A von Neumann algebra valued Multiplicative Ergodic Theorem

Lewis Bowen
with Ben Hayes (U. Virginia) and Yuqing Frank Lin (Ben Gurion U.)

Midwest Dynamics, January 2021

Motivation

Theorem (Oseledets, 1965)

Let

- X be a closed Riemannian manifold,
- $\mu=$ be a Borel probability measure on X,
- $f: X \rightarrow X$ be a diffeomorphism preserving μ.
Then for a.e. $x \in X$, for every vector $v \in T_{x}(X)$, the growth rate

$$
\lim _{n \rightarrow+\infty} n^{-1} \log \left\|D_{x}\left(f^{n}\right)(v)\right\|
$$

exists.

Theorem (Part of the Classical MET (Oseledets, 1965))

Let

- (X, μ) be a Borel probability space,
- $f: X \rightarrow X$ be a measure-preserving transformation,
- $c: \mathbb{Z} \times X \rightarrow \mathrm{GL}(d, \mathbb{R})$ a measurable cocycle with $\log \left\|c(1, x)^{ \pm 1}\right\| \in L^{1}(X, \mu)$.
Then for a.e. $x \in X$, for every vector $v \in \mathbb{R}^{d}$, the growth rate

$$
\lim _{n \rightarrow+\infty} n^{-1} \log \|c(n, x)(v)\|
$$

exists.

Convert to a matrix problem

For convenience, choose a measurable field of isomorphisms $\Phi_{x}: T_{x}(X) \rightarrow \mathbb{R}^{d}$.

Define the cocycle
$c: \mathbb{Z} \times X \rightarrow \mathrm{GL}(d, \mathbb{R})$

$$
c(n, x)=\Phi_{f^{n}(x)} \circ D_{x}\left(f^{n}\right) \circ \Phi_{x}^{-1} .
$$

The cocycle is determined by $c(1, \cdot): X \rightarrow \mathrm{GL}(d, \mathbb{R})$ and the cocycle equation

$$
c(n+m, x)=c\left(n, f^{m} x\right) c(m, x) .
$$

Spectral Calculus

Motivation

If a is a matrix, we need to make sense of $|a|, \log |a|,|a|^{1 / n}$ etc.

If $d=\left(d_{i i}\right)$ is a diagonal matrix and $\phi: \mathbb{C} \rightarrow \mathbb{C}$ then define

$$
\phi(d)=\left(\begin{array}{cccc}
\phi\left(d_{11}\right) & & & \\
& \phi\left(d_{22}\right) & & \\
& & \ddots & \\
& & & \phi\left(d_{d d}\right)
\end{array}\right)
$$

If $a=a^{*}$ is self-adjoint then the Spectral Theorem \Rightarrow

$$
a=u d u^{-1} \quad \text { for some unitary } u \text {, real diagonal matrix } d .
$$

If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ and a is self-adjoint then define $\phi(a):=u \phi(d) u^{-1}$.

Spectral Calculus

Let $a \in \operatorname{Mat}_{d \times d}(\mathbb{C})$. Then $a^{*} a$ is self-adjoint (and positive semi-definite). The matrix absolute value of a is $|a|=\left(a^{*} a\right)^{1 / 2}=u d^{1 / 2} u^{-1}$.

Now we can define

$$
\begin{gathered}
\log |a|=u \log \left(d^{1 / 2}\right) u^{-1} \\
|a|^{1 / n}=u d^{1 / 2 n} u^{-1}
\end{gathered}
$$

The limit operator

Theorem (The Classical MET)

Let

- (X, μ) be a Borel probability space,
- $f: X \rightarrow X$ be a measure-preserving transformation,
- $c: \mathbb{Z} \times X \rightarrow \operatorname{Mat}(d, \mathbb{R})$ be a measurable cocycle with $\log \|c(1, x)\| \in L^{1}(X, \mu)$.
Then for a.e. $x \in X$, there is a limit operator $\Lambda(x)$ defined by

$$
\lim _{n \rightarrow+\infty} n^{-1} \log |c(n, x)|=\log \Lambda(x)
$$

Consequences of the Classical MET

Define the Lyapunov exponents $\lambda_{1}(x) \geq \cdots \geq \lambda_{d}(x)$ to be the eigenvalues of $\log \Lambda(x)$.

