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Ergodic properties

T : (X , κ)→ (X , κ) – a (probability) measure preserving
automorphism.

Definitions

T is:

1 ergodic – every measurable A for which T (A) = A satisfies
κ(A) ∈ {0, 1}.

2 weakly mixing – if 1
N

∑
n≤N |κ(T nA ∩ B)− κ(A)κ(B)| → 0

for every measurable A,B.

3 mixing – κ(TNA∩B)→ κ(A)κ(B) for every measurable A,B.

4 has positive entropy– if there is a finite partition with a linear
growth of information.

5 K -system – if every (non-trivial) factor of T has positive
entropy.

6 Bernoulli – if T is isomorphic to a Bernoulli shift.
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Bernoulli shifts

Σ = {1, . . . , d}Z;

p = (p1, . . . , pd),
∑d

i=1 pi = 1 – probability vector;

σ : (Σ,pZ)→ (Σ,pZ) – Bernoulli shift,

σ((xi )i∈Z) = (xi+1)i∈Z.

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic ( weak mixing ( mixing ( K ( Bernoulli .

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein
(T ,T−1) - transformation – Kalikow
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Quantitative properties that use smooth structure

The above properties are qualitative and do not require smooth
structure.

Let f ∈ C k(M, µ), be µ preserving, where µ is a smooth measure
on M.

Definition: Central Limit Theorem

We say that f satisfies the classical CLT if for every φ ∈ C k with
µ(φ) = 0,

1√
N
SN(φ) :=

1√
N

∑
n≤N

φ ◦ f n → N (0, σ2φ),

for some σ2φ ≥ 0. We say that the classical CLT is non-trivial for f

if σ2φ > 0 for some φ ∈ C k .
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Quantitative properties

Trivial CLT

Rαx = x + α, for a.e. α,

SN(φ) = o(Nε), for every ε > 0.

Definition: Exponential mixing

f ∈ C k(M, µ) is exponentially mixing if there exists C , η > 0 and
` ∈ N such that for every φ, ψ ∈ C `,∣∣∣µ(φ ◦ f n · ψ)− µ(φ)µ(ψ)

∣∣∣ < C‖φ‖`‖ψ‖`e−ηn.

There are other statistical properties, eg. large deviations...
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Some results

Known results: rigidity

1 K -property implies mixing (of all orders) (Kolmogorov).

2 K - property implies Bernoulli in dimension 2 (Pesin).

3 exponential mixing of all orders implies CLT (Chernov,
Bjorklund-Gorodnik).

Known results: flexibility

1 every manifold of dim ≥ 2 supports a Bernoulli
diffeomorphism (Katok, Brin-Katok-Rudolph);

2 K not Bernoulli examples (Kalikow, Katok, Rudolph,
K-Rodriguez-Hertz-Vinhage), generalized (T ,T−1)-maps;

3 non-weakly mixing systems satisfying CLT (Kifer-Conze),
Anosov × Rα.
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Open questions

exponential mixing obviously implies mixing.
CLT implies ergodicity but not weak mixing.

Questions:

1 Does exponential mixing imply positive entropy, higher order
mixing, K ,Bernoulli?

2 Does exponential mixing imply CLT?

3 Does CLT imply positive entropy? (J.-P. Thouvenot)

We will discuss questions 1. and 3.
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Main Result: rigidity

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

1 Exponential mixing implies positive entropy (and K ).

2 Exponential mixing implies mixing of all orders.

3 From ergodic point of view exponentially mixing systems are
classified by entropy.

Example:

The system: (
et 0
0 e−t

)
×
(

1 t
0 1

)
on SL(2,R)2/Γ (Γ irreducible) is Bernoulli. This already follows
from an earlier result (K.).
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Main results: flexibility of CLT

Question:

Does (non-trivial) CLT +K imply Bernoulli?(J.-P. Thouvenot)

Theorem 2 (Dolgopyat, Dong, K, Nandori)

For every r ∈ N there exists a C r (Mr , µ) diffeomorphism which
satisfies non-trivial CLT and is of zero entropy.

