Distribution of Values of Irrational Forms at Integral Points and Spherical Averages

Thomas Hille

Joint work with P. Buterus, F. Götze and G. Margulis, and E. Fromm and H. Oh

Introduction - Values of Integral Points

- Meyer (1884): Any indefinite, integral quadratic form in $n \geq 5$ variables represents 0 over \mathbb{Z}.
- Oppenheim Conjecture (Margulis (1986)): Any indefinite, irrational quadratic form in $n \geq 3$ variables takes values at integral points arbitrarily close to 0 or equivalently the set of values is dense in \mathbb{R}.
- Birch (1957): For any odd $d \geq 3$ there exists an integer $m_{\mathbb{Z}}(d)$ with the following property. Any integral, homogeneous form of degree d in $m \geq m_{\mathbb{Z}}(d)$ variables represents 0 over \mathbb{Z}.
- Schmidt (1980): For any odd $d \geq 3$ there exists an integer $m_{0}(d)$ with the following property. Any irrational, homogeneous form of degree d in $m \geq m_{0}(d)$ variables takes values arbitrarily close to 0 .
- Note that $m_{\mathbb{Z}}(2)=5, m_{0}(2)=3$. However, for $d \geq 3$ the situation is not well-understood. e.g. $m_{0}(3) \leq 359551882$ (Freeman (2000) based on Pitman (1968) and Schmidt) and $m_{\mathbb{Z}}(3) \leq 14$ (Heath-Brown (2007)).
- Mordell (1937): $m_{\mathbb{Z}}(d) \geq d^{2}+1$ (e.g. $m_{\mathbb{Z}}(3)=10$).

Introduction - Density of Values

- Davenport-Heilbronn (1946): Let F be an indefinite, irrational diagonal form of degree d in $n \geq 2^{d}+1$ variables, then $F\left(\mathbb{Z}^{n}\right)$ is dense in \mathbb{R}.
- Davenport-Roth (1955): For indefinite, irrational diagonal cubic forms, $n=8$ is sufficient to obtain density of values at integral points.
- Baker-Brüdern-Wooley (2000's): First 'quantitative' results for indefinite, irrational diagonal cubic forms in $n=8$ variables and in $n=7$ with 'heavy Diophantine' restrictions.
- Eskin-Margulis-Mozes $(1998,2005)$: Quantitative distribution of values of quadratic forms of signature $(p, q) \neq(2,1)$ or $(2,2)$. For quadratic forms of signature $(2,2)$ they obtain quantitative results under 'mild Diophantine' restrictions. Does not rely on the circle method, but instead on 'equidistribution of translates of measures'.

Heuristics

- Let F be a homogeneous form of degree d in m variables.
- Let (a, b) be any interval and set

$$
\begin{aligned}
V_{(a, b)}^{F}(\mathbb{R}) & :=\left\{v \in \mathbb{R}^{m} \mid a<F(v)<b\right\}, \\
V_{(a, b)}^{F}(\mathbb{Z}) & :=V_{(a, b)}^{F}(\mathbb{R}) \cap \mathbb{Z}^{m}
\end{aligned}
$$

- Denote by Ω the unit ball in \mathbb{R}^{m}, then
(1) $T \Omega \cap \mathbb{Z}^{m}$ consists of $\mathcal{O}\left(T^{m}\right)$ points,
(2) $F\left(T \Omega \cap \mathbb{Z}^{m}\right) \subseteq\left[-c T^{d}, c T^{d}\right]$ for some $c=c(F, \Omega)$,
(3) $F\left(V_{(a, b)}^{F}(\mathbb{Z}) \cap T \Omega\right)=F\left(\mathbb{Z}^{m} \cap T \Omega\right) \cap[a, b]$.

