Amenability of covers and critical exponents

Seminar

Chicago, march 2021

Work in collaboration with Rémi Coulon, Rhiannon Dougall and Samuel Tapie

Critical exponents

A discrete group Γ acts on a hyperbolic space X (for ex. $X = \mathbb{H}^n$).

The critical exponent of this action is

$$\delta_{\Gamma} = \limsup_{R \to \infty} \frac{1}{R} \log \# \{ \gamma \in \Gamma, \ d(o, \gamma o) \leq R \}.$$

Critical exponents

Coincides with

- \rightarrow the dimension of the (radial) limit set $\Lambda_{rad}(\Gamma)$ inside ∂X
- \rightarrow the entropy of the geodesic flow on $T^1(X/\Gamma)$

Of course, if $\Gamma' < \Gamma$, $\delta_{\Gamma'} \leq \delta_{\Gamma}$.

Question : When do we have equality $\delta_{\Gamma'} = \delta_{\Gamma}$?

Our result

Theorem : (Coulon-Dougall-Sch.-Tapie 2018) Let Γ be a discrete group acting on a proper hyperbolic space X, with *entropy gap at infinity* $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$. Let $\Gamma' < \Gamma$ be a subgroup. Then

 $\delta_{\Gamma'} = \delta_{\Gamma}$ iff Γ/Γ' amenable.

Result already known in particular cases :

- ightarrow Brooks (81,85) : convex-cocompact actions on \mathbb{H}^n , with $\delta_{\Gamma}>n/2$
- \rightarrow Grigorchuk, Cohen (80, 82): action of a free group on its Cayley graph
- \rightarrow Stadlbauer: convex-cocompact (and some geom. finite) actions on \mathbb{H}^n
- \rightarrow Dougall-Sharp : convex-cocompact actions in variable neg. curvature
- \rightarrow Coulon-Dal'bo-Sambusetti: cocompact actions on CAT(-1)-spaces
- \rightarrow Roblin (03): amenability implies equality when $\Gamma' \triangleleft \Gamma$

Amenability

The group Γ' is coamenable in Γ if the regular representation

$$\rho: \Gamma \to \mathcal{U}(\ell^2(\Gamma/\Gamma'))$$

defined by $\rho(\gamma)(\varphi)(\cdot) = \varphi(\gamma \cdot)$ almost admits invariant vectors: $\|\rho(\gamma)\varphi - \varphi\| < \varepsilon \|\varphi\|.$

Typical amenable group : \mathbb{Z}, \mathbb{Z}^d Typical nonamenable group : \mathbb{F}^n

(Non)-Amenable covers

And an attempt to draw a \mathbb{F}_2 -cover of a compact hyperbolic surface

Entropy gap at infinity

The group Γ acts on X (for ex. $X = \mathbb{H}^n$) Let $K \subset X$ be a compact set, $o \in K$. Define

$$\Gamma_{\mathcal{K}} = \{\gamma \in \Gamma, [o, \gamma o] \cap \Gamma \mathcal{K} \subset \mathcal{K} \cup \gamma \mathcal{K}\} \subset \Gamma.$$

The entropy at infinity is

$$\delta_{\Gamma}^{\infty} = \inf_{K \subset X} \delta_{\Gamma_K} \leq \delta_{\Gamma} \,.$$

The action of Γ on X admits a entropy gap at infinity when $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$.

We call these actions strongly positively recurrent actions.

Manifolds with(out) entropy gap at infinity

Typical examples without entropy gap: infinite covers.

Typical examples with entropy gap : compact or convex-cocompact manifolds, geometrically finite locally symmetric manifolds, Schottky products, Ancona surfaces.

Optimality of the assumptions

Result false without hyperbolicity:

 Γ amenable group with exponential growth, $X = Cay(\Gamma)$, $\Gamma' = \{1\}$. Then $\delta_{\Gamma} > 0$ whereas $\delta_{\Gamma'} = 0$, and $\Gamma/\Gamma' = \Gamma$ is amenable

On higher rank symmetric spaces, if Γ/Γ' is amenable, then $\delta_{\Gamma} = \delta_{\Gamma'}$ (Glorieux-Tapie).

Result false without critical gap:

Let $S = X/\Gamma$ be a negatively curved surface without critical gap. For example, S is a \mathbb{Z} -cover of a compact hyperbolic surface. Build a \mathbb{F}_2 -cover $S' = X/\Gamma'$ of S by cutting S along two disjoint nonseparating closed curves. Then there is no critical gap :

$$\delta_{\Gamma} \geq \delta_{\widehat{\Gamma}} \geq \delta_{\widehat{\Gamma}}^{\infty} = \delta_{\Gamma}^{\infty} = \delta_{\Gamma}$$
 .

