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Motivation

Theorem (Oseledets, 1965)
Let
@ X be a closed Riemannian manifold,
@ 1, = be a Borel probability measure on X,

@ f: X — X be a diffeomorphism
preserving p.

Then for a.e. x € X, for every vector
v € Tx(X), the growth rate

. 1 n
nﬂToon |Og||Dx(f )(V)H

exists.
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Theorem (Part of the Classical MET (Oseledets, 1965))
Let

@ (X, u) be a Borel probability space,

@ f: X — X be a measure-preserving transformation,

@ c:7Z x X — GL(d,R) a measurable cocycle with
log [|c(1,)*"|| € L'(X, ).

Then for a.e. x € X, for every vector v € RY, the growth rate

. —1
im0~ log [lc(n, x)(v)|

exists.
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Convert to a matrix problem

For convenience, choose a
measurable field of isomorphisms
by 1 T(X) — RY.

Define the cocycle
c:Zx X — GL(d,R)

c(n, x) = Ppaxy 0 Dyx(f") 0 & .

The cocycle is determined by
c(1,:) : X — GL(d,R) and the
cocycle equation

c(n+ m, x) = c(n, f"x)c(m, x).

v
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Spectral Calculus

Motivation

If ais a matrix, we need to make sense of |al,log|al,|a|'/" etc.

If d = (dj) is a diagonal matrix and ¢ : C — C then define

o(di1)

o(d) ?(0k2)

#(doa)

If a= a* is self-adjoint then the Spectral Theorem =

a=udu~" for some unitary u, real diagonal matrix d.

If $: R — R and a is self-adjoint then define ¢(a) := us(d)u—".
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Spectral Calculus

Let a € Maty«q(C). Then a*ais self-adjoint (and positive semi-definite). The
matrix absolute value of ais |a| = (a*a)'/? = ud'/?u". J

Now we can define
log |a|] = ulog(d"/?)u™",
|a|1/n _ ud1/2nu—1 )
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The limit operator

Theorem (The Classical MET)
Let

@ (X, u) be a Borel probability space,
@ f: X — X be a measure-preserving transformation,

@ c:7Z x X — Mat(d,R) be a measurable cocycle with
log [lc(1, X)|| € L' (X, ).

Then for a.e. x € X, there is a limit operator A(x) defined by

. 1 -
n—liToo n~"log|c(n, x)| = log A(x).
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Consequences of the Classical MET

Define the Lyapunov exponents \{(x) > --- > \y(x) to be the eigenvalues
of log A(X).

Define the Oseledets subspaces E;(x) to be the sum of the eigenspaces of
Aj(x) for j > i.

Then
@ (invariance) X;(f(x)) = \i(x), Ei(f(x)) = c(1, x)Ei(x),
@ (growth rates) For all v € Ej(x) \ Ei+1(x),
A(x) = lim n~log|lc(n, x)v|
= lim n~"log [A"(x)v].

det(A(x)) = lim det(|c(n, X))/
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Special case: the Pointwise Ergodic Theorem

Theorem (Birkhoff, 1932)

Let
@ (X, u) be a probability space,
@ f: X — X a measure-preserving transformation,
@ ¢ ¢ L'(X, 1) an integrable observable.

Then the ergodic averages

1n—1 )
n2def
i=0

converge pointwise a.e. to an f-invariant function. If f is ergodic, the limit is
the constant [ ¢ dy.

Proof.
Wilog ¢ is real-valued. Set d = 1 and apply the MET to ¢(1, x) = exp(¢). DJ
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Special case: powers of a single matrix

Theorem
Let a be a d x d matrix. Then

lim |&"|"/"
n—oo

exists.

Proof.

Apply the MET with ¢(n, x) = a”, or apply the Jordan Decomposition
Theorem.
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A potpourri of proofs

@ (Oseledets, 1965) reduces to the lower triangular case via conjugation.

