Ergodic and statistical properties of smooth systems

Adam Kanigowski

04.05.2021 Midwest Seminar based on joint work with (1) D. Dolgopyat, F. Rodriguez-Hertz (2) D. Dolgopyat, C. Dong, P. Nandori

$T: (X, \kappa) \to (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **3** mixing $-\kappa(T^NA \cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- A has positive entropy— if there is a finite partition with a linear growth of information.
- 5 K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \to (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **B** mixing $-\kappa(T^NA\cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- A has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **B** mixing $-\kappa(T^NA \cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- A has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **3** mixing $-\kappa(T^NA \cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- A has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **3** mixing $-\kappa(T^NA\cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- A has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **3** mixing $-\kappa(T^NA\cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- 4 has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **B** mixing $-\kappa(T^NA\cap B) \to \kappa(A)\kappa(B)$ for every measurable A, B.
- 4 has positive entropy- if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

 $T: (X, \kappa) \rightarrow (X, \kappa)$ – a (probability) measure preserving automorphism.

Definitions

- ergodic every measurable A for which T(A) = A satisfies $\kappa(A) \in \{0, 1\}$.
- 2 weakly mixing if $\frac{1}{N} \sum_{n \le N} |\kappa(T^n A \cap B) \kappa(A)\kappa(B)| \to 0$ for every measurable A, B.
- **B** mixing $\kappa(T^N A \cap B) \rightarrow \kappa(A)\kappa(B)$ for every measurable A, B.
- 4 has positive entropy— if there is a finite partition with a linear growth of information.
- K-system if every (non-trivial) factor of T has positive entropy.
- **6** Bernoulli if T is isomorphic to a Bernoulli shift.

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector}$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$

$$\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.$$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$

$$\sigma((x_i)_{i\in\mathbb{Z}})=(x_{i+1})_{i\in\mathbb{Z}}.$$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq $K \subsetneq$ Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

Adam Kanigowski Ergodic and statistical properties of smooth systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

Adam Kanigowski Ergodic and statistical properties of smooth systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

Adam Kanigowski Ergodic and statistical properties of smooth systems

•
$$\Sigma = \{1, \dots, d\}^{\mathbb{Z}};$$

• $\mathbf{p} = (p_1, \dots, p_d), \sum_{i=1}^d p_i = 1 - \text{probability vector};$
• $\sigma : (\Sigma, \mathbf{p}^{\mathbb{Z}}) \to (\Sigma, \mathbf{p}^{\mathbb{Z}}) - \text{Bernoulli shift},$
 $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}.$

Bernoulli systems

T is Bernoulli if T is isomorphic to a Bernoulli shift.

Relations

ergodic \subsetneq weak mixing \subsetneq mixing \subsetneq K \subsetneq Bernoulli.

The above inclusion also hold in smooth category.

K non Bernoulli

First Example – Ornstein (T, T^{-1}) - transformation – Kalikow

The above properties are qualitative and do not require smooth structure.

Let $f \in C^k(M, \mu)$, be μ preserving, where μ is a smooth measure on M.

Definition: Central Limit Theorem

We say that f satisfies the classical CLT if for every $\phi \in C^k$ with $\mu(\phi) = 0,$

$$\frac{1}{\sqrt{N}}S_N(\phi) := \frac{1}{\sqrt{N}}\sum_{n \le N} \phi \circ f^n \to \mathcal{N}(0, \sigma_{\phi}^2),$$

The above properties are qualitative and do not require smooth structure.

Let $f \in C^k(M, \mu)$, be μ preserving, where μ is a smooth measure on M.

Definition: Central Limit Theorem

We say that f satisfies the classical CLT if for every $\phi \in C^k$ with $\mu(\phi) = 0$,

$$\frac{1}{\sqrt{N}}S_{N}(\phi) := \frac{1}{\sqrt{N}}\sum_{n \leq N} \phi \circ f^{n} \to \mathcal{N}(0, \sigma_{\phi}^{2}),$$

The above properties are qualitative and do not require smooth structure.

