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Introduction

Introduction - Values of Integral Points

Meyer (1884): Any indefinite, integral quadratic form in n ≥ 5 variables
represents 0 over Z.
Oppenheim Conjecture (Margulis (1986)): Any indefinite, irrational
quadratic form in n ≥ 3 variables takes values at integral points
arbitrarily close to 0 or equivalently the set of values is dense in R.
Birch (1957): For any odd d ≥ 3 there exists an integer mZ(d) with the
following property. Any integral, homogeneous form of degree d in
m ≥ mZ(d) variables represents 0 over Z.
Schmidt (1980): For any odd d ≥ 3 there exists an integer m0(d) with
the following property. Any irrational, homogeneous form of degree d in
m ≥ m0(d) variables takes values arbitrarily close to 0.
Note that mZ(2) = 5,m0(2) = 3. However, for d ≥ 3 the situation is not
well-understood. e.g. m0(3) ≤ 359 551 882 (Freeman (2000) based on
Pitman (1968) and Schmidt) and mZ(3) ≤ 14 (Heath-Brown (2007)).
Mordell (1937): mZ(d) ≥ d2 + 1 (e.g. mZ(3) = 10).
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Introduction

Introduction - Density of Values

Davenport-Heilbronn (1946): Let F be an indefinite, irrational diagonal
form of degree d in n ≥ 2d + 1 variables, then F(Zn) is dense in R.

Davenport-Roth (1955): For indefinite, irrational diagonal cubic forms,
n = 8 is sufficient to obtain density of values at integral points.

Baker-Brüdern-Wooley (2000’s): First ‘quantitative’ results for
indefinite, irrational diagonal cubic forms in n = 8 variables and in
n = 7 with ‘heavy Diophantine’ restrictions.

Eskin-Margulis-Mozes (1998, 2005): Quantitative distribution of values
of quadratic forms of signature (p, q) 6= (2, 1) or (2, 2). For quadratic
forms of signature (2, 2) they obtain quantitative results under ‘mild
Diophantine’ restrictions. Does not rely on the circle method, but instead
on ‘equidistribution of translates of measures’.
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Heuristics

Heuristics

Let F be a homogeneous form of degree d in m variables.
Let (a, b) be any interval and set

VF
(a,b)(R) :=

{
v ∈ Rm | a < F(v) < b

}
,

VF
(a,b)(Z) := VF

(a,b)(R) ∩ Zm.

Denote by Ω the unit ball in Rm, then
1 TΩ ∩ Zm consists of O(Tm) points ,
2 F(TΩ ∩ Zm) ⊆ [−cTd, cTd] for some c = c(F,Ω),
3 F(VF

(a,b)(Z) ∩ TΩ) = F(Zm ∩ TΩ) ∩ [a, b].

One expects

#
(
V(a,b)(Z) ∩ TΩ

)
∼ cF,Ω(b− a)Tm−d, as T →∞,

for a constant cF,Ω depending on F and Ω only,
but also vol

(
V(a,b)(R) ∩ TΩ

)
∼ cF,Ω(b− a)Tm−d, as T →∞.
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Heuristics

Quadratic Forms

Theorem (Buterus, Götze, H., Margulis). Let Q be a non-degenerate
indefinite quadratic form in n ≥ 5 variables and Ω ⊂ Rn an ‘admissible
domain’. Then, for any a < b there exist functions ρQ,b−a and RQ,Ω,b−a such
that for any T > 0

#
(
VQ

(a,b)(Z) ∩ TΩ
)
− vol(VQ

(a,b)(R) ∩ TΩ
)

=
Tn−2

|det Q|
1
2

On

(
ρQ,b−a(T) + RQ,Ω,b−a(T)

)
,

where RQ,Ω,b−a(T) = OQ,Ω,b−a(T−k) as T →∞ for some k = k(n) > 0 and
1 If Q is rational, then ρQ,b−a(T) = OQ,b−a(1) as T →∞,

2 If Q is irrational, then ρQ,b−a(T) = oQ,b−a(1) as T →∞,

3 If Q is Diophantine of type (κ,A), then ρQ,b−a(T) = OQ,b−a(T−κ∗
) as T →∞

for some κ∗ > 0 explicitly depending on n and κ only.
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Heuristics

Quadratic Forms

Definition. A quadratic form Q is said to be Diophantine of type (κ,A) if for
any integer m ∈ Z \ {0} and any integral symmetric matrix M ∈ Symn(Z) we
have

inf
t∈[1,2]

‖M − tmQ‖ ≥ A
|m|κ

.

