Open sets of partially hyperbolic systems having a unique SRB measure

Davi Obata

University of Chicago

Let $f: M \to M$ be a diffeomorphism on a manifold M. For μ an ergodic measure its **basin** is defined by

$$\mathcal{B}(\mu) := \left\{ x \in M : \lim_{n \to +\infty} \sum_{j=0}^{n-1} \delta_{f^j(x)} = \mu \right\}.$$

- 4 ≣ ▶ 4

Let $f: M \to M$ be a diffeomorphism on a manifold M. For μ an ergodic measure its **basin** is defined by

$$\mathcal{B}(\mu) := \left\{ x \in M : \lim_{n o +\infty} \sum_{j=0}^{n-1} \delta_{f^j(x)} = \mu
ight\}.$$

Physical measure

We say that μ is **physical** if $\text{Leb}(B(\mu)) > 0$.

Examples of physical measures

Examples of physical measures

Example 1: δ_p , where p is a fixed point which is a sink.

Examples of physical measures

Example 1: δ_p , where p is a fixed point which is a sink.

Example 2:

 $f: M \to M$ is **Anosov** if $TM = E^s \oplus E^u$, where E^s contracts uniformly and E^u expands uniformly under the action of Df.

 $f: M \to M$ is **Anosov** if $TM = E^s \oplus E^u$, where E^s contracts uniformly and E^u expands uniformly under the action of Df.

Example 3: (Sinai, Ruelle and Bowen in the 70's) if f is a $C^{1+\alpha}$ -Anosov diffeomorphism (more generally Axiom A) $\Rightarrow \exists \mu_1, \cdots, \mu_k$ physical measures such that

 $f: M \to M$ is **Anosov** if $TM = E^s \oplus E^u$, where E^s contracts uniformly and E^u expands uniformly under the action of Df.

Example 3: (Sinai, Ruelle and Bowen in the 70's) if f is a $C^{1+\alpha}$ -Anosov diffeomorphism (more generally Axiom A) $\Rightarrow \exists \mu_1, \cdots, \mu_k$ physical measures such that

$$Leb\left(\bigcup_{j=1}^{k}\mathcal{B}(\mu_{j})\right)=1.$$

 $f: M \to M$ is **Anosov** if $TM = E^s \oplus E^u$, where E^s contracts uniformly and E^u expands uniformly under the action of Df.

Example 3: (Sinai, Ruelle and Bowen in the 70's) if f is a $C^{1+\alpha}$ -Anosov diffeomorphism (more generally Axiom A) $\Rightarrow \exists \mu_1, \cdots, \mu_k$ physical measures such that

$$Leb\left(\bigcup_{j=1}^{k}\mathcal{B}(\mu_{j})\right)=1.$$

Remark

The measures they constructed are nowadays called hyperbolic **SRB** (Sinai-Ruelle-Bowen) measures, and they form an important class of physical measures.

For (f, μ) , a real number λ is a **Lyapunov exponent** at the point $p \in M$, if $\exists v \in T_pM - \{0\}$ such that

$$\lambda(p, v) := \lim_{n \to +\infty} \frac{1}{n} \log \|Df^n(p)v\| = \lambda.$$

For (f, μ) , a real number λ is a **Lyapunov exponent** at the point $p \in M$, if $\exists v \in T_pM - \{0\}$ such that

$$\lambda(p, v) := \lim_{n \to +\infty} \frac{1}{n} \log \|Df^n(p)v\| = \lambda.$$

Oseledets $\Rightarrow \lambda(p,.)$ is well defined for μ -a.e. p and every vector v, and can take at most dim(M)-different values. For (f, μ) , a real number λ is a **Lyapunov exponent** at the point $p \in M$, if $\exists v \in T_pM - \{0\}$ such that

$$\lambda(p, v) := \lim_{n \to +\infty} \frac{1}{n} \log \|Df^n(p)v\| = \lambda.$$

Oseledets $\Rightarrow \lambda(p,.)$ is well defined for μ -a.e. p and every vector v, and can take at most dim(M)-different values.

Hyperbolic measure

 μ is a **hyperbolic measure** if for μ -almost every point, all the Lyapunov exponents are non-zero.

Hyperbolic SRB measure

For a $C^{1+\alpha}$ -diffeomorphism, a hyperbolic measure μ is **SRB** if it admits conditional measures along **Pesin unstable manifolds** that are absolutely continuous w.r.t. the volume measure on these manifolds.