Let $f \in C^{k}(M, \mu)$, be μ preserving, where μ is a smooth measure on M.

Definition: Central Limit Theorem

We say that f satisfies the classical CLT if for every $\phi \in C^k$ with $\mu(\phi) = 0$,

$$\frac{1}{\sqrt{N}}S_N(\phi) := \frac{1}{\sqrt{N}}\sum_{n \leq N} \phi \circ f^n \to \mathcal{N}(0, \sigma_{\phi}^2),$$

The above properties are qualitative and do not require smooth structure.

Let $f \in C^{k}(M, \mu)$, be μ preserving, where μ is a smooth measure on M.

Definition: Central Limit Theorem

We say that f satisfies the classical CLT if for every $\phi \in C^k$ with $\mu(\phi) = 0$,

$$\frac{1}{\sqrt{N}}S_N(\phi) := \frac{1}{\sqrt{N}}\sum_{n \leq N} \phi \circ f^n \to \mathcal{N}(0, \sigma_{\phi}^2),$$

Trivial CLT

 $R_{\alpha}x = x + \alpha$, for a.e. α ,

$$S_N(\phi) = o(N^{\epsilon}), \text{ for every } \epsilon > 0.$$

Definition: Exponential mixing

 $f \in C^{k}(M,\mu)$ is exponentially mixing if there exists $C, \eta > 0$ and $\ell \in \mathbb{N}$ such that for every $\phi, \psi \in C^{\ell}$,

$$\left|\mu(\phi\circ f^n\cdot\psi)-\mu(\phi)\mu(\psi)\right|< C\|\phi\|_{\ell}\|\psi\|_{\ell}e^{-\eta n}.$$

Trivial CLT

 $R_{\alpha}x = x + \alpha$, for a.e. α ,

$$S_N(\phi) = o(N^{\epsilon}), ext{ for every } \epsilon > 0.$$

Definition: Exponential mixing

 $f \in C^{k}(M,\mu)$ is exponentially mixing if there exists $C, \eta > 0$ and $\ell \in \mathbb{N}$ such that for every $\phi, \psi \in C^{\ell}$,

$$\left|\mu(\phi\circ f^n\cdot\psi)-\mu(\phi)\mu(\psi)\right|< C\|\phi\|_{\ell}\|\psi\|_{\ell}e^{-\eta n}.$$

Trivial CLT

 $R_{\alpha}x = x + \alpha$, for a.e. α ,

$$S_N(\phi) = o(N^{\epsilon}), ext{ for every } \epsilon > 0.$$

Definition: Exponential mixing

 $f \in C^k(M,\mu)$ is exponentially mixing if there exists $C, \eta > 0$ and $\ell \in \mathbb{N}$ such that for every $\phi, \psi \in C^{\ell}$,

$$\left|\mu(\phi\circ f^n\cdot\psi)-\mu(\phi)\mu(\psi)\right|< C\|\phi\|_\ell\|\psi\|_\ell e^{-\eta n}.$$

Trivial CLT

 $R_{\alpha}x = x + \alpha$, for a.e. α ,

$$S_N(\phi) = o(N^{\epsilon}), ext{ for every } \epsilon > 0.$$

Definition: Exponential mixing

 $f \in C^k(M,\mu)$ is exponentially mixing if there exists $C, \eta > 0$ and $\ell \in \mathbb{N}$ such that for every $\phi, \psi \in C^\ell$,

$$\left|\mu(\phi\circ f^n\cdot\psi)-\mu(\phi)\mu(\psi)
ight|< C\|\phi\|_\ell\|\psi\|_\ell e^{-\eta n}.$$

Trivial CLT

 $R_{\alpha}x = x + \alpha$, for a.e. α ,

$$S_N(\phi) = o(N^{\epsilon}), ext{ for every } \epsilon > 0.$$

Definition: Exponential mixing

 $f \in C^k(M,\mu)$ is exponentially mixing if there exists $C, \eta > 0$ and $\ell \in \mathbb{N}$ such that for every $\phi, \psi \in C^\ell$,

$$\left|\mu(\phi\circ f^n\cdot\psi)-\mu(\phi)\mu(\psi)
ight|< C\|\phi\|_\ell\|\psi\|_\ell e^{-\eta n}.$$

Some results

Known results: rigidity

I *K*-property implies mixing (of all orders) (Kolmogorov).