Almost every quadratic form is Diophantine of some type, e.g. if one
ratio consisting of two coefficients of Q is Diophantine, then Q is a
Diophantine form.
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Heuristics

Determinant Forms

Let V = Matn(R), VZ = Matn(Z). We say that a homogeneous form

F(v) =
∑

(i1,j1)≤···≤(in,jn)

qi1j1...injnvi1j1 . . . vinjn

of degree n in n2 variables is a determinant form of degree n if it is of the
form F = det ◦x for some x ∈ SL(V).

The case n = 2 corresponds to the case of quadratic forms of signature
(2, 2).
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Heuristics

Determinant Forms

Let G = SL(V),Γ = SL(VZ) and X = G/Γ.

H = SLn(R)× SLn(R) ⊂ G (via the representation (g, h)v = gvht for
(g, h) ∈ H and v ∈ V) is a maximal connected subgroup.

H is realized as SLn(R)⊗ SLn(R), where ⊗ denotes the standard
Kronecker product.

The group preserving the form F is HF = x−1Hx.

Observation: HF · Γ is closed in X if and only if F is rational.

Ratner’s Theorem: Since H is maximal, HF · Γ is dense or closed in X.

Hence, F(VZ) is dense in R if F is irrational.
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Heuristics

Determinant Forms

Let Ω = {v ∈ V0 | ‖v‖ < ρ(v̂/‖v̂‖)} where v̂ denotes the adjugate of v,
ρ : SV → R>0 is a positive continuous function on the unit sphere
SV = {v ∈ V | ‖v‖ = 1} and V0 = {v ∈ V | rk(v) ≥ n− 1}.

Theorem (Fromm, H., Oh). Let F be a an irrational determinant form in
n ≥ 3 variables. Then, for any interval (a, b),

#
(
VF

(a,b)(Z) ∩ TΩ
)
∼ λF,Ω(b− a)Tn(n−1), as T →∞,

where λF,Ω = lim
T→∞

vol(VF
(a,b)(R) ∩ TΩ)

(b− a)Tn(n−1)
.
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Heuristics

Spherical Averages

Suppose X is a space with a base point point o and (Ar)r>0 is a family of
‘mean value’ operators.
For a function f , (Ar f )(x) is the ‘mean value’ of f along the ‘sphere of
radius r’ centered at x.
Under certain conditions, if f is a positive function satisfying an
inequality of the form

(Ar0 f )(x) ≤ cf (x) + b, for all x ∈ X,

for some r0 > 0, then the ‘mean values’ of f based at o (i.e. (Ar f )(o) for
all r > 0) can be controlled.
Usually c < 1 is necessary and yields a bound for supr>0(Ar f )(o).
If c ≥ 1 one cannot expect supr>0(Ar f )(o) to be bounded. However, if
the underlying ‘mean value’ operators are ‘better understood’, e.g. if the
spherical functions can be related to the above inequality, then one can
obtain growth estimates for (Arf )(o).
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Heuristics

Geometry of Numbers

Here X = G/Γ space of (G-)lattices in Rm

The function f will be related to the height function α. If ∆ ∈ X is a
lattice, then

αi(∆)−1 = covolume of smallest i dimensional sublattice of∆,

α(∆) = sup
0≤i≤m

αi(∆)

Lipschitz principle: let f : Rm → R>0 be a sufficiently fast decreasing
function, then f̃ ≤ c(f )α, where

f̃ (∆) =
∑

v∈∆\{0}

f (v), ∆ ∈ X.

Siegel’s mean value theorem: let f : Rm → R be continuous and
compactly supported, then∫

X
f̃ dµX =

∫
Rm

f dv.
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Heuristics

Analytic Counting Method

H = SL2(R),K = SO(2) embedded in G = Sp2n(R),Γ = Sp2n(Z)
(n ≥ 1), at = diag(et/2, e−t/2),

Theorem (BGHM). For any β > 2
n and any symplectic lattice ∆ ∈ G/Γ∫

K
αβ(atk∆) dk�β (et/2)βn−2α(∆)

Assume that the eigenvalues of Q are bounded below by 1 in absolute
value. Let h(v, ζ) = f (v)g(ζ) be an appropriately smooth approximation
of χΩ×[a,b] and set

LT(h) :=
∑
n∈Zd

h
(

n
T
,Q(n)

)
−
∫
Rn

h
(

x
T
,Q(x)

)
dx
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Heuristics

Analytic Counting Method

Via Fourier analysis, the main term to be estimated is∫
I

∣∣ϑ(ZT,τ , v/T)
∣∣dτ,

where I � (T−1,Tδ) (δ > 0)

ϑ
(
Z, ξ
)

=
∑
x∈Zn

exp

{
πiZ(x) + 2πi〈x, ξ〉

}
, Z ∈ Hd, ξ ∈ Rn

ZT,τ = τQ +
i

T2 Q+ ∈ Hd, (Q+ = (Q2)
1
2 )

