
Open sets of partially hyperbolic systems having
a unique SRB measure

Davi Obata

University of Chicago



Introduction

Let f : M → M be a diffeomorphism on a manifold M. For µ an
ergodic measure its basin is defined by
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j=0

δf j (x) = µ

 .

Physical measure

We say that µ is physical if Leb(B(µ)) > 0.
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f : M → M is Anosov if TM = E s ⊕ Eu, where E s contracts
uniformly and Eu expands uniformly under the action of Df .
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C 1+α-Anosov diffeomorphism (more generally Axiom A) ⇒
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 k⋃
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The measures they constructed are nowadays called hyperbolic
SRB (Sinai-Ruelle-Bowen) measures, and they form an important
class of physical measures.
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Introduction

For (f , µ), a real number λ is a Lyapunov exponent at the point
p ∈ M, if ∃v ∈ TpM − {0} such that

λ(p, v) := lim
n→+∞

1

n
log ‖Df n(p)v‖ = λ.

Oseledets ⇒ λ(p, .) is well defined for µ-a.e. p and every vector v ,
and can take at most dim(M)-different values.

Hyperbolic measure

µ is a hyperbolic measure if for µ-almost every point, all the
Lyapunov exponents are non-zero.
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For a C 1+α-diffeomorphism, a hyperbolic measure µ is SRB if it
admits conditional measures along Pesin unstable manifolds that
are absolutely continuous w.r.t. the volume measure on these
manifolds.

Ledrappier, Ledrappier-Young

⇓

µ is SRB ⇔ µ verifies Pesin entropy formula.
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construction of SRB measures:

1 Uniform expansion/contraction.

2 “Good angle” between expanding/contracting direction
(Dominated splitting).

A third ingredient can help to obtain SRB measures:

3 Volume preserving.

Question

How much can we “break” conditions 1,2 and 3 and still get SRB
measures?
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Some Derived from Anosov (DA) systems(Bonatti-Viana
(2000), Alves-Bonatti-Viana (2000), Tahzibi (2004)):

1 Non-uniform
exp./cont.

2 “Good angles”.

3 It can preserve
volume or not.

Conclusion

C 1-Open sets among C 1+α-diffeomorphisms having a unique (or
finitely many) hyperbolic SRB measures.
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Pesin theory ⇒ in the volume preserving setting: existence of
hyperbolic SRB measure ⇔ ∃ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of
Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang
(2018) - ∃C 2-open sets among volume preserving diffeomorphisms
which are non-uniformly hyperbolic.

1 Non-uniform exp./cont.

2 Not “good angles” between exp./cont. directions.

3 Volume preserving.

Conclusion

C 2-open sets of volume preserving diffeomorphisms having an SRB
measure.
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A set of positive Lebesgue measure of parameters ∆ having a
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vol. preserving.
Conclusion: Not robust existence of hyperbolic SRB measures.
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Problem

To obtain open sets (in some space) of systems with

1 non-uniform exp./contr.,

2 not “good angles” between exp./cont. directions,

3 non volume preserving,

and having a unique (or finitely many) hyperbolic SRB measures.
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For N large enough, fN has the following properties:

1 it is partially hyperbolic with splitting

TT4 = E s ⊕ E c ⊕ Eu, with E c = R2 × {0};

2 it does not admit any further dominated decomposition of the
center direction;

3 ∃c > 0 s.t. the Lebesgue measure is hyperbolic for fN and the
exponents have absolute value larger than c logN
(Berger-Carrasco, 2014);

4 properties 1− 3 are C 2-robust among volume preserving
diffeomorphisms.

Theorem (O., 2018)

For N large enough, fN is C 2-stably ergodic.
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Statement of the main theorem

Let Skr (T2 × T2) to be the set of diffeomorphism g ∈ Diffr (T4)
such that

g(x , y , z ,w) = (g1(x , y , z ,w), g2(z ,w)).

Main Theorem

Fix α ∈ (0, 1). For N large enough, ∃U ⊂ Sk2(T2 × T2), C 2-nbd
of fN , and V an open and dense subset of U s.t. if
g ∈ V ∩ Sk2+α(T2×T2), then ∃! SRB measure µg for g .Moreover,
µg has the following properties:

µg is Bernoulli;

Leb(B(µg )) = 1;

supp(µg ) = T4.
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Problems to prove the main theorem

There are two different problems involved in the main theorem.

Existence and Uniqueness



Uniqueness

Theorem (Uniqueness)

For N large enough, ∃U ⊂ Diff2(T4) a C 2-nbd of fN s.t. if g ∈ U
then g has at most one SRB measure.

Furthermore, if µg is an
SRB measure for g then

µg is Bernoulli;

supp(µg ) = T4.

Remarks:

This is a problem of finding transverse intersections between
invariant manifolds.

The same type of techniques allow me to prove the uniquness
of the measure of maximal entropy for the standard map.
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Theorem (Rigidity)
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of fN , s.t. if g ∈ U is C 2+α then:

1 either g has an SRB measure, or;
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Remark 1

This is an adaptation to the skew product p.h. setting of a rigidity
theorem for stationary measures of random products of surface
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In this adaptation, I use many times the fact that the center
foliations is smooth.
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Thank you!


