Amenability of covers and critical exponents

Seminar

Chicago, march 2021

Work in collaboration with
Rémi Coulon, Rhiannon Dougall and Samuel Tapie

Critical exponents

A discrete group Γ acts on a hyperbolic space X（for ex．$X=\mathbb{H}^{n}$ ）．
The critical exponent of this action is

$$
\delta_{\Gamma}=\limsup _{R \rightarrow \infty} \frac{1}{R} \log \#\{\gamma \in \Gamma, d(o, \gamma o) \leq R\} .
$$

Critical exponents

Coincides with
\rightarrow the dimension of the (radial) limit set $\Lambda_{\text {rad }}(\Gamma)$ inside ∂X
\rightarrow the entropy of the geodesic flow on $T^{1}(X / \Gamma)$

Of course, if $\Gamma^{\prime}<\Gamma, \delta_{\Gamma^{\prime}} \leq \delta_{\Gamma}$.

Question: When do we have equality $\delta_{\Gamma^{\prime}}=\delta_{\Gamma}$?

Our result

Theorem: (Coulon-Dougall-Sch.-Tapie 2018) Let 「 be a discrete group acting on a proper hyperbolic space X, with entropy gap at infinity $\delta_{\Gamma}^{\infty}<\delta_{\Gamma}$. Let $\Gamma^{\prime}<\Gamma$ be a subgroup. Then

$$
\delta_{\Gamma^{\prime}}=\delta_{\Gamma} \quad \text { iff } \quad \Gamma / \Gamma^{\prime} \quad \text { amenable } .
$$

Result already known in particular cases:
\rightarrow Brooks (81,85) : convex-cocompact actions on \mathbb{H}^{n}, with $\delta_{\Gamma}>n / 2$
\rightarrow Grigorchuk, Cohen $(80,82)$: action of a free group on its Cayley graph
\rightarrow Stadlbauer: convex-cocompact (and some geom. finite) actions on \mathbb{H}^{n}
\rightarrow Dougall-Sharp : convex-cocompact actions in variable neg. curvature
\rightarrow Coulon-Dal'bo-Sambusetti : cocompact actions on CAT (-1)-spaces
\rightarrow Roblin (03) : amenability implies equality when $\Gamma^{\prime} \triangleleft \Gamma$

Amenability

The group Γ^{\prime} is coamenable in Γ if the regular representation

$$
\rho: \Gamma \rightarrow \mathcal{U}\left(\ell^{2}\left(\Gamma / \Gamma^{\prime}\right)\right)
$$

defined by $\rho(\gamma)(\varphi)(\cdot)=\varphi(\gamma \cdot)$ almost admits invariant vectors: $\|\rho(\gamma) \varphi-\varphi\|<\varepsilon\|\varphi\|$.

Typical amenable group: $\mathbb{Z}, \mathbb{Z}^{d}$ Typical nonamenable group: \mathbb{F}^{n}

(Non)-Amenable covers

And an attempt to draw a \mathbb{F}_{2}-cover of a compact hyperbolic surface

Entropy gap at infinity

The group Γ acts on X (for ex. $X=\mathbb{H}^{n}$)
Let $K \subset X$ be a compact set, $o \in K$. Define

$$
\Gamma_{K}=\{\gamma \in \Gamma,[o, \gamma o] \cap \Gamma K \subset K \cup \gamma K\} \subset \Gamma .
$$

The entropy at infinity is

$$
\delta_{\Gamma}^{\infty}=\inf _{K \subset X} \delta_{\Gamma_{K}} \leq \delta_{\Gamma}
$$

The action of Γ on X admits a entropy gap at infinity when $\delta_{\Gamma}^{\infty}<\delta_{\Gamma}$.

We call these actions strongly positively recurrent actions.

Manifolds with(out) entropy gap at infinity

Typical examples without entropy gap: infinite covers.

Typical examples with entropy gap: compact or convex-cocompact manifolds, geometrically finite locally symmetric manifolds, Schottky products, Ancona surfaces.