One can show (via Poisson summation and the Lipschitz principle) that∫
I

∣∣ϑ(ZT,τ , v/T)
∣∣dτ �Q

Tn/2

|det Q|
1
2

∫
K
α

1
2 (atk∆Q) dk,

where t = 2 log(T) and ∆Q is a symplectic lattice for which
α(∆Q)� |det Q|

1
2
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Heuristics

Dynamical Counting Method

V = Matn(R), VZ = Matn(Z), V0 as before, SV the unit sphere
G = SL(V), Γ = SL(VZ), X = G/Γ,
H = SLn(R)× SLn(R) ⊂ G,
bt = diag(e−t/2, . . . , e−t/2, et(n−1)/2), at = (bt, bt) ∈ H.
K = SO(n)× SO(n), M = SO(n− 1)× SO(n− 1)

Theorem. Suppose n ≥ 3 and 0 < s < 2, then for any lattice ∆ ∈ V

sup
t>0

∫
K
αs(atk∆)dk <∞.

The upper bound is uniform as ∆ varies over compact sets in the space of
lattices.

This is not true for n = 2!
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Heuristics

Dynamical Counting Method

Let F be a determinant form of degree n defined by x ∈ G,

We can approximate χ[1/2,1]∂Ω×[a,b] by a continuous function of compact
support h(xv, ζ) be contained in V0 × R∑

v∈VZ

χ[1/2,1]∂Ω×[a,b](e−tv,F(v)) ≈
∑
v∈VZ

h(e−tx · v,F(v))

Functions on V0 × R can be approximated by finite linear combinations
of functions of the form Jf (M · κ0(v), ζ)ν(v̂/‖v̂‖), where

1 ν is a positive and continuous function on the sphere SV and v̂ = adj(v)
denotes the adjugate of v.

2 κ0(v) = diag(κ1(v), . . . , κn−1(v)) and κ1(v) ≥ · · · ≥ κn−1(v) denotes the
first n− 1 singular values of v.

3 f is a continuous function of compact support on
V+ = {v ∈ V | 〈v̂en, en〉 > 0}
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Heuristics

Dynamical Counting Method

1 Jf (M · r, ζ) :=
1

det2(r)

∫
Rn−1×Rn−1

∫
M

f
(

m · r x2
xt

1 xnn

)
dm dx1dx2, where

in the integral xnn = xnn(r, ζ,m, x1, x2) is determined by requiring

det

(
m · r x2

xt
1 xnn

)
= ζ.

Let h(v, ζ) = Jf (M · κ0(v), ζ)ν(v̂/‖v̂‖) with f and ν as before,
A direct calculation shows there is T0 > 0 such that for any t with
et > T0, and any v ∈ V with ‖v‖ > T0,

h(e−t · v, det(v)) ≈ cdeten(n−1)t
∫

K
f (atk · v)ν(k̂t · enn) dk

where cdet = ω2
n−1 and ωn−1 denotes the volume of the unit sphere in Rn.

Summing up (*) over v ∈ VZ, exchanging summation and integral yields

e−n(n−1)t
∑
v∈VZ

h(e−tx · v,F(v)) ≈ cdet

∫
K

f̃ (atkx)ν(k̂t · enn) dk,

for all t > t0, where f̃ denotes the Siegel transform as above.T. Hille (Northwestern University) Distribution of Values Jan 2021 16 / 26



Heuristics

Dynamical Counting Method

Theorem (FHO). G,Γ,X,H,K, {at} as above. Let φ be a continuous function
on X. Assume that for some s, 0 < s < 2 and some C > 0,

|φ(∆)| < Cα(∆)s, for all ∆ ∈ X.

Let x0 ∈ X be a unimodular lattice such that H · x0 is not closed. Let ν be any
continuous function on K, then

lim
t→∞

∫
K
φ(atk · x0)ν(k) dk =

∫
K
ν dk

∫
X
φ dµX.

This is due to Shah for φ compactly supported and continuous.
For φ as above, we ‘truncate’ φ via appropriate bump functions gr to sets
of the form A(r) = {x ∈ X |α(x) > r} so that φ− φgr is continuous and
compactly supported.
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Heuristics

Dynamical Counting Method

Hence, for h ≈ χ[1,2]∂Ω×[a,b]

e−n(n−1)t
∑
v∈VZ

h(e−tx · v,F(v)) ≈ cdet

∫
K

f̃ (atkx)ν(k̂t · enn) dk

≈ cdet

∫
K
ν dk

∫
X

f̃ dµX

= cdet

∫
K
ν dk

∫
V

f dv

On the other hand, a direct computation shows

e−n(n−1)t
∫

V
h(e−tx · v,F(v)) dv ≈ cdet

∫
K
ν dk

∫
V

f dv
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Heuristics

Spherical Averages I

Suppose H = SL2(R),K = SO(2) embedded in G = Sp2n(R),
Γ = Sp2n(Z) (n ≥ 1), X = G/Γ, at = diag(et/2, e−t/2) and β > n

