The strong unstable foliation of an Anosov diffeomorphism [] Partial hyperbolicity: M = closed Riem. mfld F.M.S differ. a partially hyperbolic If I  $TM = E^{un} \oplus E^{c} \oplus E^{ss}$  Df  $E^{c} can be$ chosen to be unstable center stakle, chosen to be vectors dominated uniform. uniformly by contraction fis <u>Anosov</u>. E<sup>ss</sup>, E<sup>nn</sup> always integrable, fangut to f-invariant folins N<sup>ss</sup>, M<sup>nn</sup> Question (D. Fisher) How do the leaves of 21" distribute  $M M^2$ Examples .  $M = T^{3} f(x) = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \chi$  $\mathcal{R}=(\chi_1,\chi_2,\chi_3)$  $\binom{2}{1} \binom{1}{1} \times \binom{1}{1} \times \binom{1}{1}$  $\mathcal{N}_{\mathcal{I}}^{\mathcal{I}}(\mathbf{x}) = \mathcal{N}_{\mathcal{I}}^{\mathcal{I}}(\mathbf{x}_{1}, \mathbf{x}_{2}) \times \{\mathbf{x}_{3}\}^{\mathcal{I}}$ W<sup>ss</sup>, N<sup>ua</sup> linear ∀xEM  $\overline{\mathcal{H}^{uu}(x)} = \Pi^{Z} \times \{ X_{3} \}.$ 2)  $M = SL(2, \mathbb{R})$   $\Gamma = cocompact$ f = left mult. by  $\begin{pmatrix} a & o \\ o & \bar{a}' \end{pmatrix}$  [a] > 1 $\frac{1}{2} \sum_{\substack{i \in V_{t} \\ i \in V_{t}}} \frac{1}{2} \sum_{\substack{i \in V_{t}}} \frac{1}{2} \sum_{\substack{i \in V_{t} \\ i \in V_{t}}} \frac{1}{2} \sum_{\substack{i \in V_{t$  $\mathcal{W}^{ss} = \cdots \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$ 

Anosov differs with expanding center  
F:Ms Anosov has expanding center (f  
TM = E<sup>u</sup> 
$$\oplus$$
 E<sup>2</sup> Stf (Anosov)  
E<sup>u</sup> = E<sup>un</sup>  $\oplus$  E<sup>e</sup> via R  
Remark: If M = TTR then f is conjagate to linear  
thosev. &  $h(\mathcal{M}_{J}^{u}) = \mathcal{M}_{A}^{u}$   $h(\mathcal{M}_{J}^{e}) = \mathcal{M}_{A}^{u}$   
But do not expect  $h(\mathcal{M}_{J}^{u}) = \mathcal{M}_{A}^{u}$   $= even if this
exists
Theorem 1 (Avila-Croinsier-W, in progress) C' generically among
Anosov with expanding center, the foll  $\mathcal{M}_{A}^{uu}$  is minimal,  
Theorem 2 (ACW) Fix r>1.  $\exists$  C' open C'-dense set  
among Anosovs with I-dim'l expanding center  
cd-  $\mathcal{M}_{A}^{uu}$  is minimal.  
Theorem 2 (ACW) Fix r>1.  $\exists$  C' open C'-dense set  
among Anosovs with I-dim'l expanding center  
cd-  $\mathcal{M}_{A}^{uu}$  is minimal.  
Theorem 2 (ACW) Fix r>1.  $\exists$  C' open C'-dense set  
among Anosovs with I-dim'l expanding center  
cd-  $\mathcal{M}_{A}^{uu}$  is minimal.  
Theorem 2 (ACW) + Eskin- Polyic-Zhang) If f: T<sup>3</sup>5  
Anosov with I-d expanding center,  $\mathcal{M}_{A}^{uu}$  is minimal.  
(Answers Q.  $\oplus$  G-M-K.)  
Measure-theoretic version, uses work A. Katz.  
  
Proofs  
Thim 1 s 2: construct horseshoe-like blenders ~ C' genere  
 $\mathcal{M}_{A}^{uu}$  aminimal.  
Thim 2 e 3: dim E<sup>c</sup> = 1 openness in thin 2 ...  
Kuy property s-transversality  $\notin$   $\mathcal{M}_{A}^{uu}$   
It f be An. W/ I-d exp. center.$ 