K- property implies Bernoulli in dimension 2 (Pesin).

 exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- 3 non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

- **I** *K*-property implies mixing (of all orders) (Kolmogorov).
- **2** *K* property implies Bernoulli in dimension 2 (Pesin).

3 exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- 3 non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

- **I** *K*-property implies mixing (of all orders) (Kolmogorov).
- 2 K- property implies Bernoulli in dimension 2 (Pesin).
- exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- 3 non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

- **I** *K*-property implies mixing (of all orders) (Kolmogorov).
- **2** *K* property implies Bernoulli in dimension 2 (Pesin).
- exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- 3 non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

- **I** *K*-property implies mixing (of all orders) (Kolmogorov).
- **2** *K* property implies Bernoulli in dimension 2 (Pesin).
- exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- In non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

- **I** *K*-property implies mixing (of all orders) (Kolmogorov).
- **2** *K* property implies Bernoulli in dimension 2 (Pesin).
- exponential mixing of all orders implies CLT (Chernov, Bjorklund-Gorodnik).

- every manifold of dim ≥ 2 supports a Bernoulli diffeomorphism (Katok, Brin-Katok-Rudolph);
- K not Bernoulli examples (Kalikow, Katok, Rudolph, K-Rodriguez-Hertz-Vinhage), generalized (T, T⁻¹)-maps;
- 3 non-weakly mixing systems satisfying CLT (Kifer-Conze), Anosov $\times R_{\alpha}$.

exponential mixing obviously implies mixing.

CET implies ergodicity but not weak mix

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- Boes CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- B Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)
exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- B Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- 3 Does CLT imply positive entropy? (J.-P. Thouvenot)

exponential mixing obviously implies mixing. CLT implies ergodicity but not weak mixing.

Questions:

- Does exponential mixing imply positive entropy, higher order mixing, K,Bernoulli?
- 2 Does exponential mixing imply CLT?
- Boes CLT imply positive entropy? (J.-P. Thouvenot)

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- **1** Exponential mixing implies positive entropy (and K).
- Exponential mixing implies mixing of all orders.
- From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- Exponential mixing implies positive entropy (and K).
- Exponential mixing implies mixing of all orders.
- From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

1 Exponential mixing implies positive entropy (and K).

- Exponential mixing implies mixing of all orders.
- From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- **1** Exponential mixing implies positive entropy (and K).
- 2 Exponential mixing implies mixing of all orders.
- **3** From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- **1** Exponential mixing implies positive entropy (and K).
- 2 Exponential mixing implies mixing of all orders.
- **3** From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- **1** Exponential mixing implies positive entropy (and K).
- 2 Exponential mixing implies mixing of all orders.
- **3** From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Theorem 1 (Dolgopyat, K, Rodriguez-Hertz)

Exponential mixing implies Bernoulli.

Consequences

- **1** Exponential mixing implies positive entropy (and K).
- 2 Exponential mixing implies mixing of all orders.
- **3** From ergodic point of view exponentially mixing systems are classified by entropy.

Example:

The system:

$$\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Question:

Does (non-trivial) CLT +K imply Bernoulli?(J.-P. Thouvenot)

Theorem 2 (Dolgopyat, Dong, K, Nandori)

For every $r \in \mathbb{N}$ there exists a $C^r(M_r, \mu)$ diffeomorphism which satisfies non-trivial CLT and is of zero entropy.