2 .
For a lattice ∆ ∈ G/Γ let f0(h) := αn(h∆)β, h ∈ H. Fact α �n αn on the
space of symplectic lattices X.
Define the mean value operator on H (K\H)

(Ãr f )(h) =

∫
K

f (arkh) dk,

... reinterpreted in the language of the upper half-space H

(Ar f )(z) =

∫
∂Br(z)

f ds,

where ∂Br(z) is the sphere of radius r centered at z, (ds)2 = (dx)2+(dy)2

y2 .
Eigenfunctions of Ar are the spherical functions {τλ}λ∈C. τλ(z) = τλ(r)
whenever r = d(z, i) and here indexed such that τλ = τ2−λ and
τλ(r) � (er/2)λ−2 as r →∞ if λ > 2.
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Heuristics

Spherical Averages I

Lemma. Let f ∈ C(H) be a positive function. Suppose there is
λ > 2,C, c > 1 and r0 > 0 such that

For all z ∈ H : (Ar0 f )(z) ≤ Cτλ(r0)f (z),

For all z ∈ H, for all w ∈ Br0(z) : f (w) ≤ cf (z),

then Arf (i)�C,c,λ τλ(r)f (i).
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Heuristics

Spherical Averages II

Suppose V = Matn(R), VZ = Matn(Z),

G = SL(V), Γ = SL(VZ), X = G/Γ,

H = SLn(R)× SLn(R) ⊂ G,

bt = diag(e−t/2, . . . , e−t/2, et(n−1)/2), at = (bt, bt) ∈ H.

K = SO(n)× SO(n).

For a lattice ∆ ∈ G/Γ let f0(h) := αs(h∆), h ∈ H.

Define the averaging operator on H (K\H)

(Ar f )(h) =

∫
K

f (arkh) dk, r > 0.
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Heuristics

Spherical Averages II

Lemma (Eskin, Margulis, Mozes). Let H,K, {at}t and Ar as above. Let f be
a strictly positive left K-invariant function on H such that log(f ) is uniformly
continuous with respect to a left-invariant uniform structure on H. Then, there
exists 0 < c < 1, such that for any r0 > 0 and b > 0 there is
B = B(r0, b) <∞ with the following property: If

(Ar0 f )(h) < cf (h) + b, for all h ∈ KAK,

then

(At f )(e) < B for all t > 0.
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Heuristics

Spherical Averages II

Lemma. Let n ≥ 3 and 1 ≤ i < n2. Then, for any s, 0 < s < 2 and any c > 0
there is t > 0 and ω > 1 such that for any lattice Λ in V∫

K
αs

i (atk · Λ) dk <
c
2
αs

i (Λ) + ω2 max
0<j≤min{n2−i,i}

(√
αi+j(Λ)αi−j(Λ)

)s
.

This inequality together with the previous key lemma implies

sup
t>0

∫
K
αs(atkΛ) dk <∞,

for 0 < s < 2.
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Heuristics

Spherical Averages II

Lemma (FHO). Suppose n ≥ 3 and let 1 ≤ i < n2. Denote by ρi the i-th
exterior representation of H in Wi = ∧iV ∼= ∧iRn2

and let
Q(i) := {v1 ∧ · · · ∧ vi | v1, . . . , vi ∈ V} ⊂ Wi. Then, for any s, 0 < s < 2

lim
t→+∞

sup
w∈Q(i),‖v‖=1

∫
K

dk
‖ρi(atk)w‖s = 0,

Note true for n = 2! When i = 2, the Lie algebra of K is ‘too small’ and
the result holds only for 0 < s < 1.
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Heuristics

Spherical Averages II

Lemma. Let W be a finite dimensional real inner product space, A a
self-adjoint linear transformation of W, K a closed connected subgroup of the
orthogonal group O(W), Q a closed subset of the unit sphere. Assume that the
eigenvalues of A are λ1 < · · · < λM and denote by W i the eigenspace
corresponding to λi for each 1 ≤ i ≤ M. Assume there is m with
2 ≤ m ≤ M − 1 such that λm ≥ 0 and such that the following conditions are
satisfied

1 Kw 6⊆
⊕m

j=1 W j for any w ∈ Q;

2 For every 1 ≤ i ≤ m− 1 and any non-zero w ∈
⊕i

j=1 W j \
⊕i−1

j=1 W j there exists
an l-dimensional subspace Lw of Lie(K) such that Xw /∈

⊕i
j=1 W j for every

non-zero X ∈ Lie(K);
Then, for any 0 < s < l

lim
t→∞

sup
w∈Q

∫
K

dk
‖etAkw‖s = 0.
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Heuristics

Thank you!
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