Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian Ends

Minju Lee (Joint work with Hee Oh)

Yale University
minju.lee@yale.edu

November 2, 2020

Ergodicity

Ergodicity

G : connected, semisimple linear Lie group (e.g. $S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)$)

Ergodicity

G : connected, semisimple linear Lie group (e.g. $S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)$) $U=\left\{u_{t}: t \in \mathbb{R}\right\}$ 1-parameter unipotent subgroup

Ergodicity

G : connected, semisimple linear Lie group (e.g. $S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)$) $U=\left\{u_{t}: t \in \mathbb{R}\right\}$ 1-parameter unipotent subgroup $\Gamma<G$: lattice, $m^{\text {Haar }}:$ Haar measure on $\Gamma \backslash G$.

Ergodicity

G : connected, semisimple linear Lie group (e.g. $S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)$) $U=\left\{u_{t}: t \in \mathbb{R}\right\}$ 1-parameter unipotent subgroup $\Gamma<G$: lattice, $m^{\text {Haar }}:$ Haar measure on $\Gamma \backslash G$.

Theorem (Moore)

Ergodicity

$G:$ connected, semisimple linear Lie group (e.g. $\left.S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)\right)$ $U=\left\{u_{t}: t \in \mathbb{R}\right\}$ 1-parameter unipotent subgroup $\Gamma<G$: lattice, $m^{\text {Haar }}:$ Haar measure on $\Gamma \backslash G$.

Theorem (Moore)

U acts ergodically on $\left(\Gamma \backslash G, m^{\text {Haar }}\right)$.

Ergodicity

$G:$ connected, semisimple linear Lie group (e.g. $\left.S L_{n}(\mathbb{R}), S O^{\circ}(n, 1)\right)$ $U=\left\{u_{t}: t \in \mathbb{R}\right\}$ 1-parameter unipotent subgroup $\Gamma<G$: lattice, $m^{\text {Haar }}:$ Haar measure on $\Gamma \backslash G$.

Theorem (Moore)

U acts ergodically on $\left(\Gamma \backslash G, m^{\text {Haar }}\right)$. For $m^{\text {Haar }}$-a.e. $x \in \Gamma \backslash G, \overline{x U}=\Gamma \backslash G$.

Homogeneity

Homogeneity

Theorem (Ratner)
 U-orbit closures are homogeneous;

Homogeneity

Theorem (Ratner)

U-orbit closures are homogeneous; for all $x \in \Gamma \backslash G$,

$$
\overline{x U}=x L
$$

where $x L$ is a closed orbit of a connected subgroup $L<G$.

Homogeneity

Theorem (Ratner)

U-orbit closures are homogeneous; for all $x \in \Gamma \backslash G$,

$$
\overline{x U}=x L
$$

where $x L$ is a closed orbit of a connected subgroup $L<G$.

- Special cases were proved earlier by Margulis, Dani-Margulis, Shah.

Convex cocompact manifolds

Convex cocompact manifolds

$$
\mathbb{S}^{d-1}
$$

Convex cocompact manifolds

\mathbb{H}^{d}

$$
\mathbb{S}^{d-1}
$$

$$
G=S O^{\circ}(d, 1) \simeq \operatorname{ssom}^{+}\left(\mathbb{H}^{d}\right)
$$

Convex cocompact manifolds

$$
\mathbb{H}^{d}
$$

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}{ }^{+}\left(\mathbb{H}^{d}\right)$.
$\Gamma<G$ torsion free, discrete subgroup.

Convex cocompact manifolds

\mathbb{H}^{d}

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}{ }^{+}\left(\mathbb{H}^{d}\right)$. $\Gamma<G$ torsion free, discrete subgroup. $M=\Gamma \backslash \mathbb{H}^{d}$ (hyperbolic manifold).

Convex cocompact manifolds

\mathbb{H}^{d}

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}^{+}\left(\mathbb{H}^{d}\right)$.
$\Gamma<G$ torsion free, discrete subgroup. $M=\Gamma \backslash \mathbb{H}^{d}$ (hyperbolic manifold).
Λ : Limit set of $\Gamma=\overline{\Gamma x} \cap \mathbb{S}^{d-1}$.

Convex cocompact manifolds

$$
\mathbb{H}^{d}
$$

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}^{+}\left(\mathbb{H}^{d}\right)$.
$\Gamma<G$ torsion free, discrete subgroup. $M=\Gamma \backslash \mathbb{H}^{d}$ (hyperbolic manifold).
Λ : Limit set of $\Gamma=\overline{\Gamma x} \cap \mathbb{S}^{d-1}$.
hull (Λ) : convex hull of Λ.