One expects

$$
\#\left(V_{(a, b)}(\mathbb{Z}) \cap T \Omega\right) \sim c_{F, \Omega}(b-a) T^{m-d}, \text { as } T \rightarrow \infty
$$

for a constant $c_{F, \Omega}$ depending on F and Ω only, but also $\operatorname{vol}\left(V_{(a, b)}(\mathbb{R}) \cap T \Omega\right) \sim c_{F, \Omega}(b-a) T^{m-d}$, as $T \rightarrow \infty$.

Quadratic Forms

Theorem (Buterus, Götze, H., Margulis). Let Q be a non-degenerate indefinite quadratic form in $n \geq 5$ variables and $\Omega \subset \mathbb{R}^{n}$ an 'admissible domain'. Then, for any $a<b$ there exist functions $\rho_{Q, b-a}$ and $R_{Q, \Omega, b-a}$ such that for any $T>0$

$$
\begin{aligned}
& \#\left(V_{(a, b)}^{Q}(\mathbb{Z}) \cap T \Omega\right)-\operatorname{vol}\left(V_{(a, b)}^{Q}(\mathbb{R}) \cap T \Omega\right) \\
& =\frac{T^{n-2}}{|\operatorname{det} Q|^{\frac{1}{2}}} \mathcal{O}_{n}\left(\rho_{Q, b-a}(T)+R_{Q, \Omega, b-a}(T)\right),
\end{aligned}
$$

where $R_{Q, \Omega, b-a}(T)=\mathcal{O}_{Q, \Omega, b-a}\left(T^{-k}\right)$ as $T \rightarrow \infty$ for some $k=k(n)>0$ and
(1) If Q is rational, then $\rho_{Q, b-a}(T)=\mathcal{O}_{Q, b-a}(1)$ as $T \rightarrow \infty$,
(2) If Q is irrational, then $\rho_{Q, b-a}(T)=o_{Q, b-a}(1)$ as $T \rightarrow \infty$,
(3) If Q is Diophantine of type (κ, A), then $\rho_{Q, b-a}(T)=\mathcal{O}_{Q, b-a}\left(T^{-\kappa^{*}}\right)$ as $T \rightarrow \infty$ for some $\kappa^{*}>0$ explicitly depending on n and κ only.

Quadratic Forms

Definition. A quadratic form Q is said to be Diophantine of type (κ, A) if for any integer $m \in \mathbb{Z} \backslash\{0\}$ and any integral symmetric matrix $M \in \operatorname{Sym}_{n}(\mathbb{Z})$ we have

$$
\inf _{t \in[1,2]}\|M-t m Q\| \geq \frac{A}{|m|^{\kappa}}
$$

- Almost every quadratic form is Diophantine of some type, e.g. if one ratio consisting of two coefficients of Q is Diophantine, then Q is a Diophantine form.

Determinant Forms

- Let $V=\operatorname{Mat}_{n}(\mathbb{R}), V_{\mathbb{Z}}=\operatorname{Mat}_{n}(\mathbb{Z})$. We say that a homogeneous form

$$
F(v)=\sum_{\left(i_{1}, j_{1}\right) \leq \cdots \leq\left(i_{n}, j_{n}\right)} q_{i_{1} j_{1} \ldots i_{n} j_{n}} v_{i_{1} j_{1}} \ldots v_{i_{n} j_{n}}
$$

of degree n in n^{2} variables is a determinant form of degree n if it is of the form $F=\operatorname{det} \circ x$ for some $x \in \operatorname{SL}(V)$.

- The case $n=2$ corresponds to the case of quadratic forms of signature $(2,2)$.