@ (Raghunathan, 1979) uses multi-linear algebra to reduce to
Furstenberg-Kesten’s 1960 Theorem that n~=" log || c(n, x)| converges.

@ (Kaimanovich, 1989) uses the non-positively curved geometry of the
space of positive definite matrices.

Q (Walters, 1993) uses compactness of the projective space RP?~".
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Infinite dimensions?

Can the MET be extended to operators on an infinite-dimensional Hilbert
space? J

Let a be a bounded operator on Hilbert space. Does lim,,_,., |a"|"/" exist? J
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Voiculescu’s counterexample

Define a: £2(N) — ¢3(N) by
a(en) = knéni1

K — 1 if2"'§n<2"'+1,ieven,
T 2 if2l <n< 2™ jodd.

Then

n 1/n
"""y = (HK‘) e

i=1

oscillates between 21/3¢; and 22/3¢; |

So |a"|'/" does not converge in the
weak, strong or operator norm

topologies.
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Some infinite-dimensional METs

Thiellen (1987), Schaumloéffel (1991), Karlsson-Margulis (1999), Lian and Lu

Infinite-dimensional METs were established by Ruelle (1982), Mané (1983),
(2010), Gonzalez-Tokman and Quas (2015) and Blumenthal (2016). J

c(n, x). So the Oseledets subspaces are finite-dimensional and the Lyapunov

All of these require some quasi-compactness assumptions on the cocycle
spectrum is discrete. J
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Goal: Prove statements of the following form: ]

Let
@ (X, ) be a standard Borel probability space,
@ f: X — X be a measure-preserving transformation,
@ H be a separable Hilbert space,
@ G be a group of linear operators acting on ,

@ c:7Z x X — G a measurable cocycle satisfying a log first moment
condition.

Then for a.e. x € X, there is a limit operator A(x) defined by

. 1 o
nl:Toon log |c(n, x)| = log A(x)

where the limit is in ?? topology. Moreover, we'd like a Lyapunov distribution,
Osedelets subspaces and vector growth rates.

4
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Outline
@ Example 1: exponentiated Hilbert Schmidt operators
© Example 2: the abelian case
© The general case
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Example: exponentiated Hilbert Schmidt operators

@ 7{ = separable Hilbert space.

@ BH)={a:H—H: ||a| <oo}.

@ {e;}ien=an ON basis on H.

@ ac B(H) is Hilbert-Schmidt if a2 := 3, ||ae||2 < oc.
® L%(B(H)) ={ac B(H): ||a|lz < co}.

@ Let GL?(B(H)) = {a<c B(H) : log|a| € L?(B(H))}.

Theorem (Karlsson-Margulis, 1999)

The model statement holds with G = GL?(B(#)) and convergence in the
L2(B(H)) topology.

Hilbert-Schmidt operators are compact. So G consists of operators of the
form compact + unitary. This statement was covered by Ruelle (1982).
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Example: exponentiated Hilbert Schmidt operators
The canonical trace on B(H) is defined by

Taay(@) = Y _(ae;, &)

i

for any a € B(#) for which this is absolutely summable.

operators, dimension of subspaces of #, determinant and spectral

From the trace, one can derive notions of: inner product between two
measure.
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Example: uses of the canonical trace

Inner products between operators
(a,b) = Tp(3)(b*a).

Dimension
For S C H, dim(S) = 7p(3)(projs).

Determinants
det(a) = exp(7p(3)(log|al)) whenever this is well-defined.

Spectral measures

The spectral measure of a, when well-defined, is the unique measure 15 on C
satisfying

TB(H)(a”) = /Zn dp,a(Z).
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Continuous spectrum?

Is there an MET that allows for continuous Lyapunov spectrum? J
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Example: the abelian case

Let M = L>=([0, 1]). M~L3([0, 1]) by multiplication. ]

Let G = GL2(M) = {exp(a) : a < L?([0,1])}. |

Pointwise Ergodic Theorem = the model statement holds with G = GL?(M)
and convergence in the L2(B(#)) topology.