Hyperbolic SRB measure

For a $C^{1+\alpha}$ -diffeomorphism, a hyperbolic measure μ is **SRB** if it admits conditional measures along **Pesin unstable manifolds** that are absolutely continuous w.r.t. the volume measure on these manifolds.

Ledrappier, Ledrappier-Young

∜

 μ is SRB $\Leftrightarrow \mu$ verifies Pesin entropy formula.

- **1** Uniform expansion/contraction.
- "Good angle" between expanding/contracting direction (Dominated splitting).

- **1** Uniform expansion/contraction.
- "Good angle" between expanding/contracting direction (Dominated splitting).
- A third ingredient can help to obtain SRB measures:

- **1** Uniform expansion/contraction.
- "Good angle" between expanding/contracting direction (Dominated splitting).
- A third ingredient can help to obtain SRB measures:
 - Volume preserving.

- **1** Uniform expansion/contraction.
- "Good angle" between expanding/contracting direction (Dominated splitting).
- A third ingredient can help to obtain SRB measures:
 - Volume preserving.

Question

How much can we "break" conditions 1,2 and 3 and still get SRB measures?

- Non-uniform exp./cont.
- Good angles".

- Non-uniform exp./cont.
- Good angles".
- It can preserve volume or not.

- Non-uniform exp./cont.
- Good angles".
- It can preserve volume or not.

Conclusion

 C^1 -Open sets among $C^{1+\alpha}$ -diffeomorphisms having a unique (or finitely many) hyperbolic SRB measures.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang (2018) - $\exists C^2$ -open sets among volume preserving diffeomorphisms which are non-uniformly hyperbolic.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang (2018) - $\exists C^2$ -open sets among volume preserving diffeomorphisms which are non-uniformly hyperbolic.

Non-uniform exp./cont.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang (2018) - $\exists C^2$ -open sets among volume preserving diffeomorphisms which are non-uniformly hyperbolic.

- Non-uniform exp./cont.
- 2 Not "good angles" between exp./cont. directions.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang (2018) - $\exists C^2$ -open sets among volume preserving diffeomorphisms which are non-uniformly hyperbolic.

- Non-uniform exp./cont.
- **2** Not "good angles" between exp./cont. directions.
- Olume preserving.

Pesin theory \Rightarrow in the volume preserving setting: existence of hyperbolic SRB measure $\Leftrightarrow \exists$ a non-uniformly hyperbolic region.

Robustly NUH volume preserving diffeomorphisms: Results of Avila-Viana (2010), Berger-Carrasco (2014), Liang-Marin-Yang (2018) - $\exists C^2$ -open sets among volume preserving diffeomorphisms which are non-uniformly hyperbolic.

- Non-uniform exp./cont.
- 2 Not "good angles" between exp./cont. directions.
- Olume preserving.

Conclusion

 $C^2\-$ open sets of volume preserving diffeomorphisms having an SRB measure.

$$h_{a,b}(x,y) = (1 - ax^2 + y, bx),$$

has a unique SRB measure.

$$h_{a,b}(x,y) = (1 - ax^2 + y, bx),$$

has a unique SRB measure.

Non-uniform exp./cont.

$$h_{a,b}(x,y) = (1 - ax^2 + y, bx),$$

has a unique SRB measure.

- Non-uniform exp./cont.
- Not "good angles" between exp./cont. directions.

$$h_{a,b}(x,y) = (1 - ax^2 + y, bx),$$

has a unique SRB measure.

- Non-uniform exp./cont.
- Not "good angles" between exp./cont. directions.
- Not volume preserving.

$$h_{a,b}(x,y) = (1 - ax^2 + y, bx),$$

has a unique SRB measure.

- Non-uniform exp./cont.
- Not "good angles" between exp./cont. directions.
- Ont volume preserving.

Conclusion

A set of positive Lebesgue measure of parameters Δ having a unique SRB measure. However the set Δ has empty interior.

DA systems: Non-uniform exp./cont. + "good angles".
 Conclusion: Robust existence of hyperbolic SRB measures.

- DA systems: Non-uniform exp./cont. + "good angles".
 Conclusion: Robust existence of hyperbolic SRB measures.
- Robust NUH vol. preserving systems: Non-uniform exp./cont.
 + Not "good angles" + vol. preserving.
 Conclusion: Robust existence (among vol. preserving systems) of hyperbolic SRB measure.

