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Statistical properties

Let (X,f) or (X,0¢) be a measurable dynamical system. Let u be
a (not necessarily invariant) probability measure.
We want to understand, for large n or t, the behaviour of

£ u(g) ::/gof"dﬂ
X
(90)-1(e) = | &o0udn
I'll consider only:

X is a Riemannian manifold, with volume form .
Let m be the corresponding measure, then du= hdm.
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Holes

| am interested also in the case in which there exists a forbidden
set HC X.

Thus the dynamics can be iterated n times only in a subset
Xp=f"YHE) N N FL(HE) N HE of X.

In the last decades several techniques to investigate these problems
have been developed.

However all of them make use of some sort of transfer operator.
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Transfer operator

Note that f may be non invertible.

We restrict to the case in which f.m is absolutely continuous with
respect to m.

Let du= hdm, then df.u = Lh dm for some linear operator L
[the Ruelle transfer operator].
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Transfer operator

Let {pi} be the invertibility partition of f, and set ¢; = f| 1.

Call m,-((p) = m(]lp;(P) and set pPi= %

m(h]ch(pof):Zm(h]chllpi(pof Zm, {(Myech)odj@}of)
=Y m(pi(Lreh) 0 i) = m(QL(L<h))

where

Leh(x) = ), piy)h(y)

yef(x)

which gives an explicit formula for the Ruelle transfer operator.
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Transfer operator

Hence, setting L¢ 1y(h) := Le(Lpch),
m(hllx,@of™) = m(hlye[lx, ,@of" Y of)= m(QLE 1;h).

The problem is thus reduced to studying the operator L 1.
One way is to study the spectrum of L¢ .
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Time dependency

There are important case where the dynamics changes with time.
In this case we have at each time a different dynamics f, and,
possibly, different holes H,,. It follows that we are interested in the
survival set X, = fp_o(HS_{)N---N fofl(Hf) NH§

m(hlx,@ofp_q10---0fy) = m((pon—lyHn—l Ly Hy h)
We have to study the composition of operators, as n increases,
Lfnflaanl T LfvaO

Spectral theory does not apply, we need an alternative.
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Projective cone

A nice idea is to study the action of L on vector lattices V.

Given a closed convex cone C C V, enjoying the property
CN—C =0, we can define an order relation by

f<g <= g—feCcu{0}.
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Hilbert metric

Given C we can define a projective metric © (Hilbert metric):
o(f, g) =sup{L € R" | Af = g}
B(f.g) =influc R | g <uf}

ot - 22

where we take o0 =0 and 3 =« if the corresponding sets are empty.
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Projective cone

In this setting, the basic theorem, due to Garret Birkhoff, is

Theorem

Let V1, and V5 be two vector spaces; L : V1 — V5 a linear map
such that L((1) C G, for two closed convex cones (1 C V1 and
G CVy with GN—C; =0. Let ©; be the Hilbert metric of the

cone (. Setting A= sup ©O(f, g) we have
f.geT(C1)

©y(Lf, Lg) < tanh (?) ©1(f, g) vVf,ge (1

(tanh(s) = 1).
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A simple example

Let us consider the map f € C*(T,T), f' >A> 1.
We want to study the transfer operator
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A simple example: cone contraction

Then, setting D = H%HCO (distortion),

d _ W(y) f"(y)h(y)
PO DB TORE T PO
< |W'(y)] h(y) N Dh(y)

Thus, for 6 € (A71,1),

LC, C Ca?»*—l—D C Coa

provided a > D(c —A"1)7L.
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A simple example: Diameter

Note that, if h € C,, then h(x) > e™? [ h. Then, using the
definition one can compute for each h,g € Csa

=A

(1_'_0)2 4a
h,g) <l
e( 7g)— n ]._6)2 €

Hence, by Birkhoff theorem,
A
©(Lh, Lg) < tanh <4> O(h,g) =:vO(h,g) < O(h, g).

So what?
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A simple example: Contraction

Let || - || be a norm on V, and suppose that it is order preserving.
That is, for each h, g €V,

—h=xg=h=|h|= el

In addition, let n: C — R4 be a homogeneous of degree one and
order preserving function, i.e.