Determinant Forms

- Let $\mathrm{G}=\mathrm{SL}(V), \Gamma=\operatorname{SL}\left(V_{\mathbb{Z}}\right)$ and $\mathrm{X}=\mathrm{G} / \Gamma$.
- $\mathrm{H}=\mathrm{SL}_{n}(\mathbb{R}) \times \mathrm{SL}_{n}(\mathbb{R}) \subset \mathrm{G}$ (via the representation $(g, h) v=g v h^{t}$ for $(g, h) \in \mathrm{H}$ and $v \in V)$ is a maximal connected subgroup.
- H is realized as $\mathrm{SL}_{n}(\mathbb{R}) \otimes \mathrm{SL}_{n}(\mathbb{R})$, where \otimes denotes the standard Kronecker product.
- The group preserving the form F is $\mathrm{H}_{F}=x^{-1} \mathrm{H} x$.
- Observation: $\mathrm{H}_{F} \cdot \Gamma$ is closed in X if and only if F is rational.
- Ratner's Theorem: Since H is maximal, $\mathrm{H}_{F} \cdot \Gamma$ is dense or closed in X.
- Hence, $F\left(V_{\mathbb{Z}}\right)$ is dense in \mathbb{R} if F is irrational.

Determinant Forms

- Let $\Omega=\left\{v \in V_{0} \mid\|v\|<\rho(\widehat{v} /\|\widehat{v}\|)\right\}$ where \widehat{v} denotes the adjugate of v, $\rho: \mathrm{S}_{V} \rightarrow \mathbb{R}_{>0}$ is a positive continuous function on the unit sphere $S_{V}=\{v \in V \mid\|v\|=1\}$ and $V_{0}=\{v \in V \mid \operatorname{rk}(v) \geq n-1\}$.

Theorem (Fromm, H., Oh). Let F be a an irrational determinant form in $n \geq 3$ variables. Then, for any interval (a, b),

$$
\#\left(V_{(a, b)}^{F}(\mathbb{Z}) \cap T \Omega\right) \sim \lambda_{F, \Omega}(b-a) T^{n(n-1)}, \text { as } T \rightarrow \infty
$$

where $\lambda_{F, \Omega}=\lim _{T \rightarrow \infty} \frac{\operatorname{vol}\left(V_{(a, b)}^{F}(\mathbb{R}) \cap T \Omega\right)}{(b-a) T^{n(n-1)}}$.

Spherical Averages

- Suppose X is a space with a base point point o and $\left(\mathcal{A}_{r}\right)_{r>0}$ is a family of 'mean value' operators.
- For a function $f,\left(\mathcal{A}_{r} f\right)(x)$ is the 'mean value' of f along the 'sphere of radius r^{\prime} centered at x.
- Under certain conditions, if f is a positive function satisfying an inequality of the form

$$
\left(A_{r_{0}} f\right)(x) \leq c f(x)+b, \text { for all } x \in \mathrm{X},
$$

for some $r_{0}>0$, then the 'mean values' of f based at o (i.e. $\left(\mathcal{A}_{r} f\right)(o)$ for all $r>0$) can be controlled.

- Usually $c<1$ is necessary and yields a bound for $\sup _{r>0}\left(A_{r} f\right)(o)$.
- If $c \geq 1$ one cannot expect $\sup _{r>0}\left(\mathcal{A}_{r} f\right)(o)$ to be bounded. However, if the underlying 'mean value' operators are 'better understood', e.g. if the spherical functions can be related to the above inequality, then one can obtain growth estimates for $\left(\mathcal{A}_{r} f\right)(o)$.

Geometry of Numbers

- Here $\mathrm{X}=\mathrm{G} / \Gamma$ space of (G-)lattices in \mathbb{R}^{m}
- The function f will be related to the height function α. If $\Delta \in \mathrm{X}$ is a lattice, then

$$
\begin{aligned}
& \alpha_{i}(\Delta)^{-1}=\text { covolume of smallest } i \text { dimensional sublattice of } \Delta \\
& \alpha(\Delta)=\sup _{0 \leq i \leq m} \alpha_{i}(\Delta)
\end{aligned}
$$

- Lipschitz principle: let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}_{>0}$ be a sufficiently fast decreasing function, then $\widetilde{f} \leq c(f) \alpha$, where

$$
\widetilde{f}(\Delta)=\sum_{v \in \Delta \backslash\{0\}} f(v), \Delta \in \mathrm{X}
$$