Theorem 3 (Dolgopyat, Dong, K, Nandori)

For every *m* there exists an analytic system which is *K*, non-Bernoulli and satisfies non-trivial CLT. Moreover, it is mixing at rate n^{-m} .

Question:

Does (non-trivial) CLT +K imply Bernoulli?(J.-P. Thouvenot)

Theorem 2 (Dolgopyat, Dong, K, Nandori)

For every $r \in \mathbb{N}$ there exists a $C^r(M_r, \mu)$ diffeomorphism which satisfies non-trivial CLT and is of zero entropy.

Theorem 3 (Dolgopyat, Dong, K, Nandori)

For every *m* there exists an analytic system which is *K*, non-Bernoulli and satisfies non-trivial CLT. Moreover, it is mixing at rate n^{-m} .

Question:

Does (non-trivial) CLT +K imply Bernoulli?(J.-P. Thouvenot)

Theorem 2 (Dolgopyat, Dong, K, Nandori)

For every $r \in \mathbb{N}$ there exists a $C^r(M_r, \mu)$ diffeomorphism which satisfies non-trivial CLT and is of zero entropy.

Theorem 3 (Dolgopyat, Dong, K, Nandori)

For every *m* there exists an analytic system which is *K*, non-Bernoulli and satisfies non-trivial CLT. Moreover, it is mixing at rate n^{-m} .

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a *C*[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a *C*[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a *C*[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a C[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a C[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a C[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

- Does K imply Bernoulli in dimension 3? (Katok) it does in dimension 2 (Pesin) and it does not in dimension 4 (K.,Rodriguez-Hertz,Vinhage)
- Does exponential mixing imply exponential mixing of all orders? In particular does exponential mixing imply CLT?
- Is there a C[∞] zero entropy system which satisfies the (non-trivial) CLT?
- Does exponential mixing in topological category imply Bernoulli?
- Is every volume preserving partially hyperbolic and accessible diffeomorphism Bernoulli?

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$
acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_2$ $\tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \rightarrow (X, \mu)$$
 map (or flow),

2
$$\alpha: (Y, \nu) \to (Y, \nu)$$
 an \mathbb{R}^d (or \mathbb{Z}^d) action, $d \ge 1$,

3 $\tau: X \to \mathbb{R}^d$ a L^1 cocycle.

$$F(x,y) = (Tx, \alpha_{\tau(x)}(y))$$

acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), \ T = \alpha = \sigma_2$ $\tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$
cting on $(X \times Y, \mu \times \mu)$

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_Y$ $\tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_Y$ $\tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$

acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_2$ $\tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu)$$
 map (or flow),
2 $\alpha: (Y, \nu) \to (Y, \nu)$ an \mathbb{R}^d (or \mathbb{Z}^d) action, $d \ge 1$
3 $\tau: X \to \mathbb{R}^d$ a L^1 cocycle.
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$

acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_2, \tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$

acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_2, \tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Setting

1
$$T: (X, \mu) \to (X, \mu) \text{ map (or flow)},$$

2 $\alpha: (Y, \nu) \to (Y, \nu) \text{ an } \mathbb{R}^d \text{ (or } \mathbb{Z}^d) \text{ action, } d \ge 1$
3 $\tau: X \to \mathbb{R}^d \text{ a } L^1 \text{ cocycle.}$
 $F(x, y) = (Tx, \alpha_{\tau(x)}(y))$

acting on $(X \times Y, \mu \times \nu)$.

Classical example: random walk in random scenery

 $(X, \mu) = (Y, \nu) = (\{0, 1\}^{\mathbb{Z}}, (1/2, 1/2)^{\mathbb{Z}}), T = \alpha = \sigma_2, \tau(x) = (-1)^{x_0}.$ It is K and NOT (loosely) Bernoulli map (Kalikow). It does NOT satisfy the classical CLT (DDKN).