Optimality of the assumptions

Result false without hyperbolicity:
Γ amenable group with exponential growth, $X=\operatorname{Cay}(\Gamma), \Gamma^{\prime}=\{1\}$.
Then $\delta_{\Gamma}>0$ whereas $\delta_{\Gamma^{\prime}}=0$, and $\Gamma / \Gamma^{\prime}=\Gamma$ is amenable
On higher rank symmetric spaces, if Γ / Γ^{\prime} is amenable, then $\delta_{\Gamma}=\delta_{\Gamma^{\prime}}$ (Glorieux-Tapie).

Result false without critical gap:
Let $S=X / \Gamma$ be a negatively curved surface without critical gap.
For example, S is a \mathbb{Z}-cover of a compact hyperbolic surface. Build a \mathbb{F}_{2}-cover $S^{\prime}=X / \Gamma^{\prime}$ of S by cutting S along two disjoint nonseparating closed curves. Then there is no critical gap:

$$
\delta_{\Gamma} \geq \delta_{\widehat{\Gamma}} \geq \delta_{\widehat{\Gamma}}^{\infty}=\delta_{\Gamma}^{\infty}=\delta_{\Gamma}
$$

Recall the Patterson-Sullivan construction

The Poincaré series

$$
P(s)=\sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)}
$$

has critical exponent δ_{Γ}. For $s>\delta_{\Gamma}$, build a measure on $X \cup \partial X$

$$
\nu^{s}=\frac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)} \mathcal{D}_{\gamma o}
$$

When $s \rightarrow \delta_{\Gamma}$, get ν on ∂X as any weak limit of ν^{s}. The measure ν on ∂X is quasi-invariant under Γ.

The unit tangent bundle satisfies $T^{1} X \simeq \partial X \times \partial X \backslash$ Diag $\times \mathbb{R}$ Build a 「-invariant product equivalent to $\nu \times \nu \times d t$ Get Bowen-Margulis measure $m_{B M}$ on $T^{1} X / \Gamma$ (ergodic, mixing...)

Strategy of the proof

Step 1: Twisted Poincaré series $A(s)=\sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)} \rho(\gamma)$. It has
a critical exponent $\delta_{\rho} \in\left[\delta_{\Gamma^{\prime}}, \delta_{\Gamma}\right]$ such that for $s>\delta_{\rho}$, $A(s) \in \mathcal{B}\left(\ell^{2}\left(\Gamma / \Gamma^{\prime}\right)\right)$.
Step 2: Build a twisted Patterson-Sullivan measure a^{ρ} on ∂X with (nonzero) values in $\mathcal{B}\left(\ell^{2}\left(\Gamma / \Gamma^{\prime}\right)\right)$, by taking limits of

$$
\frac{1}{\|A(s)\|} \sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)} \rho(\gamma) \mathcal{D}_{\gamma o} .
$$

Step 3: When $\delta_{\rho}=\delta_{\Gamma}$ and $\delta_{\Gamma}^{\infty}<\delta_{\Gamma}$, get absolute continuity of a^{ρ} w.r.t. the classical Patterson-Sullivan measure ν.

Step 4: By an ergodicity argument, deduce that $a^{\rho}=\Psi . \nu$ where $\Psi \in \mathcal{B}\left(\ell^{2}\left(\Gamma / \Gamma^{\prime}\right)\right)$ is a "multiplicative constant".
Step 5: By construction of a^{ρ} and ν, Ψ "takes values" in the set of almost invariant vectors.

Step 1: The twisted Poincaré series

Study $A(s)=\sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)} \rho(\gamma)$.
The Hilbert space $\mathcal{H}=\ell^{2}\left(\Gamma / \Gamma^{\prime}, \mathbb{R}\right)$ has a partial order compatible with the norm : $\phi \geq 0$ if for all $y \in \Gamma / \Gamma^{\prime}, \phi(y) \geq 0$.