- Siegel's mean value theorem: let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuous and compactly supported, then

$$
\int_{\mathrm{X}} \tilde{f} \mathrm{~d} \mu_{\mathrm{X}}=\int_{\mathbb{R}^{m}} f \mathrm{~d} v
$$

Analytic Counting Method

- $\mathrm{H}=\mathrm{SL}_{2}(\mathbb{R}), \mathrm{K}=\mathrm{SO}(2)$ embedded in $\mathrm{G}=\mathrm{Sp}_{2 n}(\mathbb{R}), \Gamma=\operatorname{Sp}_{2 n}(\mathbb{Z})$ $(n \geq 1), a_{t}=\operatorname{diag}\left(\mathrm{e}^{t / 2}, \mathrm{e}^{-t / 2}\right)$,

Theorem (BGHM). For any $\beta>\frac{2}{n}$ and any symplectic lattice $\Delta \in \mathrm{G} / \Gamma$

$$
\int_{\mathrm{K}} \alpha^{\beta}\left(a_{t} k \Delta\right) \mathrm{d} k<_{\beta}\left(\mathrm{e}^{t / 2}\right)^{\beta n-2} \alpha(\Delta)
$$

- Assume that the eigenvalues of Q are bounded below by 1 in absolute value. Let $h(v, \zeta)=f(v) g(\zeta)$ be an appropriately smooth approximation of $\chi_{\Omega \times[a, b]}$ and set

$$
L_{T}(h):=\sum_{n \in \mathbb{Z}^{d}} h\left(\frac{n}{T}, Q(n)\right)-\int_{\mathbb{R}^{n}} h\left(\frac{x}{T}, Q(x)\right) \mathrm{d} x
$$

Analytic Counting Method

－Via Fourier analysis，the main term to be estimated is

$$
\int_{\mathscr{I}}\left|\vartheta\left(乃_{T, \tau}, v / T\right)\right| \mathrm{d} \tau
$$

where $\mathscr{I} \asymp\left(T^{-1}, T^{\delta}\right)(\delta>0)$

$$
\begin{aligned}
& \vartheta(乃, \xi)=\sum_{x \in \mathbb{Z}^{n}} \exp \{\pi \mathrm{i} ß(x)+2 \pi \mathrm{i}\langle x, \xi\rangle\}, 马 \in \mathcal{H}_{d}, \xi \in \mathbb{R}^{n} \\
& 3_{T, \tau}=\tau Q+\frac{\mathrm{i}}{T^{2}} Q_{+} \in \mathcal{H}_{d},\left(Q_{+}=\left(Q^{2}\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

－One can show（via Poisson summation and the Lipschitz principle）that

$$
\int_{\mathscr{I}}\left|\vartheta\left(\bigotimes_{T, \tau}, v / T\right)\right| \mathrm{d} \tau \lll<\frac{T^{n / 2}}{|\operatorname{det} Q|^{\frac{1}{2}}} \int_{\mathrm{K}} \alpha^{\frac{1}{2}}\left(a_{t} k \Delta_{Q}\right) \mathrm{d} k
$$

where $t=2 \log (T)$ and Δ_{Q} is a symplectic lattice for which $\alpha\left(\Delta_{Q}\right) \ll|\operatorname{det} Q|^{\frac{1}{2}}$

Dynamical Counting Method

- $V=\operatorname{Mat}_{n}(\mathbb{R}), V_{\mathbb{Z}}=\operatorname{Mat}_{n}(\mathbb{Z}), V_{0}$ as before, S_{V} the unit sphere
- $\mathrm{G}=\mathrm{SL}(V), \Gamma=\mathrm{SL}\left(V_{\mathbb{Z}}\right), \mathrm{X}=\mathrm{G} / \Gamma$,
- $\mathrm{H}=\mathrm{SL}_{n}(\mathbb{R}) \times \mathrm{SL}_{n}(\mathbb{R}) \subset \mathrm{G}$,
- $b_{t}=\operatorname{diag}\left(\mathrm{e}^{-t / 2}, \ldots, \mathrm{e}^{-t / 2}, \mathrm{e}^{t(n-1) / 2}\right), a_{t}=\left(b_{t}, b_{t}\right) \in \mathrm{H}$.
- $\mathrm{K}=\mathrm{SO}(n) \times \mathrm{SO}(n), \mathrm{M}=\mathrm{SO}(n-1) \times \mathrm{SO}(n-1)$