Smooth category, d=1

Source of K non-Bernoulli examples:

1 Smooth *K* non-Bernoulli examples (Katok).

T = Anosov map, $\alpha = h_t \times h_t$, τ smooth, positive and not a coboundary (h_t is the horocycle flow).

- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss) $T = g_t$, $\alpha =$ positive entropy, τ asymptotically Brownian.

Smooth category, d=1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss) $T = g_t$, $\alpha =$ positive entropy, τ asymptotically Brownian.

Smooth category, d = 1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss)
 T = g_t, α = positive entropy, τ asymptotically Brownian.

Smooth category, d = 1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).
 T = Δnosov map α = K (Kochorgin flow) σ smooth po

T = Anosov map, $\alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss) $T = g_t$, $\alpha =$ positive entropy, τ asymptotically Brownian.

Smooth category, d = 1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss)
 T = g_t, α = positive entropy, τ asymptotically Brownian.
Smooth category, d = 1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

Homogeneous K non-Bernoulli examples (Furman, Weiss)
 T = g_t, α = positive entropy, τ asymptotically Brownian.

Smooth category, d = 1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

4 Homogeneous K non-Bernoulli examples (Furman, Weiss) $T = g_t$, $\alpha =$ positive entropy, τ asymptotically Brownian.

Smooth category, d=1

Source of K non-Bernoulli examples:

- Smooth K non-Bernoulli examples (Katok).
 T = Anosov map, α = h_t × h_t, τ smooth, positive and not a coboundary (h_t is the horocycle flow).
- Smooth K non-Bernoulli examples in dimension 5 (Rudolph). T = Anosov map, α = g_t (geodesic flow), τ smooth zero mean and non-coboundary.
- Smooth K non- Bernoulli examples in dimension 4 (K., Rodriguez-Hertz, Vinhage).

 $T = Anosov map, \alpha = K_t$ (Kochergin flow), τ smooth positive and non-coboundary.

4 Homogeneous K non-Bernoulli examples (Furman, Weiss) $T = g_t$, $\alpha =$ positive entropy, τ asymptotically Brownian.

Higher rank abelian actions in the fiber

$$T = \sigma$$
, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:

- **NOT** Bernoulli if d = 2 (Hollander, Steif), d = 1 (Kalikow);
- is Bernoulli if $d \ge 3$ (Hollander, Steif).

DDKN, Theorem 2

Higher rank abelian actions in the fiber

- $T = \sigma$, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:
 - NOT Bernoulli if *d* = 2 (Hollander,Steif), *d* = 1 (Kalikow);
 - is Bernoulli if $d \ge 3$ (Hollander, Steif).

DDKN, Theorem 2

Higher rank abelian actions in the fiber

 $T = \sigma$, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:

■ NOT Bernoulli if *d* = 2 (Hollander,Steif), *d* = 1 (Kalikow);

■ is Bernoulli if *d* ≥ 3 (Hollander,Steif).

DDKN, Theorem 2

Higher rank abelian actions in the fiber

 $T = \sigma$, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:

NOT Bernoulli if d = 2 (Hollander, Steif), d = 1 (Kalikow);

■ is Bernoulli if d ≥ 3 (Hollander,Steif).

DDKN, Theorem 2

Higher rank abelian actions in the fiber

- $T = \sigma$, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:
 - **NOT** Bernoulli if d = 2 (Hollander, Steif), d = 1 (Kalikow);
 - is Bernoulli if $d \ge 3$ (Hollander, Steif).

DDKN, Theorem 2

Higher rank abelian actions in the fiber

- $T = \sigma$, $\alpha =$ full \mathbb{Z}^d shift, then (T, T^{-1}) is:
 - **NOT** Bernoulli if d = 2 (Hollander, Steif), d = 1 (Kalikow);
 - is Bernoulli if $d \ge 3$ (Hollander, Steif).