Define the Oseledets subspaces $E_{i}(x)$ to be the sum of the eigenspaces of $\lambda_{j}(x)$ for $j \geq i$.

Then

- (invariance) $\lambda_{i}(f(x))=\lambda_{i}(x), E_{i}(f(x))=c(1, x) E_{i}(x)$,
- (growth rates) For all $v \in E_{i}(x) \backslash E_{i+1}(x)$,

$$
\begin{aligned}
\lambda_{i}(x) & =\lim _{n \rightarrow+\infty} n^{-1} \log \|c(n, x) v\| \\
& =\lim _{n \rightarrow+\infty} n^{-1} \log \left\|\Lambda^{n}(x) v\right\| . \\
\operatorname{det}(\Lambda(x)) & =\lim _{n \rightarrow \infty} \operatorname{det}(|c(n, x)|)^{1 / n} .
\end{aligned}
$$

Special case: the Pointwise Ergodic Theorem

Theorem (Birkhoff, 1932)

Let

- (X, μ) be a probability space,
- $f: X \rightarrow X$ a measure-preserving transformation,
- $\phi \in L^{1}(X, \mu)$ an integrable observable.

Then the ergodic averages

$$
\frac{1}{n} \sum_{i=0}^{n-1} \phi \circ f^{i}
$$

converge pointwise a.e. to an f-invariant function. If f is ergodic, the limit is the constant $\int \phi d \mu$.

Proof.

Wlog ϕ is real-valued. Set $d=1$ and apply the MET to $c(1, x)=\exp (\phi)$.

Special case: powers of a single matrix

Theorem
Let a be a $d \times d$ matrix. Then

$$
\lim _{n \rightarrow \infty}\left|a^{n}\right|^{1 / n}
$$

exists.

Proof.

Apply the MET with $c(n, x)=a^{n}$, or apply the Jordan Decomposition Theorem.

A potpourri of proofs

(1) (Oseledets, 1965) reduces to the lower triangular case via conjugation.
(2) (Raghunathan, 1979) uses multi-linear algebra to reduce to Furstenberg-Kesten's 1960 Theorem that $n^{-1} \log \|c(n, x)\|$ converges.
(3) (Kaimanovich, 1989) uses the non-positively curved geometry of the space of positive definite matrices.
(9) (Walters, 1993) uses compactness of the projective space $\mathbb{R P}^{d-1}$.

Infinite dimensions?

Can the MET be extended to operators on an infinite-dimensional Hilbert space?

Let a be a bounded operator on Hilbert space. Does $\lim _{n \rightarrow \infty}\left|a^{n}\right|^{1 / n}$ exist?

Voiculescu's counterexample

Define $a: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ by $a\left(e_{n}\right)=k_{n} e_{n+1}$
$k_{n}= \begin{cases}1 & \text { if } 2^{i} \leq n<2^{i+1}, i \text { even }, \\ 2 & \text { if } 2^{i} \leq n<2^{i+1}, i \text { odd. }\end{cases}$

Then

$$
\left|a^{n}\right|^{1 / n} e_{1}=\left(\prod_{i=1}^{n} k_{i}\right)^{1 / n} e_{1}
$$

oscillates between $2^{1 / 3} e_{1}$ and $2^{2 / 3} e_{1}$.

So $\left|a^{n}\right|^{1 / n}$ does not converge in the weak, strong or operator norm topologies.

Some infinite-dimensional METs

Infinite-dimensional METs were established by Ruelle (1982), Mañé (1983), Thiellen (1987), Schaumlöffel (1991), Karlsson-Margulis (1999), Lian and Lu (2010), González-Tokman and Quas (2015) and Blumenthal (2016).

All of these require some quasi-compactness assumptions on the cocycle $c(n, x)$. So the Oseledets subspaces are finite-dimensional and the Lyapunov spectrum is discrete.