This allows for continuous Lyapunov spectrum. J

Convergence does not occur in the operator-norm topology in general. )
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The trace in the abelian case

Trace

Forae M =L>([0,1]), 7 fo J
Inner products between operators

(a,b) = 7(b*a) = fo x)b(x) dx. }

Dimension
If Y  [0,1], then L2(Y) ¢ L2(]0, 1]) and

dim(L3(Y)) = 7(projiz(y)) = 7(1y) = Leb(Y).
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The trace in the abelian case

Determinants

det(a) = exp(7(log|al)) = exp (f01 log |a(x)| dLeb(X)).

Spectral measures

The spectral measure of a is its distribution. It’s also the unique measure on C
with

r(a@") = /Z" dua(2).
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Theorem (B.-Hayes-Lin, the vN-algebra MET)
Let
@ (X, ) be a Borel probability space,
@ f: X — X be a measure-preserving transformation,
@ (M, 1) a semi-finite tracial von Neumann algebra,
@ c:Z x X — GL3(M, 7) a measurable cocycle with
log [c(1, X)||z € L' (X, ).
Then for a.e. x the drift, defined by
Do) = fim 11oE1C(n 02

n— oo n

exists. For a.e. x with D(x) > 0 there is a limit operator A(x) defined by

lim n~'log|c(n, x)| = log A(X).

n—+oo
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A semi-finite tracial von Neumann algebra is a sub-algebra of B(#) equipped
with a trace. J

Trace ~» inner products between operators, dimensions, determinants and
spectral measures.

Example
@ Let I = be a discrete group.
@ Let \: T — B(£3(I")) be the left-regular representation.

@ Letll = algebra(A(F))SOT be the group von Neumann algebra.
@ Forgerl,7(\g) =1if g=1r and 7(\y) = 0 otherwise.
@ Extend 7 to LT by linearity and continuity.
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von Neumann algebras

Let
@ H be a separable Hilbert space,
@ B(H) be the algebra of all bounded linear operators on .
A von Neumann algebra is a subalgebra M c B(#) satisfying:
@ (adjoint-closed) ae M = a* € M;
@ (identity) I € M;
@ M is closed in the Strong Operator Topology (SOT).

If 7 C B(H) is any subset, then there is a unique smallest von Neumann
algebra containing F. J
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Traces

Let M, c M be the positive operators on M. |

Atrace on Misamap 7 : My — [0, c0] with
Q 7(x+y)=71(x)+7(y)forall x,y € M,;
Q 7(M\x) = Ar(x)forall X € [0,00), x € My;
Q 7(x*x) =7(xx*) forall x € M.

We will always assume 7 is
o faithful: 7(x*x) = 0= x = 0;
@ normal: 7(sup; X;) = sup; 7(x;) for every increasing net (x;); in M, ;
@ semi-finite: Vx € M, 3y e M, with0 < y < xand 0 < 7(y) < co.
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Theorem (Karlsson-Margulis (1999))
Let
o f:(X,u) — (X,u) bea
prob-meas-preserv.,
@ (Y,d) a complete CAT(0) space, y, € Y,
@ L: X — Isom(Y,d) be measurable with
finite first moment:

Jx d(yo, L(X)y0) du(x) <
Then for a.e. x € X, the drlft exists:

i Q00 LOOL() L™ 0y0) _

n—oo n

Moreover, for a.e. x with D(x) > 0,3 a
geodesic ray v«(-) starting at y, that
sub-linearly tracks the ‘cocycle random walk’:

lim 1 <7X(Dn) (x)L(fx)---L(f"—‘x)yo):o.
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From Karlsson-Margulis to the Classical MET

@ P(d,R)={aeGL(d,R): a> 0}.
@ Msy(d,R) = {a e Mat(d,R): a=a*}.
@ P(d,R) = exp(Mss(d, R)).