Define the associated positive cone \mathcal{H}_{+}. A bounded operator on \mathcal{H} is positive if it preserves \mathcal{H}_{+}. All $\rho(\gamma)$ are positive.

The Poincaré series $A(s)$ is bounded if $\exists M>0$, s.t. for all finite $S \subset \Gamma,\left\|\sum_{\gamma \in S} e^{-s d(o, \gamma o)} \rho(\gamma)\right\| \leq M$. The critical exponent

$$
\delta_{\rho}=\inf \{s \in \mathbb{R}, A(s) \text { is bounded }\}
$$

is well defined. Easy to check that

$$
\delta_{\Gamma^{\prime}} \leq \delta_{\rho} \leq \delta_{\Gamma}
$$

The assumption $\delta_{\Gamma^{\prime}}=\delta_{\Gamma}$ is only used to guarantee that $\delta_{\rho}=\delta_{\Gamma}$.

Step 2: The twisted Patterson-Sullivan measure

Let $\mathcal{H}=\ell^{2}\left(\Gamma / \Gamma^{\prime}\right)$. Use a nonprincipal ultrafilter $\omega: \mathcal{P}(\mathbb{N}) \rightarrow\{0,1\}$. Build a larger Hilbert space $\mathcal{H}_{\omega}=\lim _{\omega} \mathcal{H}$, and extend ρ to $\rho_{\omega}: \Gamma \rightarrow \mathcal{U}\left(\mathcal{H}_{\omega}\right)$. We still have a partial order on \mathcal{H}_{ω}.
A sequence $\Phi=\left(\phi_{n}\right)$ of almost invariant vectors in $\mathcal{H}^{\mathbb{N}}$ becomes an invariant vector Φ under ρ_{ω} on \mathcal{H}_{ω}.
Choose $s_{n} \rightarrow \delta_{\rho}$. Define

$$
a_{n}^{\rho}=\frac{1}{\left\|A\left(s_{n}\right)\right\|} \sum_{\gamma \in \Gamma} e^{-s_{n} d(o, \gamma)} \rho(\gamma) \mathcal{D}_{\gamma 0} .
$$

For $f \in C(X \cup \partial X), \int f d a_{n}^{\rho}$ belongs to $\mathcal{B}(\mathcal{H})$, with norm uniformy bounded in n.
Define $a^{\rho}: C(X \cup \partial X) \rightarrow \mathcal{B}\left(\mathcal{H}_{\omega}\right)$ positive, linear, continuous by

$$
a^{\rho}(f):=\lim _{\omega} \int f d a_{n}^{\rho} \in \mathcal{B}\left(\mathcal{H}_{\omega}\right) .
$$

Nonzero measure on ∂X with values in $\mathcal{B}\left(\mathcal{H}_{\omega}\right)$

Step 3: Absolute continuity (I)

A shadow is $\mathcal{O}_{o}(B(y, r))=\{\xi \in \partial X,(o \xi) \cap B(y, r) \neq \emptyset\}$.

The classical Patterson-Sullivan measure ν is a weak limit of $\frac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-s d(o, \gamma o)} \mathcal{D}_{\gamma o}$.

Sullivan's Shadow lemma says that $\nu\left(\mathcal{O}_{o}(B(\gamma o, r)) \asymp e^{-\delta_{\Gamma} d(o, \gamma o)}\right.$.
A half-Shadow lemma for $a^{\rho}: \| a^{\rho}\left(\mathcal{O}_{\circ}(B(\gamma o, r)) \| \leq e^{-\delta_{\Gamma} d(o, \gamma o)}\right.$.

Step 3 : Absolute continuity (II)

Absolute continuity on shadows $\| a^{\rho}\left(\mathcal{O}_{o}(B(\gamma o, r)) \| \leq \nu\left(\mathcal{O}_{o}(B(\gamma o, r))\right.\right.$.

The entropy gap allows to show that points lying in infinitely many shadows have full ν and a^{ρ}-measure.

