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Ergodicity

G : connected, semisimple linear Lie group (e.g. SLn(R), SO◦(n, 1) )
U = {ut : t ∈ R} 1-parameter unipotent subgroup
Γ < G : lattice, mHaar : Haar measure on Γ\G .

Theorem (Moore)

U acts ergodically on (Γ\G ,mHaar ). For mHaar -a.e. x ∈ Γ\G, xU = Γ\G.
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Homogeneity

Theorem (Ratner)

U-orbit closures are homogeneous; for all x ∈ Γ\G,

xU = xL

where xL is a closed orbit of a connected subgroup L < G.

Special cases were proved earlier by Margulis, Dani-Margulis, Shah.
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Convex cocompact manifolds

Hd

Sd−1

G = SO◦(d , 1) ' Isom+(Hd).
Γ < G torsion free, discrete subgroup. M = Γ\Hd (hyperbolic manifold).
Λ : Limit set of Γ = Γx ∩ Sd−1.
hull(Λ) : convex hull of Λ. core(M) = Γ\ hull(Λ) ⊂ M.
M is called convex cocompact, if core(M) is compact.
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Fuchsian ends

We assume that M is convex cocompact, and Γ < G is Zariski dense.
We say M has Fuchsian ends if core(M) has a totally geodesic boundary.
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Fuchsian ends

M is convex cocompact with Fuchsian ends if and only if

Sd−1 − Λ =
∞⋃
i=1

Bi

for some round open ball Bi ’s such that Bi ∩ Bj = ∅ for all i 6= j .
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Convex cocompact manifold with Fuchsian ends

Examples come from compact hyperbolic manifold with totally
geodesic boundaries.

If d = 2, every convex cocompact surface has Fuchsian ends.
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Why convex cocompact manifold with Fuchsian ends?

In general, orbit closures are wild. They can behave as badly as the
closure of geodesics in closed surfaces.
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Relative homogeneity (Main theorem)

G = SO◦(d , 1), Γ < G convex cocompact with Fuchsian ends.
Let H < G be a connected closed subgroup generated by unipotent
elements in it.

Example (G = PSL(2,C))

H = PSL(2,R), H =

(
1 R
0 1

)
, H =

(
1 C
0 1

)

Theorem (L.-Oh)

H-orbit closures are homogeneous in RF M; for all x ∈ RF M,
xH ∩ RF M = xL ∩ RF M where xL is a closed orbit of a connected
subgroup L < G.

d = 3 (McMullen-Mohammadi-Oh)
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Dynamics on Γ\G

A = {at : t ∈ R} : frame flow / geodesic flow
RF M = {[g ] ∈ Γ\G : gA is bounded } : compact, A-invariant subset.
N = {g ∈ G : a−tgat → e as t →∞} : contracting horospherical
subgroup
RF+M = {[g ] ∈ Γ\G : gA+ is bounded } = RF M · N : the union of all
N-orbits based at Λ. closed, AN-invariant subset.
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Notations

For U < N, let H(U) denote the smallest closed simple Lie group
containing A and U.

If dimU = k , then H(U) is isomorphic to SO◦(k + 1, 1). Its
centralizer is a compact subgroup.

Example (G = PSL(2,C))

If U =

(
1 R
0 1

)
, then H(U) = PSL(2,R).

Any closed subgroup generated by unipotent elements is conjugate to
U or H(U).
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Theorem A and Theorem B

Theorem (L.-Oh)

U-orbit closures are relatively homogeneous; for all x ∈ RF+M,
xU = xL ∩ RF+M where xL is a closed orbit of a larger subgroup L < G.

Theorem (L.-Oh)

H(U)-orbit closures are relatively homogeneous; for all x ∈ RF M,
xH(U) = xL ∩ RF+M · H(U). Moreover, L is of the form H(Û)C for
U ⊂ Û and C ⊂ CG (H(Û)).
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Geodesic planes and horocycles

Corollary

1 Let χ be a k-horocycle in M (k ≥ 1). Then χ is a properly immersed
submanifold.

2 Let P be a geodesic k-plane in M (k ≥ 2). If P ∩ core(M)◦ 6= ∅, then
P is a properly immersed geodesic m-plane for m ≥ k.
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Proof

The main theorem is deduced from the following theorem, which is proved
by the induction argument on the codimension of U.

Theorem

1 For all x ∈ RF M, xH(U) = xL ∩ RF+M · H(U).

2 For all x ∈ RF+M, xU = xL ∩ RF+M.

3 Suppose that xiLi (U ⊂ Li ) is a sequence of closed orbits, non of
whose infinite subsequence is contained in a subset of the form
y0L0D, where y0L0 is a proper closed orbit and D ⊂ N(U) is a
compact subset. Then lim sup

i→∞
(xiLi ∩ RF+M) = RF+M.
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Induction scheme

Induction on the codimension of U. We say
“(1)m holds” if (1) is true for all U such that codimN(U) ≤ m.
“(2)m holds” if (2) is true for all U such that codimN(U) ≤ m.
“(3)m holds” if (3) is true for all U such that codimN(U) ≤ m.
Base cases (1)0, (2)0, (3)0 follows from...
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Induction scheme

(2)m, (3)m holds ⇒ (1)m+1 holds ⇒ (2)m+1 holds ⇒ (3)m+1 holds .
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Proof

Proof consists of 2 steps.

1 Find a closed orbit y0L0 ⊂ xH(U).

2 Enlarge to a bigger closed orbit y1L1 ⊂ xH(U).
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Recurrence

Thick recurrence of unipotent flow to RF M .

There exists k > 1 such that for all x ∈ RF M and all U = {ut} < N,
T (x) = {t ∈ R : xut ∈ RF M} is k-thick, i.e., for all r > 0,
T (x) ∩ ±[r , kr ] 6= ∅.
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Avoidance theorem

Let {ut} be a one-parameter unipotent subgroup of N.
S ({ut}) = union of all closed orbits of proper connected subgroups
containing {ut}.

Theorem (Avoidance theorem)

There exists compact sets Ej such that S ({ut}) ∩ RF M =
⋃∞

j=1 Ej . For
each j and a compact subset F ⊂ RF M − Ej+1, there exists open
neighborhoods Oj of Ej such that for all x ∈ F ,
{t ∈ R : xut ∈ RF M −Oj} is 2k-thick.

(For given xi converging to a generic point x , and Ti →∞, need
ti ∈ [Ti , 2kTi ] such that xiuti converges to a generic point.)
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The End of part I.
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