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Statistical properties

Let (X , f ) or (X ,φt) be a measurable dynamical system. Let µ be
a (not necessarily invariant) probability measure.
We want to understand, for large n or t, the behaviour of

f n∗ µ(g) :=

ˆ
X
g ◦ f ndµ

(φt)∗µ(g) :=

ˆ
X
g ◦φtdµ

I’ll consider only:
X is a Riemannian manifold, with volume form ω.
Let m be the corresponding measure, then dµ = hdm.
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Holes

I am interested also in the case in which there exists a forbidden
set H ⊂ X .
Thus the dynamics can be iterated n times only in a subset
Xn = f −n+1(Hc)∩·· ·∩ f −1(Hc)∩Hc of X .
In the last decades several techniques to investigate these problems
have been developed.
However all of them make use of some sort of transfer operator.
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Transfer operator

Note that f may be non invertible.
We restrict to the case in which f∗m is absolutely continuous with
respect to m.
Let dµ = hdm, then df∗µ = Lh dm for some linear operator L
[the Ruelle transfer operator].

Liverani Carlangelo–Tor Vergata Projective cones and Billiards



Transfer operator

Let {pi} be the invertibility partition of f , and set φi = f |−1
pi .

Call mi (ϕ) = m(1pi ϕ) and set ρi = df∗mi
dm

m(h1Hc ϕ◦ f ) = ∑
i

m(h1Hc1pi ϕ◦ f ) = ∑
i

mi ({(1Hch)◦φiϕ}◦ f )

= ∑
i

m(ρi (1Hch)◦φiϕ) = m(ϕL(1Hch))

where
Lf h(x) = ∑

y∈f −1(x)

ρi (y)h(y)

which gives an explicit formula for the Ruelle transfer operator.
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Transfer operator

Hence, setting Lf ,H(h) := Lf (1Hch),

m(h1Xnϕ◦ f n) = m(h1Hc [1Xn−1ϕ◦ f n−1]◦ f ) = m(ϕLn
f ,Hh).

The problem is thus reduced to studying the operator Lf ,H .
One way is to study the spectrum of Lf ,H .
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Time dependency

There are important case where the dynamics changes with time.
In this case we have at each time a different dynamics fn and,
possibly, different holes Hn. It follows that we are interested in the
survival set Xn = fn−2(Hc

n−1)∩·· ·∩ f −1
0 (Hc

1 )∩Hc
0

m(h1Xnϕ◦ fn−1 ◦ · · · ◦ f0) = m(ϕLfn−1,Hn−1 · · ·Lf0,H0h)

We have to study the composition of operators, as n increases,

Lfn−1,Hn−1 · · ·Lf0,H0

Spectral theory does not apply, we need an alternative.
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Projective cone

A nice idea is to study the action of L on vector lattices V.

Given a closed convex cone C ⊂ V, enjoying the property
C ∩−C = /0, we can define an order relation by

f � g ⇐⇒ g − f ∈ C ∪{0}.
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Hilbert metric

Given C we can define a projective metric Θ (Hilbert metric):

α(f , g) =sup{λ ∈ R+ | λf � g}
β(f , g) =inf{µ ∈ R+ | g � µf }

Θ(f , g) =log

[
β(f , g)

α(f , g)

]
where we take α = 0 and β = ∞ if the corresponding sets are empty.
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Projective cone

In this setting, the basic theorem, due to Garret Birkhoff, is

Theorem
Let V1, and V2 be two vector spaces; L : V1→ V2 a linear map
such that L(C1)⊂ C2, for two closed convex cones C1 ⊂ V1 and
C2 ⊂ V2 with Ci ∩−Ci = /0. Let Θi be the Hilbert metric of the
cone Ci . Setting ∆ = sup

f ,g∈T (C1)
Θ2(f , g) we have

Θ2(Lf , Lg)≤ tanh

(
∆

4

)
Θ1(f , g) ∀f , g ∈ C1

(tanh(∞)≡ 1).
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A simple example

Let us consider the map f ∈ C 2(T,T), f ′ ≥ λ > 1.
We want to study the transfer operator

Lh(x) = ∑
y∈f −1(x)

h(y)

f ′(y)
.