Theorem. Suppose $n \geq 3$ and $0<s<2$, then for any lattice $\Delta \in V$

$$
\sup _{t>0} \int_{\mathrm{K}} \alpha^{s}\left(a_{t} k \Delta\right) \mathrm{d} k<\infty
$$

The upper bound is uniform as Δ varies over compact sets in the space of lattices.

- This is not true for $n=2$!

Dynamical Counting Method

- Let F be a determinant form of degree n defined by $x \in \mathrm{G}$,
- We can approximate $\chi_{[1 / 2,1] \partial \Omega \times[a, b]}$ by a continuous function of compact support $h(x v, \zeta)$ be contained in $V_{0} \times \mathbb{R}$

$$
\sum_{v \in V_{\mathbb{Z}}} \chi_{[1 / 2,1] \partial \Omega \times[a, b]}\left(\mathrm{e}^{-t} v, F(v)\right) \approx \sum_{v \in V_{\mathbb{Z}}} h\left(\mathrm{e}^{-t} x \cdot v, F(v)\right)
$$

Functions on $V_{0} \times \mathbb{R}$ can be approximated by finite linear combinations of functions of the form $J_{f}\left(\mathbf{M} \cdot \kappa^{0}(v), \zeta\right) \nu(\widehat{v} /\|\widehat{v}\|)$, where
(1) ν is a positive and continuous function on the sphere S_{V} and $\widehat{v}=\operatorname{adj}(v)$ denotes the adjugate of v.
(2) $\kappa^{0}(v)=\operatorname{diag}\left(\kappa_{1}(v), \ldots, \kappa_{n-1}(v)\right)$ and $\kappa_{1}(v) \geq \cdots \geq \kappa_{n-1}(v)$ denotes the first $n-1$ singular values of v.
(3) f is a continuous function of compact support on

$$
V_{+}=\left\{v \in V \mid\left\langle\widehat{v} e_{n}, e_{n}\right\rangle>0\right\}
$$

Dynamical Counting Method

(1) $J_{f}(\mathrm{M} \cdot r, \zeta):=\frac{1}{\operatorname{det}^{2}(r)} \int_{\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}} \int_{\mathrm{M}} f\left(\begin{array}{cc}m \cdot r & x_{2} \\ x_{1}^{t} & x_{n n}\end{array}\right) \mathrm{d} m \mathrm{~d} x_{1} \mathrm{~d} x_{2}$, where in the integral $x_{n n}=x_{n n}\left(r, \zeta, m, x_{1}, x_{2}\right)$ is determined by requiring

$$
\operatorname{det}\left(\begin{array}{cc}
m \cdot r & x_{2} \\
x_{1}^{t} & x_{n n}
\end{array}\right)=\zeta .
$$

- Let $h(v, \zeta)=J_{f}\left(\mathrm{M} \cdot \kappa^{0}(v), \zeta\right) \nu(\widehat{v} /\|\widehat{v}\|)$ with f and ν as before,
- A direct calculation shows there is $T_{0}>0$ such that for any t with $\mathrm{e}^{t}>T_{0}$, and any $v \in V$ with $\|v\|>T_{0}$,

$$
h\left(\mathrm{e}^{-t} \cdot v, \operatorname{det}(v)\right) \approx c_{\operatorname{det}} \mathrm{e}^{n(n-1) t} \int_{\mathrm{K}} f\left(a_{t} k \cdot v\right) \nu\left(\widehat{k}^{t} \cdot e_{n n}\right) \mathrm{d} k
$$

where $c_{\text {det }}=\omega_{n-1}^{2}$ and ω_{n-1} denotes the volume of the unit sphere in \mathbb{R}^{n}.

