFS.
Φ is uniformly contracting : maxf∈Φ ||f ′||∞ < 1
ν =

∑
i pifiν non-atomic self conformal mea.

Semi-group {f1, ..., fn}∗ = S-grp gen. by Φ via composition.
The derivative cocycle c : {f1, ..., fn}∗ × [0, 1]→ R
c(g, x) = − log |g′(x)|

Arithmetic assumption ∀t, r ∈ R,
{log |f ′ (y)| : where f(y) = y, f ∈ Φ}
does not belong to t+ rZ.
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c(g, x) = − log |g′(x)|

Arithmetic assumption ∀t, r ∈ R,
{log |f ′ (y)| : where f(y) = y, f ∈ Φ}
does not belong to t+ rZ.
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Normality and Fourier decay for self conformal measures

Theorem 1 (A. - Rodriguez Hertz - Wang)

ν-a.e. x is abs. normal

and ν is a Rajchman measure.

A random walk Fix x ∈ K, g ∈ Φ◦n, Sn(g) = c(g, x)
= − log | (fi1 ◦ ... ◦ fin)′ (x)|
where (i1, ..., in) ∼ pn Note Sn →∞

Meaning of arith. assump. Sn avoids arithmetic progressions.

Stopping time For k > 0, ω ∈ {1, ..., n}N,
τk(ω) := min{m : Sm(fω|m) > k}, fω|m = fω1 ◦ ... ◦ fωm .
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Normality and Fourier decay for self conformal measures

Let p ≥ 2 be integer.

Martingale argument 1
N

∑N
n=0

(
δTnp (xω) − Tnp ◦ fω|τpn (ω)

ν
)

= 0

⇒ Reduction To show ν-a.e. p-normal

Suffices limq Fq
(
Tnp ◦ fω|τpn (ω)

ν
)

= 0 uni. in n.

Note Fq
(
Tnp ◦ fτpnν

)
≈ Fq (ν)

Key idea |Fq (ν)| /
∫ ∣∣Fq (e−Sn(g) · ν

)∣∣ dpn(g) (self conformality)

/
∫ k(n)+1
k(n) |Fq (e−z · ν)| dz

Crucial step use CLT and LLT of Beniost-Quint.
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The case of self similar measures

Def (Breuillard, 2005)

Φ = {ri · x+ ti}i is self similar.
contractions {r1, ..., rn}.
Φ is Diophantine if ∃l, C > 0 ∀|x| � 1

infy∈R maxi∈{1,...n} d( log |ri| · x+ y, Z) ≥ C
|x|l

Geo. meaning Sn quantitatively avoids arith. progressions.

1 Holds for Leb.-a.e. {log |r1|, ..., log |rn|} .
2 Holds if log |r1|, ..., log |rn| are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

1 If ∃ri 6∼ rj , g ∈ C1+γ ⇒ gν-a.e x is abs. normal and gν
Rajchamn.

2 If Dio. ⇒ ∃β > 0, |Fq(ν)| = O
(

1
log(|q|)β

)
.

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman
(1984), Mosquera- Shmerkin (2018).
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Geo. meaning Sn quantitatively avoids arith. progressions.

1 Holds for Leb.-a.e. {log |r1|, ..., log |rn|} .
2 Holds if log |r1|, ..., log |rn| are rationally ind. alg. numbers.

Let ν be a self-similar measure.

Theorem 2 (A. - Rodriguez Hertz - Wang)

1 If ∃ri 6∼ rj , g ∈ C1+γ ⇒ gν-a.e x is abs. normal and gν
Rajchamn.

2 If Dio. ⇒ ∃β > 0, |Fq(ν)| = O
(

1
log(|q|)β

)
.

Related: Hochman-Shmerkin (2015), Li-Sahlsten (2019), Kaufman
(1984), Mosquera- Shmerkin (2018).
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Analytic IFS’s

Theorem 3 (A. - Rodriguez Hertz - Wang)

Let {f1, ..., fn} be a uni. contracting Cω IFS such that:
∃ self conformal measure ν not a Rajchman or not normal.
Then Φ is Cω conjugate to a self similar IFS:
∃g ∈ Cω, r > 0 s.t. {g ◦ fi ◦ g−1}i is a self-similar IFS, with all
contractions ∼ r.

Unified proof of Rajchman property for Cω IFS’s as in
Bourgain and Dyatlov (2017), Sahlsten and Stevens (2020) , and
in some cases of Li. (2018, 2021) But, without poly. rate.
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Symbolic setup

Let {f1, ...fn} as in Thm 1, with a prob. vector p and self
conformal mea. ν.

Let

ω ∈ {1, ..., n}N 7→ xω := lim
m→∞

fω1 ◦ ◦ ◦ fωm(0) ∈ K

Let P = pN ∈ P({1, ..., n}N). Then ν = push-for. of P.
We define a cocycle c : {1, ..., n}∗ × {1, ..., n}N → R

c(a, ω) = − log |f ′a(xω)|

We call this the derivative cocycle.
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A random walk

Let X1(ω) := c(ω1, σ(ω)) = − log |f ′ω1
(xσ(ω))| and

Xn(ω) = X1 ◦ σn−1(ω).
Random walk
Sn(ω) = X1(ω) + ...+Xn(ω) = − log |f ′ω|n

(
xσn(ω)

)
|

Stopping time For k ∈ N and ω ∈ {1, ..., n}N ”stopping time”

τk(ω) := min{m : Sm(ω) ≥ k}

May assume For k ∈ N and ω, Sτk(ω)(ω) ∈ [k, k + 1]
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Sketch of idea

Let q ∈ R be large, choose k ≈ log |q|.

Ms(t) = s · t
Linerization |Fq(ν)|2 ≤

∫ ∣∣∣Fq (M
e
−Sτk(ω)

(ω)ν
)∣∣∣2 dP(ω)

Use: self-conformality.
Local equidistribution∫ ∣∣∣Fq (M

e
−Sτk(ω)

(ω)ν
)∣∣∣2 dP(ω) =

∫ k+1
k |Fq (Me−zν)|2 dz + o(q, k)

Use: CLT and LLT for cocycles, proved by Benoist-Quint.
Oscillatory integral |Fq(ν)|2 ≤

∫ k+1
k |Fq (Me−zν)|2 dz + o(q, k)

Use: Hochman’s Lemma: Let θ ∈ P(R). Then for any r > 0∫ 1
0 |Fq(Me−tθ)|2dt ≤ e2

r·|q| +
∫
θ(Br(y))dθ(y)
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