Consider the cone

Ca =

{
h ∈ C 1 : h ≥ 0 ;

|h′(x)|
h(x)

≤ a

}
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A simple example: cone contraction

Then, setting D = ‖ f ′′

(f ′)2 ‖C 0 (distortion),

∣∣∣∣ ddx Lh(x)

∣∣∣∣=

∣∣∣∣∣ ∑
y∈f −1(x)

h′(y)

f ′(y)2
− f ′′(y)h(y)

f ′(y)3

∣∣∣∣∣
≤ ∑

y∈f −1(x)

|h′(y)|
h(y)

h(y)

f ′(y)2
+D

h(y)

f ′(y)

≤ (aλ
−1 +D)Lh(x).

Thus, for σ ∈ (λ−1,1),

LCa ⊂ Caλ−1+D ⊂ Cσa

provided a≥ D(σ−λ−1)−1.
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A simple example: Diameter

Note that, if h ∈ Ca, then h(x)≥ e−a
´
T h. Then, using the

definition one can compute for each h,g ∈ Cσa

Θ(h,g)≤ ln
(1 + σ)2

1−σ)2
e4a = ∆

Hence, by Birkhoff theorem,

Θ(Lh,Lg)≤ tanh

(
∆

4

)
Θ(h, g) =: νΘ(h, g) < Θ(h, g).

So what?
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A simple example: Contraction

Let ‖ · ‖ be a norm on V, and suppose that it is order preserving.
That is, for each h, g ∈ V,

−h � g � h =⇒‖h‖ ≥ ‖g‖.

In addition, let n : C → R+ be a homogeneous of degree one and
order preserving function, i.e.

∀h ∈ C , λ ∈ R+ n(λh) = λn(h)

∀h,g ,∈ C h � g =⇒ n(h)≤ n(g),

then, given h, g ∈ C ⊂ V for which n(h) = n(g) > 0, then

‖h−g‖ ≤
(
eΘ(h,g)−1

)
min{‖h‖,‖g‖}.
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A simple example: Contraction

The above applies to ‖ · ‖C 0 and n(h) =
´
T h, yielding, for all

h,g ∈ Ca,

‖Lnh−Lng‖C 0 ≤
(
eΘ(Lnh,Lng)−1

)
min{‖h‖C 0 ,‖g‖C 0}

≤
(
eνnΘ(h,g)−1

)
min{‖h‖C 0 ,‖g‖C 0}

≤ cν
n−1∆min{‖h‖C 0 ,‖g‖C 0}.
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A simple example: loss of memory

Consider {fi} with fi ≥ λ > 1 and ‖ f ′′i
(f ′i )2 ‖C 0 ≤ C , then

|Ln · · ·Lf1h−Lfn · · ·Lf1g‖C 0 ≤ cν
n−1∆min{‖h‖C 0 ,‖g‖C 0}

Hence, for each m < n,∣∣Lfn · · ·Lf1h−Lfn · · ·Lfn−m1
∥∥

C 0 ≤ cν
m∆min{‖Lfn−m−1 · · ·Lf1h‖C 0 ,1}

≤ cν
m∆min{‖h‖C 0 ,1}
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A simple example: Holes

If we want to study the operator Lf ,H , then the previous cone will
not work because Lf ,H does not leave invariant C0.
A good substitute is

Ca :=

{
h ∈ BV | h 6≡ 0; h ≥ 0;

∨
h ≤ a

ˆ
h

}
.
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A less simple example: hyperbolic billiards

The simplest hyperbolic Billiard consists of a particle in a bounded
regions which moves in straight lines and collides elastically against
finitely many obstacles.
Such Billiards are hyperbolic, and have stable and unstable
invariant cones.
Let W s the collection of curves with tangent in the stable cone.
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A less simple example: hyperbolic billiards

The basic idea, going back to Liverani 1995, is to consider not the
pointwise value of a density, but only its value when integrated
along a stable curve.
To this end we have to be a bit more specific about the curves
By W s(δ) we mean the curves of length between δ and 2δ.
By W s

−(δ) stands for all the curves of length less than δ.
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A less simple example: hyperbolic billiards

If we want to consider h as a function from the space of stable
curves to R, and we want to talk about the regularity of such a
function, then we need to introduce a“distance” among curves.
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A less simple example: hyperbolic billiards

W ∈W s be the graphs of C 2 functions over an interval IW :

W = {GW (r) = (r ,ϕW (r)) : r ∈ IW }.