Recall the Patterson-Sullivan construction

The Poincaré series

$$P(s) = \sum_{\gamma \in \mathsf{\Gamma}} e^{-sd(o,\gamma o)}$$

has critical exponent δ_{Γ} . For $s > \delta_{\Gamma}$, build a measure on $X \cup \partial X$

$$u^{s} = rac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \mathcal{D}_{\gamma o} \,.$$

When $s \to \delta_{\Gamma}$, get ν on ∂X as any weak limit of ν^s . The measure ν on ∂X is quasi-invariant under Γ .

The unit tangent bundle satisfies $T^1X \simeq \partial X \times \partial X \setminus Diag \times \mathbb{R}$ Build a Γ -invariant product equivalent to $\nu \times \nu \times dt$ Get *Bowen-Margulis measure* m_{BM} on T^1X/Γ (ergodic, mixing...)

Strategy of the proof

Step 1: Twisted Poincaré series $A(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \rho(\gamma)$. It has a critical exponent $\delta_{\rho} \in [\delta_{\Gamma'}, \delta_{\Gamma}]$ such that for $s > \delta_{\rho}$,

$$A(s) \in \mathcal{B}(\ell^2(\Gamma/\Gamma')).$$

Step 2: Build a twisted Patterson-Sullivan measure a^{ρ} on ∂X with (nonzero) values in $\mathcal{B}(\ell^2(\Gamma/\Gamma'))$, by taking limits of

$$rac{1}{\|A(s)\|}\sum_{\gamma\in\Gamma}e^{-sd(o,\gamma o)}
ho(\gamma)\mathcal{D}_{\gamma o}\,.$$

Step 3: When $\delta_{\rho} = \delta_{\Gamma}$ and $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$, get absolute continuity of a^{ρ} w.r.t. the classical Patterson-Sullivan measure ν .

Step 4: By an ergodicity argument, deduce that $a^{\rho} = \Psi . \nu$ where $\Psi \in \mathcal{B}(\ell^2(\Gamma/\Gamma'))$ is a "multiplicative constant".

Step 5: By construction of a^{ρ} and ν , Ψ "takes values" in the set of almost invariant vectors.

Step 1: The twisted Poincaré series Study $A(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \rho(\gamma).$

The Hilbert space $\mathcal{H} = \ell^2(\Gamma/\Gamma', \mathbb{R})$ has a partial order compatible with the norm: $\phi \ge 0$ if for all $y \in \Gamma/\Gamma'$, $\phi(y) \ge 0$.

Define the associated positive cone \mathcal{H}_+ . A bounded operator on \mathcal{H} is positive if it preserves \mathcal{H}_+ . All $\rho(\gamma)$ are positive.

The Poincaré series A(s) is bounded if $\exists M > 0$, s.t. for all finite $S \subset \Gamma$, $\|\sum_{\gamma \in S} e^{-sd(o,\gamma o)}\rho(\gamma)\| \leq M$. The critical exponent

 $\delta_{
ho} = \inf\{s \in \mathbb{R}, A(s) \text{ is bounded}\}$

is well defined. Easy to check that

$$\delta_{\Gamma'} \leq \delta_{\rho} \leq \delta_{\Gamma}$$
 .

The assumption $\delta_{\Gamma'} = \delta_{\Gamma}$ is only used to guarantee that $\delta_{\rho} = \delta_{\Gamma}$.

Step 2: The twisted Patterson-Sullivan measure Let $\mathcal{H} = \ell^2(\Gamma/\Gamma')$. Use a nonprincipal ultrafilter $\omega : \mathcal{P}(\mathbb{N}) \to \{0, 1\}$. Build a larger Hilbert space $\mathcal{H}_{\omega} = \lim_{\omega} \mathcal{H}$, and extend ρ to $\rho_{\omega} : \Gamma \to \mathcal{U}(\mathcal{H}_{\omega})$. We still have a partial order on \mathcal{H}_{ω} . A sequence $\Phi = (\phi_n)$ of almost invariant vectors in $\mathcal{H}^{\mathbb{N}}$ becomes an invariant vector Φ under ρ_{ω} on \mathcal{H}_{ω} . Choose $s_n \to \delta_{\rho}$. Define

$$a_n^
ho = rac{1}{\|A(s_n)\|} \sum_{\gamma \in \Gamma} e^{-s_n d(o,\gamma o)}
ho(\gamma) \ \mathcal{D}_{\gamma o} \, .$$

For $f \in C(X \cup \partial X)$, $\int f da_n^{\rho}$ belongs to $\mathcal{B}(\mathcal{H})$, with norm uniformy bounded in *n*.

Define $a^{
ho}: C(X\cup\partial X) o \mathcal{B}(\mathcal{H}_{\omega})$ positive, linear, continuous by

$$a^{
ho}(f):=\lim_{\omega}\int f\,da^{
ho}_n\in\mathcal{B}(\mathcal{H}_{\omega})\,.$$

Nonzero measure on ∂X with values in $\mathcal{B}(\mathcal{H}_{\omega})$

Step 3: Absolute continuity (I)

A shadow is $\mathcal{O}_o(B(y, r)) = \{\xi \in \partial X, (o\xi) \cap B(y, r) \neq \emptyset\}.$

The classical Patterson-Sullivan measure ν is a weak limit of $\frac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \mathcal{D}_{\gamma o}$.