Goal: Prove statements of the following form:

Let

- (X, μ) be a standard Borel probability space,
- $f: X \rightarrow X$ be a measure-preserving transformation,
- \mathcal{H} be a separable Hilbert space,
- G be a group of linear operators acting on \mathcal{H},
- $c: \mathbb{Z} \times X \rightarrow G$ a measurable cocycle satisfying a log first moment condition.
Then for a.e. $x \in X$, there is a limit operator $\Lambda(x)$ defined by

$$
\lim _{n \rightarrow+\infty} n^{-1} \log |c(n, x)|=\log \Lambda(x)
$$

where the limit is in ?? topology. Moreover, we'd like a Lyapunov distribution, Osedelets subspaces and vector growth rates.

Outline

(1) Example 1: exponentiated Hilbert Schmidt operators
(2) Example 2: the abelian case
(3) The general case

Example: exponentiated Hilbert Schmidt operators

- $\mathcal{H}=$ separable Hilbert space.
- $B(\mathcal{H})=\{a: \mathcal{H} \rightarrow \mathcal{H}:\|a\|<\infty\}$.
- $\left\{e_{i}\right\}_{i \in \mathbb{N}}=$ an ON basis on \mathcal{H}.
- $a \in B(\mathcal{H})$ is Hilbert-Schmidt if $\|a\|_{2}^{2}:=\sum_{i}\left\|a e_{i}\right\|^{2}<\infty$.
- $\mathrm{L}^{2}(B(\mathcal{H}))=\left\{a \in B(\mathcal{H}):\|a\|_{2}<\infty\right\}$.
- Let $\mathrm{GL}^{2}(B(\mathcal{H}))=\left\{a \in B(\mathcal{H}): \log |a| \in \mathrm{L}^{2}(B(\mathcal{H}))\right\}$.

Theorem (Karlsson-Margulis, 1999)

The model statement holds with $G=\mathrm{GL}^{2}(B(\mathcal{H}))$ and convergence in the $L^{2}(B(\mathcal{H}))$ topology.

Hilbert-Schmidt operators are compact. So G consists of operators of the form compact + unitary. This statement was covered by Ruelle (1982).

Example: exponentiated Hilbert Schmidt operators

The canonical trace on $B(\mathcal{H})$ is defined by

$$
\tau_{B(\mathcal{H})}(a)=\sum_{i}\left\langle a e_{i}, e_{i}\right\rangle
$$

for any $a \in B(\mathcal{H})$ for which this is absolutely summable.

From the trace, one can derive notions of: inner product between two operators, dimension of subspaces of \mathcal{H}, determinant and spectral measure.

Example: uses of the canonical trace

Inner products between operators

$\langle a, b\rangle=\tau_{B(\mathcal{H})}\left(b^{*} a\right)$.

Dimension
 For $S \subset \mathcal{H}, \operatorname{dim}(S)=\tau_{B(\mathcal{H})}\left(\operatorname{proj}_{S}\right)$.

Determinants

$\operatorname{det}(a)=\exp \left(\tau_{B(\mathcal{H})}(\log |a|)\right)$ whenever this is well-defined.

Spectral measures

The spectral measure of a, when well-defined, is the unique measure μ_{a} on \mathbb{C} satisfying

$$
\tau_{B(\mathcal{H})}\left(a^{n}\right)=\int z^{n} d \mu_{a}(z) .
$$

Continuous spectrum?

Is there an MET that allows for continuous Lyapunov spectrum?

Example: the abelian case

Let $M=\mathrm{L}^{\infty}([0,1]) . M \curvearrowright \mathrm{~L}^{2}([0,1])$ by multiplication.

$$
\text { Let } G=\operatorname{GL}^{2}(M)=\left\{\exp (a): a \in \mathrm{~L}^{2}([0,1])\right\} .
$$

Pointwise Ergodic Theorem \Rightarrow the model statement holds with $G=\mathrm{GL}^{2}(M)$ and convergence in the $\mathrm{L}^{2}(B(\mathcal{H}))$ topology.