Then

dW s (W 1,W 2) = |ϕW 1−ϕW 2 |C1(IW 1∩IW 2 ) + |IW 14 IW 2 |,

if W 1 and W 2 lie in the same homogeneity strip and
|IW 1 ∩ IW 2 |> 0; otherwise, we set dW s (W 1,W 2) = ∞.
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A less simple example: hyperbolic billiards

One last thing, we want to integrate h along stable curves, but
against which density? (henceforth called “test function”?)
For W ∈W s , α ∈ (0,1] and a ∈ R+, define a cone of test
functions by

Da,α(W ) =

{
ψ ∈ C 0(W ) : ψ > 0,

ψ(x)

ψ(y)
≤ ead(x ,y)α

}
,

where d(·, ·) is the arclength distance along W .
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A less simple example: hyperbolic billiards

|||f |||+ = sup
W∈W s(δ)
ψ∈Da,β(W )

´
W f ψdmW´
W ψdmW

, |||f |||−= inf
W∈W s(δ)
ψ∈Da,β(W )

´
W f ψdmW´
W ψdmW

,

Denote the average value of ψ on W byffl
W ψdmW = 1

|W |
´
W ψdmW .
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A less simple example: hyperbolic billiards

For a,c ,A,L> 1, and δ small enough, define the cone

Cc,A,L(δ) =
{
f : |||f |||+ ≤ L|||f |||−;

sup
W∈W s

−(δ)

sup
ψ∈Da,β(W )

|W |−q
|
´
W f ψ|ffl
W ψ

≤ Aδ
1−q|||f |||−;

∀W 1,W 2 ∈W s
−(δ) : dW s (W 1,W 2)≤ δ,∀ψi ∈Da,α(Wi ) : d∗(ψ1,ψ2) = 0,∣∣∣∣

´
W 1 f ψ1ffl
W 1 ψ1

−
´
W 2 f ψ2ffl
W 2 ψ2

∣∣∣∣≤ dW s (W 1,W 2)γ
δ

1−γcA|||f |||−
}
.
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A less simple example: hyperbolic billiards

Let f be the Poincarè associated to the billiard flow.
Then there exists n0 > 0 and ν ∈ (0,1) such that, for all n ≥ n0,

LnCc,A,L(δ)⊂ Cνc,νA,3L(δ).

To have a contraction of L we need mixing of f .
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A less simple example: hyperbolic billiards

If f is mixing, then there exists n1 ≥ n0, such that, for all n ≥ n1,

LnCc,A,L(δ)⊂ Cνc,νA,νL(δ).

And
diamCc,A,L(δ)(Cνc,νA,νL(δ)) < ∞
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Applications: Time varing billiards

This applies when the billiard configuration changes in time.

Note that the change can be drastic, for example after every
collision the obstacle configuration can change completely, not just
a small perturbation.
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Applications: Chaotic scattering

Incoming particle beam

Figure: Obstacle configuration for which the non-eclipse condition fails
and the box R (dashed line).
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Applications: random Lorentz gas

Bω(a) Bω(b)

Bω(0)
Bω(c)

a = (1,0);b = (1,1);c = (1,0)

C2 C1

C3 C4

C5 R̂1R̂3

R̂2

R̂4

r

ρ

Random obstacles Bω(z) Poincaré section Ci and gates R̂i
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Applications: random Lorentz gas

There exist C∗ > 0 and ϑ ∈ (0,1) such that for P-a.e. ω ∈ Ω, if the
particle belongs to the cell zero with initial condition distributed
according to f ∈ Cc,A,L(δ) with

´
M f = 1, then for all n >m ≥ 0

and all paths (w1, . . . ,wn),∣∣Pω(wkn | wk0 . . .wkn−1)−Pξzmω(wkn | wkm . . .wkn−1)
∣∣≤ C∗ϑ

n−m.
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