- Summing up $\left(^{*}\right)$ over $v \in V_{\mathbb{Z}}$, exchanging summation and integral yields

$$
\mathrm{e}^{-n(n-1) t} \sum_{v \in V_{\mathbb{Z}}} h\left(\mathrm{e}^{-t} x \cdot v, F(v)\right) \approx c_{\operatorname{det}} \int_{\mathrm{K}} \widetilde{f}\left(a_{t} k x\right) \nu\left(\widehat{k}^{t} \cdot e_{n n}\right) \mathrm{d} k
$$

Dynamical Counting Method

Theorem (FHO). G, $\Gamma, \mathrm{X}, \mathrm{H}, \mathrm{K},\left\{a_{t}\right\}$ as above. Let ϕ be a continuous function on X. Assume that for some $s, 0<s<2$ and some $C>0$,

$$
|\phi(\Delta)|<C \alpha(\Delta)^{s}, \text { for all } \Delta \in \mathrm{X}
$$

Let $x_{0} \in \mathrm{X}$ be a unimodular lattice such that $\mathrm{H} \cdot x_{0}$ is not closed. Let ν be any continuous function on K , then

$$
\lim _{t \rightarrow \infty} \int_{\mathrm{K}} \phi\left(a_{t} k \cdot x_{0}\right) \nu(k) \mathrm{d} k=\int_{\mathrm{K}} \nu \mathrm{~d} k \int_{\mathrm{X}} \phi \mathrm{~d} \mu_{\mathrm{X}} .
$$

- This is due to Shah for ϕ compactly supported and continuous.
- For ϕ as above, we 'truncate' ϕ via appropriate bump functions g_{r} to sets of the form $A(r)=\{x \in \mathrm{X} \mid \alpha(x)>r\}$ so that $\phi-\phi g_{r}$ is continuous and compactly supported.

Dynamical Counting Method

- Hence, for $h \approx \chi_{[1,2] \partial \Omega \times[a, b]}$

$$
\begin{aligned}
\mathrm{e}^{-n(n-1) t} \sum_{v \in V_{\mathbb{Z}}} h\left(\mathrm{e}^{-t} x \cdot v, F(v)\right) & \approx c_{\operatorname{det}} \int_{\mathrm{K}} \widetilde{f}\left(a_{t} k x\right) \nu\left(\widehat{k}^{t} \cdot e_{n n}\right) \mathrm{d} k \\
& \approx c_{\operatorname{det}} \int_{\mathrm{K}} \nu \mathrm{~d} k \int_{\mathrm{X}} \widetilde{f} \mathrm{~d} \mu_{\mathrm{X}} \\
& =c_{\operatorname{det}} \int_{\mathrm{K}} \nu \mathrm{~d} k \int_{V} f \mathrm{~d} v
\end{aligned}
$$

- On the other hand, a direct computation shows

$$
\mathrm{e}^{-n(n-1) t} \int_{V} h\left(\mathrm{e}^{-t} x \cdot v, F(v)\right) \mathrm{d} v \approx c_{\operatorname{det}} \int_{\mathrm{K}} \nu \mathrm{~d} k \int_{V} f \mathrm{~d} v
$$