This allows for continuous Lyapunov spectrum.

Convergence does not occur in the operator-norm topology in general.

The trace in the abelian case

Trace

For $a \in M=L^{\infty}([0,1]), \tau(a):=\int_{0}^{1} a(x) d x$.

Inner products between operators

$\langle a, b\rangle=\tau\left(b^{*} a\right)=\int_{0}^{1} a(x) \overline{b(x)} d x$.

Dimension
If $Y \subset[0,1]$, then $\mathrm{L}^{2}(Y) \subset \mathrm{L}^{2}([0,1])$ and

$$
\operatorname{dim}\left(\mathrm{L}^{2}(Y)\right)=\tau\left(\operatorname{proj}_{\mathrm{L}^{2}(Y)}\right)=\tau\left(1_{Y}\right)=\operatorname{Leb}(Y)
$$

The trace in the abelian case

Determinants

$\operatorname{det}(a)=\exp (\tau(\log |a|))=\exp \left(\int_{0}^{1} \log |a(x)| d \operatorname{Leb}(x)\right)$.

Spectral measures

The spectral measure of a is its distribution. It's also the unique measure on \mathbb{C} with

$$
\tau\left(a^{n}\right)=\int z^{n} d \mu_{a}(z)
$$

Theorem (B.-Hayes-Lin, the vN-algebra MET)

Let

- (X, μ) be a Borel probability space,
- $f: X \rightarrow X$ be a measure-preserving transformation,
- (M, τ) a semi-finite tracial von Neumann algebra,
- $c: \mathbb{Z} \times X \rightarrow \mathrm{GL}^{2}(M, \tau)$ a measurable cocycle with $\log \|c(1, x)\|_{2} \in L^{1}(X, \mu)$.
Then for a.e. x the drift, defined by

$$
D(x)=\lim _{n \rightarrow \infty} \frac{\|\log |c(n, x)|\|_{2}}{n}
$$

exists. For a.e. x with $D(x)>0$ there is a limit operator $\Lambda(x)$ defined by

$$
\lim _{n \rightarrow+\infty} n^{-1} \log |c(n, x)|=\log \Lambda(x)
$$

A semi-finite tracial von Neumann algebra is a sub-algebra of $B(\mathcal{H})$ equipped with a trace.

Trace \sim inner products between operators, dimensions, determinants and spectral measures.

Example

- Let $\Gamma=$ be a discrete group.
- Let $\lambda: \Gamma \rightarrow B\left(\ell^{2}(\Gamma)\right)$ be the left-regular representation.
- Let $L \Gamma=\overline{\operatorname{algebra}(\lambda(\Gamma))}$ SOT be the group von Neumann algebra.
- For $g \in \Gamma, \tau\left(\lambda_{g}\right)=1$ if $g=1_{\Gamma}$ and $\tau\left(\lambda_{g}\right)=0$ otherwise.
- Extend τ to $L \Gamma$ by linearity and continuity.

von Neumann algebras

Let

- \mathcal{H} be a separable Hilbert space,
- $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}.

A von Neumann algebra is a subalgebra $M \subset B(\mathcal{H})$ satisfying:

- (adjoint-closed) $a \in M \Rightarrow a^{*} \in M$;
- (identity) $I \in M$;
- M is closed in the Strong Operator Topology (SOT).

If $\mathcal{F} \subset B(\mathcal{H})$ is any subset, then there is a unique smallest von Neumann algebra containing \mathcal{F}.

Traces

Let $M_{+} \subset M$ be the positive operators on M.

A trace on M is a map $\tau: M_{+} \rightarrow[0, \infty]$ with
(1) $\tau(x+y)=\tau(x)+\tau(y)$ for all $x, y \in M_{+}$;
(2) $\tau(\lambda x)=\lambda \tau(x)$ for all $\lambda \in[0, \infty), x \in M_{+}$;
(3) $\tau\left(x^{*} x\right)=\tau\left(x x^{*}\right)$ for all $x \in M$.