Only but crucial place where we need the entropy gap.
By a Vitali type argument, we deduce that $0 \neq a^{\rho} \ll \nu$.
For all $\phi \in \mathcal{H}, a^{\rho} . \phi \ll \nu$.
There exists a Radon-Nikodym derivative $D(\phi) \in L^{\infty}(X \cup \partial X, \mathcal{H})$, such that

$$
\int f d\left(a^{\rho} . \phi\right)=\int f D(\phi) d \nu
$$

Step 4 : Ergodicity

* The map $\phi \in \mathcal{H} \rightarrow D(\phi) \in L^{\infty}\left((\partial X, \nu), \mathcal{H}_{\omega}\right)$ is linear and satisfies

$$
\rho(\gamma) \circ D(\phi) \circ \gamma^{-1}=D(\phi)
$$

* The map $(\xi, \eta) \in(\partial X)^{2} \rightarrow<D(\phi)(\xi), D(\phi)(\eta)>_{\mathcal{H}_{\omega}} \in \mathbb{R}$ is a Γ-invariant real-valued map.
\rightarrow The measure $\nu \times \nu$ on $\partial X \times \partial X$ is ergodic w.r.t. the Γ-action
Hint: $T^{1} X \simeq \partial X \times \partial X \times \mathbb{R}$. The PS measure ν on ∂X allows to build the Bowen-Margulis measure $m_{B M} \sim \nu \times \nu \times d t$ on $T^{1} X / \Gamma$. By Hopf argument, when X is a $\operatorname{CAT}(-1)$-space, it is an ergodic invariant measure for the geodesic flow. Also true for X Gromov-hyperbolic (Bader-Furman strategy).
\rightarrow We deduce $D(\phi)$ is $\nu \times \nu$-a.s. constant.

Step 5 : Conclusion

We already know that (for any $\phi \in \mathcal{H}_{\omega}$, say with $\|\phi\|=1$)

$$
\rho(\gamma) \circ D(\phi) \circ \gamma^{-1}=D(\phi)
$$

Moreover, as a map defined on $X \cup \partial X$, it is a.s. constant.

Therefore, for all $\gamma \in \Gamma$, we get the equality in \mathcal{H}_{ω}

$$
\rho(\gamma) \cdot D(\phi)=D(\phi)
$$

We got it !! $D(\phi)$ is our ρ-invariant vector in \mathcal{H}_{ω}.

More on the entropy gap
Show that ν and a^{ρ} are supported on $\Lambda_{r a d}(\Gamma)$ (same proof).

$$
\Lambda_{r a d}(\Gamma) \supset \Lambda_{r a d}^{K}(\Gamma)=\{\xi \in \Lambda(\Gamma),[\circ \xi) \text { returns i.o. in } \Gamma . K\}
$$

Define
$U_{K}(T)=\{y \in X \cup \partial X$, [oy) does not return in K until time $T\}$.

Entropy gap $\delta_{\Gamma}^{\infty}<\delta_{\Gamma}$ allows to show $\nu\left(U_{K}^{T}\right) \leq e^{\left(\delta_{\Gamma_{K}}-\delta_{\Gamma}\right) T}$ Deduce

$$
\nu\left(\cap_{T>0} U_{K}^{T}\right)=0 \quad \text { and } \quad \nu\left(\Gamma .\left(\cap_{T>0} U_{K}^{T}\right)=0\right.
$$

The "easy" direction

Kesten Criterion: any random walk on Γ / Γ^{\prime} has spectral radius $=1$.

Build a sequence of random walks w.r.t. uniform spherical measures on the spheres $S(e, n)$.

Barta's trick: estimate spectral radius on positive functions.

Estimate uniformly from above their spectral radius by $\exp \left(n\left(\delta_{\Gamma^{\prime}}-\delta_{\Gamma}\right)\right)$.

Roblin needed $\Gamma^{\prime} \triangleleft \Gamma$. We remove this assumption, but use $\delta_{\Gamma}^{\infty}<\delta_{\Gamma}$

Thank you！