Convex cocompact manifolds

$$
\mathbb{H}^{d}
$$

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}^{+}\left(\mathbb{H}^{d}\right)$.
$\Gamma<G$ torsion free, discrete subgroup. $M=\Gamma \backslash \mathbb{H}^{d}$ (hyperbolic manifold).
Λ : Limit set of $\Gamma=\overline{\Gamma x} \cap \mathbb{S}^{d-1}$.
hull (Λ) : convex hull of Λ. core $(M)=\Gamma \backslash$ hull $(\Lambda) \subset M$.

Convex cocompact manifolds

$$
\mathbb{H}^{d}
$$

$$
\mathbb{S}^{d-1}
$$

$G=S O^{\circ}(d, 1) \simeq \operatorname{lsom}{ }^{+}\left(\mathbb{H}^{d}\right)$.
$\Gamma<G$ torsion free, discrete subgroup. $M=\Gamma \backslash \mathbb{H}^{d}$ (hyperbolic manifold).
Λ : Limit set of $\Gamma=\overline{\Gamma x} \cap \mathbb{S}^{d-1}$.
hull (Λ) : convex hull of Λ. core $(M)=\Gamma \backslash$ hull $(\Lambda) \subset M$.
M is called convex cocompact, if $\operatorname{core}(M)$ is compact.

Fuchsian ends

Fuchsian ends

We assume that M is convex cocompact, and $\Gamma<G$ is Zariski dense.

Fuchsian ends

We assume that M is convex cocompact, and $\Gamma<G$ is Zariski dense. We say M has Fuchsian ends if core (M) has a totally geodesic boundary.

Fuchsian ends

We assume that M is convex cocompact, and $\Gamma<G$ is Zariski dense. We say M has Fuchsian ends if core (M) has a totally geodesic boundary.

Fuchsian ends

Fuchsian ends

M is convex cocompact with Fuchsian ends if and only if

Fuchsian ends

M is convex cocompact with Fuchsian ends if and only if

$$
\mathbb{S}^{d-1}-\Lambda=\bigcup_{i=1}^{\infty} B_{i}
$$

for some round open ball B_{i} 's such that $\overline{B_{i}} \cap \overline{B_{j}}=\emptyset$ for all $i \neq j$.

Fuchsian ends

M is convex cocompact with Fuchsian ends if and only if

$$
\mathbb{S}^{d-1}-\Lambda=\bigcup_{i=1}^{\infty} B_{i}
$$

for some round open ball B_{i} 's such that $\overline{B_{i}} \cap \overline{B_{j}}=\emptyset$ for all $i \neq j$.

Convex cocompact manifold with Fuchsian ends

Convex cocompact manifold with Fuchsian ends

- Examples come from compact hyperbolic manifold with totally geodesic boundaries.

Convex cocompact manifold with Fuchsian ends

- Examples come from compact hyperbolic manifold with totally geodesic boundaries.
- If $d=2$, every convex cocompact surface has Fuchsian ends.

Convex cocompact manifold with Fuchsian ends

- Examples come from compact hyperbolic manifold with totally geodesic boundaries.
- If $d=2$, every convex cocompact surface has Fuchsian ends.

Why convex cocompact manifold with Fuchsian ends?

Why convex cocompact manifold with Fuchsian ends?

- In general, orbit closures are wild.

Why convex cocompact manifold with Fuchsian ends?

- In general, orbit closures are wild. They can behave as badly as the closure of geodesics in closed surfaces.

Relative homogeneity (Main theorem)

Relative homogeneity (Main theorem)

$$
G=S O^{\circ}(d, 1),
$$

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends. Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=P S L(2, \mathbb{R})$,

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right)$,

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right), H=\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right), H=\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$

Theorem (L.-Oh)

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right), H=\left(\begin{array}{cc}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$

Theorem (L.-Oh)

H-orbit closures are homogeneous in RF M;

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right), H=\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$

Theorem (L.-Oh)

H-orbit closures are homogeneous in RF M; for all $x \in R F M$, $\overline{x H} \cap R F M=x L \cap R F M$ where $x L$ is a closed orbit of a connected subgroup $L<G$.