We will always assume τ is

- faithful: $\tau\left(x^{*} x\right)=0 \Rightarrow x=0$;
- normal: $\tau\left(\sup _{i} x_{i}\right)=\sup _{i} \tau\left(x_{i}\right)$ for every increasing net $\left(x_{i}\right)_{i}$ in M_{+};
- semi-finite: $\forall x \in M_{+}, \exists y \in M_{+}$with $0<y<x$ and $0<\tau(y)<\infty$.

Theorem (Karlsson-Margulis (1999))

Let

- $f:(X, \mu) \rightarrow(X, \mu)$ be a prob-meas-preserv.,
- (Y, d) a complete $\operatorname{CAT}(0)$ space, $y_{0} \in Y$,
- $L: X \rightarrow \operatorname{Isom}(Y, d)$ be measurable with finite first moment:

$$
\int_{X} d\left(y_{0}, L(x) y_{0}\right) d \mu(x)<\infty .
$$

Then for a.e. $x \in X$, the drift exists:

$$
\lim _{n \rightarrow \infty} \frac{d\left(y_{0}, L(x) L(f x) \cdots L\left(f^{n-1} x\right) y_{0}\right)}{n}=D(x) .
$$

Moreover, for a.e. x with $D(x)>0, \exists a$ geodesic ray $\gamma_{x}(\cdot)$ starting at y_{0} that sub-linearly tracks the 'cocycle random walk':
$\lim _{n \rightarrow \infty} \frac{1}{n} d\left(\gamma_{x}(D n), L(x) L(f x) \cdots L\left(f^{n-1} x\right) y_{0}\right)=0$.

From Karlsson-Margulis to the Classical MET

- $\mathcal{P}(d, \mathbb{R})=\{a \in G L(d, \mathbb{R}): a>0\}$.
- $M_{s a}(d, \mathbb{R})=\left\{a \in \operatorname{Mat}(d, \mathbb{R}): a=a^{*}\right\}$.
- $\mathcal{P}(d, \mathbb{R})=\exp \left(M_{s a}(d, \mathbb{R})\right)$.
- The tangent space to $p \in \mathcal{P}(d, \mathbb{R})$ is $T_{p}(\mathcal{P}(d, \mathbb{R}))=M_{\text {sa }}(d, \mathbb{R})$.
- $\langle A, B\rangle_{p}=\operatorname{trace}\left(p^{-1} A p^{-1} B\right)$ is an inner product on $T_{p}(\mathcal{P}(d, \mathbb{R}))$.
- This gives a Riemannian metric on $\mathcal{P}(d, \mathbb{R})$.
- $\mathrm{GL}(d, \mathbb{R}) \curvearrowright \mathcal{P}(d, \mathbb{R})$ transitively and isometrically by a $p:=a p a^{*}$.
- Every geodesic ray from the identity I has the form $t \mapsto \exp (t a)$ for some self-adjoint $a \in M_{s a}(d, \mathbb{R})$.
- Obtain the classical MET from Karlsson-Margulis by setting $Y=\mathcal{P}(d, \mathbb{R})$, $y_{0}=I, L(x)=c(1, x)^{*}$.

From Karlsson-Margulis to the vN algebra MET

- Let (M, τ) be a semi-finite tracial von Neumann algebra.
- Let $\mathcal{P}^{\infty} \subset M^{\times}$be the set of positive definite operators with bounded inverses.
- The tangent space to $p \in \mathcal{P}^{\infty}$ is $T_{p}\left(\mathcal{P}^{\infty}\right)=M_{\text {sa }}$.
- $\langle a, b\rangle_{p}=\tau\left(p^{-1} a p^{-1} b\right)$ is an inner product on $T_{p}\left(\mathcal{P}^{\infty}\right)$.
- $M^{\times} \curvearrowright \mathcal{P}^{\infty}$ transitively and isometrically by $a \cdot p:=a p a^{*}$.

Theorem (Andruchow-Larotonda, 2006)

- \mathcal{P}^{∞} is non-positively curved.
- Geodesics in \mathcal{P}^{∞} are $t \mapsto \exp (t a)$ for $a \in M_{\text {sa }}$.