Theorem 3 (Dolgopyat, Dong, K, Nandori)

For every m there exists an analytic system which is K ,
non-Bernoulli and satisfies non-trivial CLT. Moreover, it is mixing
at rate n−m.
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Open questions:

Questions:

Does K imply Bernoulli in dimension 3? (Katok) – it does in
dimension 2 (Pesin) and it does not in dimension 4
(K.,Rodriguez-Hertz,Vinhage)

Does exponential mixing imply exponential mixing of all
orders? In particular does exponential mixing imply CLT?

Is there a C∞ zero entropy system which satisfies the
(non-trivial) CLT?

Does exponential mixing in topological category imply
Bernoulli?

Is every volume preserving partially hyperbolic and accessible
diffeomorphism Bernoulli?
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Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



Flexibility of CLT: Generalized (T ,T−1) transformations

Setting

1 T : (X , µ)→ (X , µ) map (or flow),

2 α : (Y , ν)→ (Y , ν) an Rd (or Zd) action, d ≥ 1,

3 τ : X → Rd a L1 cocycle.

F (x , y) = (Tx , ατ(x)(y))

acting on (X × Y , µ× ν).

Classical example: random walk in random scenery

(X , µ) = (Y , ν) = ({0, 1}Z, (1/2, 1/2)Z), T = α = σ2,
τ(x) = (−1)x0 .
It is K and NOT (loosely) Bernoulli map (Kalikow).
It does NOT satisfy the classical CLT (DDKN).

Adam Kanigowski Ergodic and statistical properties of smooth systems



More results

Smooth category, d = 1

Source of K non-Bernoulli examples:

1 Smooth K non-Bernoulli examples (Katok).
T = Anosov map, α = ht × ht , τ smooth, positive and not a
coboundary (ht is the horocycle flow).

2 Smooth K non-Bernoulli examples in dimension 5 (Rudolph).
T = Anosov map, α = gt (geodesic flow), τ smooth zero
mean and non-coboundary.

3 Smooth K non- Bernoulli examples in dimension 4 (K.,
Rodriguez-Hertz, Vinhage).
T = Anosov map,α = Kt (Kochergin flow), τ smooth positive
and non-coboundary.

4 Homogeneous K non-Bernoulli examples (Furman, Weiss)
T = gt , α = positive entropy, τ asymptotically Brownian.
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Higher rank actions in the fiber

Higher rank abelian actions in the fiber

T = σ, α= full Zd shift, then (T ,T−1) is:

NOT Bernoulli if d = 2 (Hollander,Steif), d = 1 (Kalikow);

is Bernoulli if d ≥ 3 (Hollander,Steif).

DDKN, Theorem 2

For every r there exists a C r diffeomorphism Fr which satisfies the
classical CLT and is of zero entropy.
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Theorem 2, CLT and zero entropy

1 Tx = Rθx = x + θ on Tm, θ ∈ D(κ), where

D(κ) = {v ∈ Rm : 〈v , k〉 ≥ Cv‖k‖−κ for k ∈ Zm}.

Leb(D(κ)) = 1 for κ > m. Let κ/2 < r < m and
d > 20 · 1

1− r
m

.

2 α any smooth Rd -action which is exponentially mixing of all
orders.

3 τ ∈ C r (Tm,Rd) with Leb(τ) = 0 and such that

Leb
(
{x ∈ Tm : ‖Sn(τ)‖ < log2 n}

)
= o(n−5).

Then
F (x , y) := (Rθx , Sτ(x)(y))

satisfies the classical CLT.
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Theorem 2, continued

Main example of α

α is the Weyl chamber flow on SL(d ,R), i.e. α is the group of
diagonal matrices (isomorphic to Rd−1).

Steps for Thm 2

Show existence of τ as in 3.

Show that if T , α, τ are as in 1,2 and 3, then F satisfies CLT.

The second step uses exponential mixing of all orders of α together
with property 3. Main technical work is to show existence of τ .
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Theorem 1, exponential mixing implies Bernoulli

MAIN IDEAS:

(I) Exponential Mixing implies positive entropy.