Sullivan's Shadow lemma says that $\nu(\mathcal{O}_o(B(\gamma o, r)) \asymp e^{-\delta_{\Gamma} d(o, \gamma o)})$.

A half-Shadow lemma for a^{ρ} : $||a^{\rho}(\mathcal{O}_{o}(B(\gamma o, r))|| \leq e^{-\delta_{\Gamma}d(o, \gamma o)}$.

Step 3: Absolute continuity (II)

Absolute continuity on shadows $||a^{\rho}(\mathcal{O}_{o}(B(\gamma o, r))|| \leq \nu(\mathcal{O}_{o}(B(\gamma o, r))).$

The entropy gap allows to show that points lying in infinitely many shadows have full ν and a^{ρ} -measure.

Only but crucial place where we need the entropy gap.

By a Vitali type argument, we deduce that $0 \neq a^{\rho} \ll \nu$.

For all $\phi \in \mathcal{H}$, $a^{\rho} \cdot \phi \ll \nu$. There exists a Radon-Nikodym derivative $D(\phi) \in L^{\infty}(X \cup \partial X, \mathcal{H})$, such that

$$\int f d(a^{\rho}.\phi) = \int f D(\phi) d\nu.$$

Step 4: Ergodicity

* The map $\phi \in \mathcal{H} \to D(\phi) \in L^{\infty}((\partial X, \nu), \mathcal{H}_{\omega})$ is linear and satisfies

$$\rho(\gamma) \circ D(\phi) \circ \gamma^{-1} = D(\phi).$$

* The map $(\xi, \eta) \in (\partial X)^2 \to < D(\phi)(\xi), D(\phi)(\eta) >_{\mathcal{H}_{\omega}} \in \mathbb{R}$ is a **Γ-invariant real-valued** map.

 \rightarrow The measure $\nu \times \nu$ on $\partial X \times \partial X$ is ergodic w.r.t. the Γ -action

Hint: $T^1X \simeq \partial X \times \partial X \times \mathbb{R}$. The PS measure ν on ∂X allows to build the Bowen-Margulis measure $m_{BM} \sim \nu \times \nu \times dt$ on T^1X/Γ . By Hopf argument, when X is a CAT(-1)-space, it is an ergodic invariant measure for the geodesic flow. Also true for X Gromov-hyperbolic (Bader-Furman strategy).

 \rightarrow We deduce $D(\phi)$ is $\nu \times \nu$ -a.s. constant.

Step 5: Conclusion

We already know that (for any $\phi \in \mathcal{H}_{\omega}$, say with $\|\phi\| = 1$)

$$\rho(\gamma) \circ D(\phi) \circ \gamma^{-1} = D(\phi).$$

Moreover, as a map defined on $X \cup \partial X$, it is a.s. constant.

Therefore, for all $\gamma \in \Gamma$, we get the equality in \mathcal{H}_{ω}

$$\rho(\gamma).D(\phi) = D(\phi)$$

We got it !! $D(\phi)$ is our ρ -invariant vector in \mathcal{H}_{ω} .

More on the entropy gap

Show that ν and a^{ρ} are supported on $\Lambda_{rad}(\Gamma)$ (same proof).

 $\Lambda_{rad}(\Gamma) \supset \Lambda_{rad}^{K}(\Gamma) = \{\xi \in \Lambda(\Gamma), [o\xi) \text{ returns i.o. in } \Gamma.K\}$ Define

 $U_{\mathcal{K}}(\mathcal{T}) = \{y \in \mathcal{X} \cup \partial \mathcal{X}, [oy) \text{ does not return in } \mathcal{K} \text{ until time } \mathcal{T}\}.$

Entropy gap $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$ allows to show $\nu(U_{K}^{T}) \leq e^{(\delta_{\Gamma_{K}} - \delta_{\Gamma})T}$ Deduce

$$\nu(\cap_{\mathcal{T}>0}U_K^{\mathcal{T}})=0 \quad \text{and} \quad \nu(\Gamma.(\cap_{\mathcal{T}>0}U_K^{\mathcal{T}})=0$$

The "easy" direction

Kesten Criterion : any random walk on Γ/Γ' has spectral radius = 1.

Build a sequence of random walks w.r.t. uniform spherical measures on the spheres S(e, n).

Barta's trick : estimate spectral radius on positive functions.

Estimate uniformly from above their spectral radius by $\exp(n(\delta_{\Gamma'} - \delta_{\Gamma}))$.

Roblin needed $\Gamma' \triangleleft \Gamma$. We remove this assumption, but use $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$

Thank you!