Relative homogeneity (Main theorem)

$G=S O^{\circ}(d, 1), \Gamma<G$ convex cocompact with Fuchsian ends.
Let $H<G$ be a connected closed subgroup generated by unipotent elements in it.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$
$H=\operatorname{PSL}(2, \mathbb{R}), H=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right), H=\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$

Theorem (L.-Oh)

H-orbit closures are homogeneous in RF M; for all $x \in R F M$, $\overline{x H} \cap R F M=x L \cap R F M$ where $x L$ is a closed orbit of a connected subgroup $L<G$.

- $d=3$ (McMullen-Mohammadi-Oh)

Dynamics on $\Gamma \backslash G$

Dynamics on $\Gamma \backslash G$

Dynamics on $\Gamma \backslash G$

$$
A=\left\{a_{t}: t \in \mathbb{R}\right\}: \text { frame flow / geodesic flow }
$$

Dynamics on $\Gamma \backslash G$

$A=\left\{a_{t}: t \in \mathbb{R}\right\}$: frame flow / geodesic flow $R F M=\{[g] \in \Gamma \backslash G: g A$ is bounded $\}$: compact, A-invariant subset.

Dynamics on $\Gamma \backslash G$

$A=\left\{a_{t}: t \in \mathbb{R}\right\}$: frame flow / geodesic flow $R F M=\{[g] \in \Gamma \backslash G: g A$ is bounded $\}$: compact, A-invariant subset. $N=\left\{g \in G: a_{-t} g a_{t} \rightarrow e\right.$ as $\left.t \rightarrow \infty\right\}$: contracting horospherical subgroup

Dynamics on $\Gamma \backslash G$

$A=\left\{a_{t}: t \in \mathbb{R}\right\}$: frame flow / geodesic flow
$R F M=\{[g] \in \Gamma \backslash G: g A$ is bounded $\}$: compact, A-invariant subset.
$N=\left\{g \in G: a_{-t} g a_{t} \rightarrow e\right.$ as $\left.t \rightarrow \infty\right\}$: contracting horospherical subgroup
$R F_{+} M=\left\{[g] \in \Gamma \backslash G: g A^{+}\right.$is bounded $\}=R F M \cdot N$: the union of all N-orbits based at Λ. closed, $A N$-invariant subset.

Dynamics on $\Gamma \backslash G$

$A=\left\{a_{t}: t \in \mathbb{R}\right\}$: frame flow / geodesic flow
$R F M=\{[g] \in \Gamma \backslash G: g A$ is bounded $\}$: compact, A-invariant subset.
$N=\left\{g \in G: a_{-t} g a_{t} \rightarrow e\right.$ as $\left.t \rightarrow \infty\right\}$: contracting horospherical subgroup
$R F_{+} M=\left\{[g] \in \Gamma \backslash G: g A^{+}\right.$is bounded $\}=R F M \cdot N$: the union of all N-orbits based at Λ. closed, $A N$-invariant subset.

Notations

Notations

For $U<N$, let $H(U)$ denote the smallest closed simple Lie group containing A and U.

Notations

For $U<N$, let $H(U)$ denote the smallest closed simple Lie group containing A and U.

- If $\operatorname{dim} U=k$, then $H(U)$ is isomorphic to $S O^{\circ}(k+1,1)$. Its centralizer is a compact subgroup.

Notations

For $U<N$, let $H(U)$ denote the smallest closed simple Lie group containing A and U.

- If $\operatorname{dim} U=k$, then $H(U)$ is isomorphic to $S O^{\circ}(k+1,1)$. Its centralizer is a compact subgroup.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$

If $U=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right)$,

Notations

For $U<N$, let $H(U)$ denote the smallest closed simple Lie group containing A and U.

- If $\operatorname{dim} U=k$, then $H(U)$ is isomorphic to $S O^{\circ}(k+1,1)$. Its centralizer is a compact subgroup.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$

If $U=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right)$, then $H(U)=\operatorname{PSL}(2, \mathbb{R})$.

Notations

For $U<N$, let $H(U)$ denote the smallest closed simple Lie group containing A and U.

- If $\operatorname{dim} U=k$, then $H(U)$ is isomorphic to $S O^{\circ}(k+1,1)$. Its centralizer is a compact subgroup.

Example $(G=\operatorname{PSL}(2, \mathbb{C}))$

If $U=\left(\begin{array}{cc}1 & \mathbb{R} \\ 0 & 1\end{array}\right)$, then $H(U)=\operatorname{PSL}(2, \mathbb{R})$.

- Any closed subgroup generated by unipotent elements is conjugate to U or $H(U)$.