(II) By Pesin entropy formula there exists a non-zero Lyapunov
exponent. In particular f is non-uniformly partially hyperbolic
and there is a full measure set of points with non trivial
unstable space.

(III) Exponential mixing implies equidistribution of unstable
leaves at exponential scale (for most points).

(IV) Equidistribution of unstable leaves implies the K -property.

(V) One can then use the Ornstein-Weiss reduction to reduce
proving Bernoullicity to finding a good matching between two
nearby (and good) unstable leaves.

(VI) One constructs a good matching using equidistribution of the
unstable leaves at exponential scale.
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Pesin theory, explanation of (II)

Let dimM = d , dfx : TxM → Tf (x)M denote the differential of f

at x and let df
(n)
x := dff n−1x ◦ . . . ◦ dfx .

Lyapunov exponents, Oseledets splitting

There exists numbers (λi )
d
i=1 called Lyapunov exponents and (for

a.e. x) a decomposition TxM =
⊕d

i=1 Ei (x) such that for
v ∈ Ei (x), ‖v‖ = 1, we have

lim
N→∞

1

N
log(‖df (N)

x (v)‖) = λi .

Let Eu(x) :=
⊕

λi>0 Ei (x) and E s(x) :=
⊕

λi<0 Ei (x) be
respectively the unstable and stable space. Moreover let
E c(x) =

⊕
λi=0 Ei (x) be the center space.
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Pesin entropy formula

Entropy formula

hµ(f ) =
∑
λi>0

λi .

(I) Exponential Mixing implies positive entropy.

(II) By Pesin entropy formula there exists a non-zero Lyapunov
exponent. In particular f is non-uniformly partially hyperbolic and
there is a full measure set of points with non trivial unstable space.

(III) Exponential mixing implies equidistribution of unstable leaves at
exponential scale (for most points).

(IV) Equidistribution of unstable leaves implies the K -property.

(V) One can then use the Ornstein-Weiss reduction to reduce proving
Bernoullicity to finding a good matching between two nearby (and
good) unstable leaves.

(VI) One constructs a good matching using equidistribution of the
unstable leaves at exponential scale.
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Equidistribution of unstable leaves

For every ε > 0 there exists a δ > 0 and a set Pε ⊂ M,
µ(Pε) > 1− ε such that for every x ∈ Pε we have the unstable local
foliation of size δ, i.e. W u(x , δ) ⊂ M such that Eu

f −nx is tangent to
W u(f −nx , δ) and this local foliation is exponentially contracted
when iterating backwards. The same with the stable foliation. We
call the normalized unstable measure on W u(x , δ) by mu.

Theorem

Let f be exponentially mixing. There exists η′′ > 0 such that for
every n and every ball B ∈ M of radius ≥ e−η

′′n we have

mu(W u(x , δ) ∩ f −n(B)) ∈ (1− ε, 1 + ε)µ(B).
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Ornstein-Weiss reduction

Reduction

Let f be K .Let W u(x , δ) and W u(y , δ) be nearby unstable leaves
of size δ. If for every N there exists an almost measure preserving
map θx ,y ,δ,N : (W u(x , δ),mu

x )→ (W u(y , δ),mu
y ) such that

f nz and f nθz are close for most 0 ≤ n ≤ N. then f is Bernoulli.
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PLAN

(I) Exponential Mixing implies positive entropy.

(II) By Pesin entropy formula there exists a non-zero Lyapunov
exponent. In particular f is non-uniformly partially hyperbolic and
there is a full measure set of points with non trivial unstable space.

(III) Exponential mixing implies equidistribution of unstable leaves at
exponential scale (for most points).

(IV) Equidistribution of unstable leaves implies the K -property.

(V) One can then use the Ornstein-Weiss reduction to reduce proving
Bernoullicity to finding a good matching between two nearby (and
good) unstable leaves.

(VI) One constructs a good matching using equidistribution of the
unstable leaves at exponential scale.

We need to show:

(I), (III), (IV), (VI).
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THANK YOU!
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