@ The tangent space to p € P(d,R) is To(P(d,R)) = Msa(d, R).
@ (A, B), = trace(p~'Ap~'B) is an inner product on T,(P(d,R)).
@ This gives a Riemannian metric on P(d, R).

@ GL(d,R)~P(d,R) transitively and isometrically by a- p := apa*.
@ Every geodesic ray from the identity / has the form t — exp(ta) for some
self-adjoint a € Ms3(d, R).

@ Obtain the classical MET from Karlsson-Margulis by setting Y = P(d,R),
Yo=1,L(x)=c(1,x)".
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From Karlsson-Margulis to the vN algebra MET

@ Let (M, 7) be a semi-finite tracial von Neumann algebra.

@ Let P> c M* be the set of positive definite operators with bounded
inverses.

@ The tangent space to p € P> is Tp(P>°) = Msa.
@ (a,b), = 7(p~'ap~'b) is an inner product on Tp(P>).
@ M*~P transitively and isometrically by a- p := apa*.

Theorem (Andruchow-Larotonda, 2006)
@ P is non-positively curved.
@ Geodesics in P> are t — exp(la) for a € Ms,.

But P is incomplete! Identifying the completion was stated as an open
problem in [Conde-Larotonda, 2010]. J
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The completion

@ Let GL3(M,7) = {Le L°(M,7) : log(|L]) € L3(M,T)}.

@ Let P c GL?(M, 7) be the positive definite log-square integrable
operators.

@ Define dp(a, b) = || loga=/2ba="/2|,.

Theorem (B.-Hayes-Lin)
@ GL*(M,7) is a group.
@ (P, dp) is the metric completion of P>°. It is CAT(0).
@ GL%(M, 7)~P transitively and isometrically by a- p := apa*.
@ Geodesics inP are t — exp(ta) for a € L2(M, 7)sa.

(the above) + (Karlsson Margulis) = the vN-algebra MET. J
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Moreover, . ..

The Lyapunov distribution at x € X is the spectral measure (). J
Itis invariant: pax) = pacs)- J
The Oseledets subspaces are Hg(x) = 1(_oo g (log A(X))LA(M, 7). J
They are invariant: Hs(fx) = L(x)Hs(x). |
Theorem (Asymptotic behavior of determinants)

limp_s o0 det(L(F™~Tx) - - L(x))"/" = det A(x). J
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Theorem

For a.e. x € X and every vector v € L?(M, 1),

. . . 1/n. . o
inf {",,”_‘,L'lf lle(n, x)vallo"" ||rr7n Vo = V}

inf{limsup lle(n, X)Vally/"  lim v, = v}
n—so0 n

_ : ny, | 1/n
= lim [AG)"V[".

Even in the abelian case M = L*°([0, 1]), there are counterexamples to the

claim y y
5 n__ | n n
Jim [le(n,x)v]y" = lim [[AG)™V[);".
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Further directions

@ Applications to infinite-dimensional Hamiltonian flows? to
infinite-dimensional non-uniform hyperbolic dynamics?

@ local stable/unstable manifold theory?
@ Ruelle’s entropy inequality? Pesin’s entropy formula?

@ Can the main results be extended to non-invertible dynamics,
non-invertible operators, log integrable operators, type Ill vN-algebras,
other Banach spaces?
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The study of von Neumann algebras was initiated by von Neumann and
Murray in a series of 4 papers from (1936-1943) totaling around 300 pages. J

@ F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math.
(2) 37 (1936), no. 1, 116-229.

@ Murray, F. J.; von Neumann, J. On rings of operators. Il. Trans. Amer.
Math. Soc. 41 (1937), no. 2, 208—248.

@ v. Neumann, J. On rings of operators. lll. Ann. of Math. (2) 41 (1940),
94—161.

@ Murray, F. J.; von Neumann, J. On rings of operators. IV. Ann. of Math.
(2) 44 (1943), 716-808.
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