Spherical Averages I

- Suppose $\mathrm{H}=\mathrm{SL}_{2}(\mathbb{R}), \mathrm{K}=\mathrm{SO}(2)$ embedded in $\mathrm{G}=\mathrm{Sp}_{2 n}(\mathbb{R})$, $\Gamma=\operatorname{Sp}_{2 n}(\mathbb{Z})(n \geq 1), \mathrm{X}=\mathrm{G} / \Gamma, a_{t}=\operatorname{diag}\left(\mathrm{e}^{t / 2}, \mathrm{e}^{-t / 2}\right)$ and $\beta>\frac{n}{2}$.
- For a lattice $\Delta \in \mathrm{G} / \Gamma$ let $f_{0}(h):=\alpha_{n}(h \Delta)^{\beta}, h \in \mathrm{H}$. Fact $\alpha \asymp_{n} \alpha_{n}$ on the space of symplectic lattices X.
- Define the mean value operator on $\mathrm{H}(\mathrm{K} \backslash \mathrm{H})$

$$
\left(\tilde{\mathcal{A}}_{r} f\right)(h)=\int_{\mathrm{K}} f\left(a_{r} k h\right) \mathrm{d} k
$$

- ... reinterpreted in the language of the upper half-space \mathbb{H}

$$
\left(\mathcal{A}_{r} f\right)(z)=\int_{\partial B_{r}(z)} f d s
$$

where $\partial B_{r}(z)$ is the sphere of radius r centered at $z,(\mathrm{~d} s)^{2}=\frac{(d x)^{2}+(d y)^{2}}{y^{2}}$.

- Eigenfunctions of \mathcal{A}_{r} are the spherical functions $\left\{\tau_{\lambda}\right\}_{\lambda \in \mathbb{C}} \cdot \tau_{\lambda}(z)=\tau_{\lambda}(r)$ whenever $r=d(z, i)$ and here indexed such that $\tau_{\lambda}=\tau_{2-\lambda}$ and $\tau_{\lambda}(r) \asymp\left(e^{r / 2}\right)^{\lambda-2}$ as $r \rightarrow \infty$ if $\lambda>2$.

Spherical Averages I

Lemma. Let $f \in C(\mathbb{H})$ be a positive function. Suppose there is $\lambda>2, C, c>1$ and $r_{0}>0$ such that

For all $z \in \mathbb{H}:\left(\mathcal{A}_{r_{0}} f\right)(z) \leq C \tau_{\lambda}\left(r_{0}\right) f(z)$,
For all $z \in \mathbb{H}$, for all $w \in B_{r_{0}}(z): f(w) \leq c f(z)$, then $\mathcal{A}_{r} f(i) \ll_{C, c, \lambda} \tau_{\lambda}(r) f(i)$.

Spherical Averages II

- Suppose $V=\operatorname{Mat}_{n}(\mathbb{R}), V_{\mathbb{Z}}=\operatorname{Mat}_{n}(\mathbb{Z})$,
- $\mathrm{G}=\mathrm{SL}(V), \Gamma=\mathrm{SL}\left(V_{\mathbb{Z}}\right), \mathrm{X}=\mathrm{G} / \Gamma$,
- $\mathrm{H}=\mathrm{SL}_{n}(\mathbb{R}) \times \mathrm{SL}_{n}(\mathbb{R}) \subset \mathrm{G}$,
- $b_{t}=\operatorname{diag}\left(\mathrm{e}^{-t / 2}, \ldots, \mathrm{e}^{-t / 2}, \mathrm{e}^{t(n-1) / 2}\right), a_{t}=\left(b_{t}, b_{t}\right) \in \mathrm{H}$.
- $\mathrm{K}=\mathrm{SO}(n) \times \mathrm{SO}(n)$.
- For a lattice $\Delta \in \mathrm{G} / \Gamma$ let $f_{0}(h):=\alpha^{s}(h \Delta), h \in \mathrm{H}$.
- Define the averaging operator on $\mathrm{H}(\mathrm{K} \backslash \mathrm{H})$

$$
\left(\mathcal{A}_{r} f\right)(h)=\int_{\mathrm{K}} f\left(a_{r} k h\right) \mathrm{d} k, r>0 .
$$