Theorem A and Theorem B

Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous;

Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous; for all $x \in R F_{+} M$, $\overline{x U}=x L \cap R F_{+} M$ where $x L$ is a closed orbit of a larger subgroup $L<G$.

Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous; for all $x \in R F_{+} M$, $x U=x L \cap R F_{+} M$ where $x L$ is a closed orbit of a larger subgroup $L<G$.

Theorem (L.-Oh)

$H(U)$-orbit closures are relatively homogeneous;

Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous; for all $x \in R F_{+} M$, $\overline{x U}=x L \cap R F_{+} M$ where $x L$ is a closed orbit of a larger subgroup $L<G$.

Theorem (L.-Oh)

$H(U)$-orbit closures are relatively homogeneous; for all $x \in R F M$, $\overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.

Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous; for all $x \in R F_{+} M$, $\overline{x U}=x L \cap R F_{+} M$ where $x L$ is a closed orbit of a larger subgroup $L<G$.

Theorem (L.-Oh)

$H(U)$-orbit closures are relatively homogeneous; for all $x \in R F M$, $\overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$. Moreover, L is of the form $H(\hat{U}) C$ for $U \subset \hat{U}$ and $C \subset C_{G}(H(\hat{U}))$.

Geodesic planes and horocycles

Geodesic planes and horocycles

Corollary

Geodesic planes and horocycles

Corollary

(1) Let χ be a k-horocycle in $M(k \geq 1)$.

Geodesic planes and horocycles

Corollary

(1) Let χ be a k-horocycle in $M(k \geq 1)$. Then $\bar{\chi}$ is a properly immersed submanifold.

Geodesic planes and horocycles

Corollary

(1) Let χ be a k-horocycle in $M(k \geq 1)$. Then $\bar{\chi}$ is a properly immersed submanifold.
(2) Let P be a geodesic k-plane in $M(k \geq 2)$.

Geodesic planes and horocycles

Corollary

(1) Let χ be a k-horocycle in $M(k \geq 1)$. Then $\bar{\chi}$ is a properly immersed submanifold.
(2) Let P be a geodesic k-plane in $M(k \geq 2)$. If $P \cap \operatorname{core}(M)^{\circ} \neq \emptyset$, then \bar{P} is a properly immersed geodesic m-plane for $m \geq k$.

Proof

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

(1) For all $x \in R F M, \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

(1) For all $x \in R F M, \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.
(2) For all $x \in R F_{+} M, \overline{x U}=x L \cap R F_{+} M$.

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

(1) For all $x \in R F M, \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.
(2) For all $x \in R F_{+} M, \overline{x U}=x L \cap R F_{+} M$.
(3) Suppose that $x_{i} L_{i}\left(U \subset L_{i}\right)$ is a sequence of closed orbits, non of whose infinite subsequence is contained in a subset of the form $y_{0} L_{0} D$,

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

(1) For all $x \in R F M, \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.
(2) For all $x \in R F_{+} M, \overline{x U}=x L \cap R F_{+} M$.
(3) Suppose that $x_{i} L_{i}\left(U \subset L_{i}\right)$ is a sequence of closed orbits, non of whose infinite subsequence is contained in a subset of the form $y_{0} L_{0} D$, where $y_{0} L_{0}$ is a proper closed orbit and $D \subset N(U)$ is a compact subset.

Proof

The main theorem is deduced from the following theorem, which is proved by the induction argument on the codimension of U.

Theorem

(1) For all $x \in R F M, \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)$.
(2) For all $x \in R F_{+} M, \overline{x U}=x L \cap R F_{+} M$.
(3) Suppose that $x_{i} L_{i}\left(U \subset L_{i}\right)$ is a sequence of closed orbits, non of whose infinite subsequence is contained in a subset of the form $y_{0} L_{0} D$, where $y_{0} L_{0}$ is a proper closed orbit and $D \subset N(U)$ is a compact subset. Then $\lim \sup \left(x_{i} L_{i} \cap R F_{+} M\right)=R F_{+} M$.

$$
i \rightarrow \infty
$$

Induction scheme

Induction scheme

Induction on the codimension of U.

Induction scheme

Induction on the codimension of U. We say " $(1)_{m}$ holds" if (1) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.

Induction scheme

Induction on the codimension of U. We say
" $(1)_{m}$ holds" if (1) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
"(2) $)_{m}$ holds" if (2) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.