But \mathcal{P}^{∞} is incomplete! Identifying the completion was stated as an open problem in [Conde-Larotonda, 2010].

The completion

- Let $\mathrm{GL}^{2}(M, \tau)=\left\{L \in \mathrm{~L}^{0}(M, \tau): \log (|L|) \in \mathrm{L}^{2}(M, \tau)\right\}$.
- Let $\mathcal{P} \subset \mathrm{GL}^{2}(M, \tau)$ be the positive definite log-square integrable operators.
- Define $d_{\mathcal{P}}(a, b)=\left\|\log a^{-1 / 2} b a^{-1 / 2}\right\|_{2}$.

Theorem (B.-Hayes-Lin)

- $\mathrm{GL}^{2}(M, \tau)$ is a group.
- ($\left.\mathcal{P}, d_{\mathcal{P}}\right)$ is the metric completion of \mathcal{P}^{∞}. It is $\operatorname{CAT}(0)$.
- $\mathrm{GL}^{2}(M, \tau) \curvearrowright \mathcal{P}$ transitively and isometrically by a $\cdot p:=a p a *$.
- Geodesics in \mathcal{P} are $t \mapsto \exp (t a)$ for $a \in L^{2}(M, \tau)_{\text {sa }}$.
(the above) $+($ Karlsson Margulis $) \Rightarrow$ the $v N$-algebra MET.

Moreover, ...

The Lyapunov distribution at $x \in X$ is the spectral measure $\mu_{\Lambda(x)}$.

It is invariant: $\mu_{\Lambda(x)}=\mu_{\Lambda(f x)}$.

The Oseledets subspaces are $\mathcal{H}_{s}(x)=1_{(-\infty, s]}(\log \Lambda(x)) \mathrm{L}^{2}(M, \tau)$.

They are invariant: $\mathcal{H}_{s}(f x)=L(x) \mathcal{H}_{s}(x)$.

Theorem (Asymptotic behavior of determinants) $\lim _{n \rightarrow \infty} \operatorname{det}\left(L\left(f^{n-1} x\right) \cdots L(x)\right)^{1 / n}=\operatorname{det} \Lambda(x)$.

Theorem

For a.e. $x \in X$ and every vector $v \in L^{2}(M, \tau)$,

$$
\begin{aligned}
& \inf \left\{\liminf _{n \rightarrow \infty}\left\|c(n, x) v_{n}\right\|_{2}^{1 / n}: \lim _{n} v_{n}=v\right\} \\
= & \inf \left\{\limsup _{n \rightarrow \infty}\left\|c(n, x) v_{n}\right\|_{2}^{1 / n}: \lim _{n} v_{n}=v\right\} \\
= & \lim _{n \rightarrow \infty}\left\|\Lambda(x)^{n} v\right\|_{2}^{1 / n} .
\end{aligned}
$$

Even in the abelian case $M=L^{\infty}([0,1])$, there are counterexamples to the claim

$$
\lim _{n \rightarrow \infty}\|c(n, x) v\|_{2}^{1 / n}=\lim _{n \rightarrow \infty}\left\|\Lambda(x)^{n} v\right\|_{2}^{1 / n} .
$$

Further directions

- Applications to infinite-dimensional Hamiltonian flows? to infinite-dimensional non-uniform hyperbolic dynamics?
- local stable/unstable manifold theory?
- Ruelle's entropy inequality? Pesin's entropy formula?
- Can the main results be extended to non-invertible dynamics, non-invertible operators, log integrable operators, type III vN-algebras, other Banach spaces?

The study of von Neumann algebras was initiated by von Neumann and Murray in a series of 4 papers from (1936-1943) totaling around 300 pages.

- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116-229.
- Murray, F. J.; von Neumann, J. On rings of operators. II. Trans. Amer. Math. Soc. 41 (1937), no. 2, 208-248.
- v. Neumann, J. On rings of operators. III. Ann. of Math. (2) 41 (1940), 94-161.
- Murray, F. J.; von Neumann, J. On rings of operators. IV. Ann. of Math. (2) 44 (1943), 716-808.