DDKN, Theorem 2

1
$$Tx = R_{\theta}x = x + \theta$$
 on \mathbb{T}^m , $\theta \in D(\kappa)$, where

 $D(\kappa) = \{ v \in \mathbb{R}^m : \langle v, k \rangle \ge C_v \| k \|^{-\kappa} \text{ for } k \in \mathbb{Z}^m \}.$

 $Leb(D(\kappa)) = 1$ for $\kappa > m$. Let $\kappa/2 < r < m$ and $d > 20 \cdot rac{1}{1 - rac{r}{m}}.$

- 2 α any smooth R^d-action which is exponentially mixing of all orders.
- 3 $au \in {\it C}^r({\mathbb T}^m,{\mathbb R}^d)$ with ${\it Leb}(au)=0$ and such that

$$Leb(\{x \in \mathbb{T}^m : \|S_n(\tau)\| < \log^2 n\}) = o(n^{-5}).$$

Then

$$F(x,y) := (R_{\theta}x, S_{\tau(x)}(y))$$

1
$$Tx = R_{\theta}x = x + \theta$$
 on \mathbb{T}^m , $\theta \in D(\kappa)$, where
 $D(\kappa) = \{v \in \mathbb{R}^m : \langle v, k \rangle \ge C_v ||k||^{-\kappa} \text{ for } k \in \mathbb{Z}^m\}.$
 $Leb(D(\kappa)) = 1 \text{ for } \kappa > m. \text{ Let } \kappa/2 < r < m \text{ and}$
 $d > 20 \cdot \frac{1}{1-\epsilon}.$

- 2 α any smooth R^d-action which is exponentially mixing of all orders.
- 3 $au \in {\it C}^r({\mathbb T}^m,{\mathbb R}^d)$ with ${\it Leb}(au)=0$ and such that

$$Leb(\{x \in \mathbb{T}^m : \|S_n(\tau)\| < \log^2 n\}) = o(n^{-5}).$$

Then

$$F(x,y) := (R_{\theta}x, S_{\tau(x)}(y))$$

Tx =
$$R_{\theta}x = x + \theta$$
 on \mathbb{T}^m , $\theta \in D(\kappa)$, where
$$D(\kappa) = \{ v \in \mathbb{R}^m : \langle v, k \rangle \ge C_v \|k\|^{-\kappa} \text{ for } k \in \mathbb{Z}^m \}$$

 $Leb(D(\kappa)) = 1$ for $\kappa > m$. Let $\kappa/2 < r < m$ and $d > 20 \cdot \frac{1}{1 - \frac{r}{m}}$.

2 α any smooth \mathbb{R}^d -action which is exponentially mixing of all orders.

3 $au \in {\it C}^r({\mathbb T}^m,{\mathbb R}^d)$ with ${\it Leb}(au)=0$ and such that

$$Leb(\{x \in \mathbb{T}^m : \|S_n(\tau)\| < \log^2 n\}) = o(n^{-5}).$$

Then

$$F(x,y) := (R_{\theta}x, S_{\tau(x)}(y))$$

Tx =
$$R_{\theta}x = x + \theta$$
 on \mathbb{T}^m , $\theta \in D(\kappa)$, where
 $D(\kappa) = \{ v \in \mathbb{R}^m : \langle v, k \rangle \ge C_v \|k\|^{-\kappa} \text{ for } k \in \mathbb{Z}^m \}.$

 $Leb(D(\kappa)) = 1$ for $\kappa > m$. Let $\kappa/2 < r < m$ and $d > 20 \cdot \frac{1}{1 - \frac{r}{m}}$.

- 2 α any smooth \mathbb{R}^d -action which is exponentially mixing of all orders.
- 3 $au \in C^r(\mathbb{T}^m, \mathbb{R}^d)$ with Leb(au) = 0 and such that

$$Leb\Big(\{x \in \mathbb{T}^m : \|S_n(\tau)\| < \log^2 n\}\Big) = o(n^{-5}).$$

Then

$$F(x,y) := (R_{\theta}x, S_{\tau(x)}(y))$$

Theorem 2, continued

Main example of α

 α is the Weyl chamber flow on $SL(d, \mathbb{R})$, i.e. α is the group of diagonal matrices (isomorphic to \mathbb{R}^{d-1}).