Spherical Averages II

Lemma (Eskin, Margulis, Mozes). Let $\mathrm{H}, \mathrm{K},\left\{a_{t}\right\}_{t}$ and \mathcal{A}_{r} as above. Let f be a strictly positive left K -invariant function on H such that $\log (f)$ is uniformly continuous with respect to a left-invariant uniform structure on H . Then, there exists $0<c<1$, such that for any $r_{0}>0$ and $b>0$ there is $B=B\left(r_{0}, b\right)<\infty$ with the following property: If

$$
\left(\mathcal{A}_{r_{0}} f\right)(h)<c f(h)+b, \text { for all } h \in \mathrm{KAK},
$$

then

$$
\left(\mathcal{A}_{t} f\right)(e)<B \text { for all } t>0
$$

Spherical Averages II

Lemma. Let $n \geq 3$ and $1 \leq i<n^{2}$. Then, for any $s, 0<s<2$ and any $c>0$ there is $t>0$ and $\omega>1$ such that for any lattice Λ in V

$$
\int_{\mathrm{K}} \alpha_{i}^{s}\left(a_{t} k \cdot \Lambda\right) \mathrm{d} k<\frac{c}{2} \alpha_{i}^{s}(\Lambda)+\omega^{2} \max _{0<j \leq \min \left\{n^{2}-i, i\right\}}\left(\sqrt{\alpha_{i+j}(\Lambda) \alpha_{i-j}(\Lambda)}\right)^{s} .
$$

This inequality together with the previous key lemma implies

$$
\sup _{t>0} \int_{\mathrm{K}} \alpha^{s}\left(a_{t} k \Lambda\right) \mathrm{d} k<\infty
$$

for $0<s<2$.

Spherical Averages II

Lemma (FHO). Suppose $n \geq 3$ and let $1 \leq i<n^{2}$. Denote by ρ_{i} the i-th exterior representation of H in $W_{i}=\wedge^{i} V \cong \wedge^{i} \mathbb{R}^{n^{2}}$ and let $Q(i):=\left\{v_{1} \wedge \cdots \wedge v_{i} \mid v_{1}, \ldots, v_{i} \in V\right\} \subset W_{i}$. Then, for any $s, 0<s<2$

$$
\lim _{t \rightarrow+\infty} \sup _{w \in Q(i),\|v\|=1} \int_{\mathrm{K}} \frac{\mathrm{~d} k}{\left\|\rho_{i}\left(a_{t} k\right) w\right\|^{s}}=0
$$

Note true for $n=2$! When $i=2$, the Lie algebra of K is 'too small' and the result holds only for $0<s<1$.

Spherical Averages II

Lemma. Let W be a finite dimensional real inner product space, A a self-adjoint linear transformation of $W, \mathrm{~K}$ a closed connected subgroup of the orthogonal group $\mathrm{O}(W), Q$ a closed subset of the unit sphere. Assume that the eigenvalues of A are $\lambda_{1}<\cdots<\lambda_{M}$ and denote by W^{i} the eigenspace corresponding to λ_{i} for each $1 \leq i \leq M$. Assume there is m with $2 \leq m \leq M-1$ such that $\lambda_{m} \geq 0$ and such that the following conditions are satisfied
(1) $\mathrm{K} w \nsubseteq \bigoplus_{j=1}^{m} W^{j}$ for any $w \in Q$;
(2) For every $1 \leq i \leq m-1$ and any non-zero $w \in \bigoplus_{j=1}^{i} W^{j} \backslash \bigoplus_{j=1}^{i-1} W^{j}$ there exists an l-dimensional subspace L_{w} of $\operatorname{Lie}(\mathrm{K})$ such that $X w \notin \bigoplus_{j=1}^{i} W^{j}$ for every non-zero $X \in \operatorname{Lie}(\mathrm{~K})$;
Then, for any $0<s<l$

$$
\lim _{t \rightarrow \infty} \sup _{w \in Q} \int_{\mathrm{K}} \frac{\mathrm{~d} k}{\left\|\mathrm{e}^{t A} k w\right\|^{s}}=0
$$

Thank you!