Induction scheme

Induction on the codimension of U. We say
" $(1)_{m}$ holds" if (1) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
" $(2)_{m}$ holds" if (2) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
" $(3)_{m}$ holds" if (3) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.

Induction scheme

Induction on the codimension of U. We say
" $(1)_{m}$ holds" if (1) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
" $(2)_{m}$ holds" if (2) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
" $(3)_{m}$ holds" if (3) is true for all U such that $\operatorname{codim}_{N}(U) \leq m$.
Base cases $(1)_{0},(2)_{0},(3)_{0}$ follows from...

Induction scheme

Induction scheme

Induction scheme

$(2)_{m},(3)_{m}$ holds $\Rightarrow(1)_{m+1}$ holds $\Rightarrow(2)_{m+1}$ holds $\Rightarrow(3)_{m+1}$ holds .

Proof

Proof

Proof consists of 2 steps.

Proof

Proof consists of 2 steps.
(1) Find a closed orbit $y_{0} L_{0} \subset \overline{x H(U)}$.

Proof

Proof consists of 2 steps.

(1) Find a closed orbit $y_{0} L_{0} \subset \overline{x H(U)}$.
(2) Enlarge to a bigger closed orbit $y_{1} L_{1} \subset \overline{x H(U)}$.

Recurrence

Recurrence

Thick recurrence of unipotent flow to RF M.

Recurrence

Thick recurrence of unipotent flow to RF M.
There exists $k>1$ such that for all $x \in R F M$ and all $U=\left\{u_{t}\right\}<N$, $T(x)=\left\{t \in \mathbb{R}: x u_{t} \in R F M\right\}$ is k-thick, i.e.,

Recurrence

Thick recurrence of unipotent flow to RF M.
There exists $k>1$ such that for all $x \in R F M$ and all $U=\left\{u_{t}\right\}<N$, $T(x)=\left\{t \in \mathbb{R}: x u_{t} \in R F M\right\}$ is k-thick, i.e., for all $r>0$, $T(x) \cap \pm[r, k r] \neq \emptyset$.

Avoidance theorem

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N.

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N. $\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N. $\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N.
$\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

There exists compact sets E_{j} such that $\mathscr{S}\left(\left\{u_{t}\right\}\right) \cap R F M=\bigcup_{j=1}^{\infty} E_{j}$.

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N. $\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

There exists compact sets E_{j} such that $\mathscr{S}\left(\left\{u_{t}\right\}\right) \cap R F M=\bigcup_{j=1}^{\infty} E_{j}$. For each j and a compact subset $F \subset R F M-E_{j+1}$,

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N. $\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

There exists compact sets E_{j} such that $\mathscr{S}\left(\left\{u_{t}\right\}\right) \cap R F M=\bigcup_{j=1}^{\infty} E_{j}$. For each j and a compact subset $F \subset R F M-E_{j+1}$, there exists open neighborhoods \mathcal{O}_{j} of E_{j} such that

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N. $\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

There exists compact sets E_{j} such that $\mathscr{S}\left(\left\{u_{t}\right\}\right) \cap R F M=\bigcup_{j=1}^{\infty} E_{j}$. For each j and a compact subset $F \subset R F M-E_{j+1}$, there exists open neighborhoods \mathcal{O}_{j} of E_{j} such that for all $x \in F$, $\left\{t \in \mathbb{R}: x u_{t} \in R F M-\mathcal{O}_{j}\right\}$ is $2 k$-thick.

Avoidance theorem

Let $\left\{u_{t}\right\}$ be a one-parameter unipotent subgroup of N.
$\mathscr{S}\left(\left\{u_{t}\right\}\right)=$ union of all closed orbits of proper connected subgroups containing $\left\{u_{t}\right\}$.

Theorem (Avoidance theorem)

There exists compact sets E_{j} such that $\mathscr{S}\left(\left\{u_{t}\right\}\right) \cap R F M=\bigcup_{j=1}^{\infty} E_{j}$. For each j and a compact subset $F \subset R F M-E_{j+1}$, there exists open neighborhoods \mathcal{O}_{j} of E_{j} such that for all $x \in F$, $\left\{t \in \mathbb{R}: x u_{t} \in R F M-\mathcal{O}_{j}\right\}$ is $2 k$-thick.
(For given x_{i} converging to a generic point x, and $T_{i} \rightarrow \infty$, need $t_{i} \in\left[T_{i}, 2 k T_{i}\right]$ such that $x_{i} u_{t_{i}}$ converges to a generic point.)

The End of part I.