Steps for Thm 2

- Show existence of τ as in 3.
- Show that if T, α, τ are as in 1,2 and 3, then F satisfies CLT.

Theorem 2, continued

Main example of α

 α is the Weyl chamber flow on $SL(d, \mathbb{R})$, i.e. α is the group of diagonal matrices (isomorphic to \mathbb{R}^{d-1}).

Steps for Thm 2

- Show existence of τ as in 3.
- Show that if T, α, τ are as in 1,2 and 3, then F satisfies CLT.

Main example of α

 α is the Weyl chamber flow on $SL(d, \mathbb{R})$, i.e. α is the group of diagonal matrices (isomorphic to \mathbb{R}^{d-1}).

Steps for Thm 2

- Show existence of τ as in 3.
- Show that if T, α, τ are as in 1,2 and 3, then F satisfies CLT.

Main example of α

 α is the Weyl chamber flow on $SL(d, \mathbb{R})$, i.e. α is the group of diagonal matrices (isomorphic to \mathbb{R}^{d-1}).

Steps for Thm 2

- Show existence of τ as in 3.
- Show that if T, α, τ are as in 1,2 and 3, then F satisfies CLT.

Theorem 1, exponential mixing implies Bernoulli

MAIN IDEAS:

(I) Exponential Mixing implies positive entropy.

- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

Theorem 1, exponential mixing implies Bernoulli

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular f is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

Pesin theory, explanation of (II)

Let $\dim M = d$, $df_x : T_x M \to T_{f(x)} M$ denote the differential of fat x and let $df_x^{(n)} := df_{f^{n-1}x} \circ \ldots \circ df_x$.

_yapunov e×ponents, Oseledets splitting

There exists numbers $(\lambda_i)_{i=1}^d$ called Lyapunov exponents and (for a.e. x) a decomposition $T_x M = \bigoplus_{i=1}^d E_i(x)$ such that for $v \in E_i(x)$, ||v|| = 1, we have

$$\lim_{N\to\infty}\frac{1}{N}\log(\|df_x^{(N)}(v)\|)=\lambda_i.$$

Let $E^u(x) := \bigoplus_{\lambda_i > 0} E_i(x)$ and $E^s(x) := \bigoplus_{\lambda_i < 0} E_i(x)$ be respectively the unstable and stable space. Moreover let $E^c(x) = \bigoplus_{\lambda_i = 0} E_i(x)$ be the center space.

Pesin theory, explanation of (II)

Let $\dim M = d$, $df_x : T_x M \to T_{f(x)} M$ denote the differential of fat x and let $df_x^{(n)} := df_{f^{n-1}x} \circ \ldots \circ df_x$.

Lyapunov exponents, Oseledets splitting

There exists numbers $(\lambda_i)_{i=1}^d$ called Lyapunov exponents and (for a.e. x) a decomposition $T_x M = \bigoplus_{i=1}^d E_i(x)$ such that for $v \in E_i(x)$, ||v|| = 1, we have

$$\lim_{N\to\infty}\frac{1}{N}\log(\|df_{x}^{(N)}(v)\|)=\lambda_{i}.$$

Let $E^{u}(x) := \bigoplus_{\lambda_i > 0} E_i(x)$ and $E^{s}(x) := \bigoplus_{\lambda_i < 0} E_i(x)$ be respectively the unstable and stable space. Moreover let $E^{c}(x) = \bigoplus_{\lambda_i = 0} E_i(x)$ be the center space.

Pesin theory, explanation of (II)

Let $\dim M = d$, $df_x : T_x M \to T_{f(x)} M$ denote the differential of fat x and let $df_x^{(n)} := df_{f^{n-1}x} \circ \ldots \circ df_x$.