Vhe C, L eR,  n(hh) = An(h)
Vh,g,€ C h=g==n(h)<n(g),

then, given h, g € C C V for which n(h) =n(g) > 0, then

|h—gll < (2 — 1) min{ |l ]}
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A simple example: Contraction

The above applies to || - ||co and n(h) = [; h, yielding, for all
h.g € G,

|27~ £7g]|o < (€2 — 1) min{ | Al co, gl o}

( hg>_1)min{HhHCo,Hgllco}
< v lAmln{HhHCO gllcot-
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A simple example: loss of memory

Consider {f;} with ;>A>1 and H%Hco < C, then

L Lah—Le, - Lagll o < V" P Amin{||hl| o, ]I g]| o}
Hence, for each m < n,

|Lfn . "Lflh —Lg - Lfnfm]'HCO <cvTA min{HLf,HrH . -‘LﬁhHCo, 1}
< cv"Amin{| Al 0,1}
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A simple example: Holes

If we want to study the operator Ls y, then the previous cone will
not work because Lf 1 does not leave invariant (p.
A good substitute is

Ca::{hGBV]h;éO;hZO;\/hga/h}.
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A less simple example: hyperbolic billiards

The simplest hyperbolic Billiard consists of a particle in a bounded
regions which moves in straight lines and collides elastically against
finitely many obstacles.

Such Billiards are hyperbolic, and have stable and unstable
invariant cones.

Let W* the collection of curves with tangent in the stable cone.
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A less simple example: hyperbolic billiards

The basic idea, going back to Liverani 1995, is to consider not the
pointwise value of a density, but only its value when integrated
along a stable curve.

To this end we have to be a bit more specific about the curves

By W*(8) we mean the curves of length between & and 2.

By W*(3) stands for all the curves of length less than 3.
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A less simple example: hyperbolic billiards

If we want to consider h as a function from the space of stable
curves to R, and we want to talk about the regularity of such a
function, then we need to introduce a “distance” among curves.
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A less simple example: hyperbolic billiards

W € W* be the graphs of C? functions over an interval lyy:
W ={Gw(r)=(r,ow(r)):reiw}.
Then
daps (W, W?) = [oun = Qwz[ci(r i) T Hwe A el

if W' and W? lie in the same homogeneity strip and
[l N ly2| > 0; otherwise, we set dgps(W?1, W?) = co.
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A less simple example: hyperbolic billiards

One last thing, we want to integrate h along stable curves, but
against which density? (henceforth called “test function”?)
For W € W*, a € (0,1] and a € RT, define a cone of test
functions by

_ 0 Y(X) _ jad(xy)®
Do W)= {we oW y>0. 1 < s,

where d(-,-) is the arclength distance along W.

Liverani Carlangelo—Tor Vergata Projective cones and Billiards



A less simple example: hyperbolic billiards

f\Vde . f\Ude
Wl = s STV e JaTvame
wewss) JwVamw wew=5) [y Wdmw

veD, 5(W) yeD, (W)

Denote the average value of y on W by
fW\Ilde = |1W|fwl|ldmw.
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A less simple example: hyperbolic billiards

For a,c,A,L > 1, and & small enough, define the cone
Cont® ={f:  IIFll, < LI

sup sup (W r Y gag

WeWs (5) D, 5(W) fwv

YW W2 e WE(8) 1 dgys (W, W?) < 8,Yy; € Dao(W;) 1 di(w1,¥2) =0,
Juafvr  fyefve
v fueve

< dys (W, W18 YA ]
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A less simple example: hyperbolic billiards

Let f be the Poincaré associated to the billiard flow.
Then there exists np >0 and v € (0,1) such that, for all n> ng,

L"Cen1(0) C Gievasi(d).

To have a contraction of L we need mixing of f.
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A less simple example: hyperbolic billiards

If f is mixing, then there exists n; > ng, such that, for all n > nq,

LnCCvAJ-(S) C Cvc,vA,vL(s)-

And
diamCC‘ArL(ﬁ)(CVC,VA,VL(S)) <o
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Applications: Time varing billiards

This applies when the billiard configuration changes in time.

Note that the change can be drastic, for example after every
collision the obstacle configuration can change completely, not just
a small perturbation.
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Applications: Chaotic scattering

—

L

Incoming particle beam

Figure: Obstacle configuration for which the non-eclipse condition fails
and the box R (dashed line).
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Applications: random Lorentz gas

a=(1,0);b=(1,1);c=(1,0)

Random obstacles By,(z) Poincaré section C; and gates li’,-
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Applications: random Lorentz gas

There exist C, >0 and ¥ € (0,1) such that for P-a.e. @ € Q, if the
particle belongs to the cell zero with initial condition distributed
according to f € C. () with fo =1, then foralln>m>0
and all paths (w,...,wp,),

UPCO(Wkn ‘ Wiy - - - Wkn—l) — P&me(wkn ’ Wi, - - Wk,,,1)| < G
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