Lyapunov exponents, Oseledets splitting

There exists numbers $(\lambda_i)_{i=1}^d$ called Lyapunov exponents and (for a.e. x) a decomposition $T_x M = \bigoplus_{i=1}^d E_i(x)$ such that for $v \in E_i(x)$, ||v|| = 1, we have

$$\lim_{N\to\infty}\frac{1}{N}\log(\|df_{x}^{(N)}(v)\|)=\lambda_{i}.$$

Let $E^{u}(x) := \bigoplus_{\lambda_i > 0} E_i(x)$ and $E^{s}(x) := \bigoplus_{\lambda_i < 0} E_i(x)$ be respectively the unstable and stable space. Moreover let $E^{c}(x) = \bigoplus_{\lambda_i = 0} E_i(x)$ be the center space.

Entropy formula

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

(I) Exponential Mixing implies positive entropy.

- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.

(VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

Entropy formula

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

(I) Exponential Mixing implies positive entropy.

- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular f is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

Entropy formula

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a *good* matching between two nearby (and *good*) unstable leaves.

(VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

$$h_{\mu}(f) = \sum_{\lambda_i > 0} \lambda_i.$$

- (I) Exponential Mixing implies positive entropy.
- By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a *good* matching between two nearby (and *good*) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

Equidistribution of unstable leaves

For every $\epsilon > 0$ there exists a $\delta > 0$ and a set $P_{\epsilon} \subset M$, $\mu(P_{\epsilon}) > 1 - \epsilon$ such that for every $x \in P_{\epsilon}$ we have the unstable local foliation of size δ , i.e. $W^{u}(x, \delta) \subset M$ such that $E^{u}_{f^{-n}x}$ is tangent to $W^{u}(f^{-n}x, \delta)$ and this local foliation is exponentially contracted when iterating backwards. The same with the stable foliation. We call the normalized unstable measure on $W^{u}(x, \delta)$ by m^{u} .

Theorem

Let f be exponentially mixing. There exists $\eta'' > 0$ such that for every n and every ball $B \in M$ of radius $\geq e^{-\eta'' n}$ we have

 $m^u(W^u(x,\delta)\cap f^{-n}(B))\in (1-\epsilon,1+\epsilon)\mu(B).$
Reduction

Let f be K.Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $f^n z$ and $f^n \theta z$ are close for most $0 \le n \le N$. then f is Bernoulli.

Ornstein-Weiss reduction

Reduction

Let f be K.Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $f^n z$ and $f^n \theta z$ are close for most $0 \le n \le N$. then f is Bernoulli.

Ornstein-Weiss reduction

Reduction

Let f be K.Let $W^u(x, \delta)$ and $W^u(y, \delta)$ be nearby unstable leaves of size δ . If for every N there exists an almost measure preserving map $\theta_{x,y,\delta,N} : (W^u(x, \delta), m_x^u) \to (W^u(y, \delta), m_y^u)$ such that

 $f^n z$ and $f^n \theta z$ are close for most $0 \le n \le N$. then f is Bernoulli.

(I) Exponential Mixing implies positive entropy.

- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

(I) Exponential Mixing implies positive entropy.

- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular f is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.

(V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.

(VI) One constructs a *good* matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

- (I) Exponential Mixing implies positive entropy.
- (II) By Pesin entropy formula there exists a non-zero Lyapunov exponent. In particular *f* is non-uniformly partially hyperbolic and there is a full measure set of points with non trivial unstable space.
- (III) Exponential mixing implies equidistribution of unstable leaves at exponential scale (for most points).
- (IV) Equidistribution of unstable leaves implies the K-property.
- (V) One can then use the Ornstein-Weiss reduction to reduce proving Bernoullicity to finding a good matching between two nearby (and good) unstable leaves.
- (VI) One constructs a good matching using equidistribution of the unstable leaves at exponential scale.

We need to show:

(I), (III), (IV), (VI).

THANK YOU!