- DA systems: Non-uniform exp./cont. + "good angles".
 Conclusion: Robust existence of hyperbolic SRB measures.
- Robust NUH vol. preserving systems: Non-uniform exp./cont.
 + Not "good angles" + vol. preserving.
 Conclusion: Robust existence (among vol. preserving systems) of hyperbolic SRB measure.
- Hénon: Non-uniform exp./cont. + Not "good angles" + Not vol. preserving.

Conclusion: Not robust existence of hyperbolic SRB measures.

Problem

To obtain open sets (in some space) of systems with

- Inon-uniform exp./contr.,
- Inot "good angles" between exp./cont. directions,
- Inon volume preserving,

and having a unique (or finitely many) hyperbolic SRB measures.

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$, with coordinates (x, y). For $N \in \mathbb{N}$ consider the **standard map**

$$s_{\mathcal{N}} : \mathbb{T}^2 \quad \to \quad \mathbb{T}^2 (x, y) \quad \mapsto \quad (N \sin x + 2x - y, x)$$

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$, with coordinates (x, y). For $N \in \mathbb{N}$ consider the **standard map**

$$s_N : \mathbb{T}^2 \rightarrow \mathbb{T}^2$$

 $(x, y) \mapsto (N \sin x + 2x - y, x)$

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$, with coordinates (x, y). For $N \in \mathbb{N}$ consider the standard map

$$s_{\mathcal{N}}: \mathbb{T}^2 \rightarrow \mathbb{T}^2$$

 $(x, y) \mapsto (N \sin x + 2x - y, x)$

Properties:

• s_N preserves the usual Lebesgue measure on \mathbb{T}^2 ;

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$, with coordinates (x, y). For $N \in \mathbb{N}$ consider the standard map

$$s_{\mathcal{N}}: \mathbb{T}^2 \rightarrow \mathbb{T}^2$$

 $(x, y) \mapsto (N \sin x + 2x - y, x)$

Properties:

- s_N preserves the usual Lebesgue measure on \mathbb{T}^2 ;
- s_N does not admit a dominated decomposition of $T\mathbb{T}^2$.

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$, with coordinates (x, y). For $N \in \mathbb{N}$ consider the standard map

$$s_N : \mathbb{T}^2 \to \mathbb{T}^2$$

 $(x, y) \mapsto (N \sin x + 2x - y, x)$

Properties:

- s_N preserves the usual Lebesgue measure on \mathbb{T}^2 ;
- s_N does not admit a dominated decomposition of $T\mathbb{T}^2$.

Conjecture (Sinai, 1994)

If N is large then s_N has positive metric entropy.

• $A \in SL(2,\mathbb{Z})$ hyperbolic;

- $A \in SL(2, \mathbb{Z})$ hyperbolic;
- Define $P_1: \mathbb{T}^2 \to \mathbb{T}^2$ by $P_1(x, y) = (x, 0)$;

- $A \in SL(2, \mathbb{Z})$ hyperbolic;
- Define $P_1: \mathbb{T}^2 \to \mathbb{T}^2$ by $P_1(x, y) = (x, 0)$;
- On $\mathbb{T}^4 = \mathbb{T}^2 \times \mathbb{T}^2$ consider the coordinates (x, y, z, w).

•
$$A \in SL(2, \mathbb{Z})$$
 hyperbolic;

• Define $P_1: \mathbb{T}^2 \to \mathbb{T}^2$ by $P_1(x, y) = (x, 0);$

• On $\mathbb{T}^4 = \mathbb{T}^2 \times \mathbb{T}^2$ consider the coordinates (x, y, z, w).

For $N \in \mathbb{N}$ define the skew-product

$$\begin{array}{rcl} f_{\mathcal{N}}:\mathbb{T}^{2}\times\mathbb{T}^{2}&\to&\mathbb{T}^{2}\times\mathbb{T}^{2}\\ (x,y,z,w)&\mapsto&(s_{\mathcal{N}}(x,y)+P_{1}\circ\mathcal{A}^{\mathcal{N}}(z,w),\mathcal{A}^{2\mathcal{N}}(z,w)). \end{array}$$

For N large enough, f_N has the following properties:

It is partially hyperbolic with splitting

$$T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$$
, with $E^c = \mathbb{R}^2 \times \{0\}$;

For N large enough, f_N has the following properties:

It is partially hyperbolic with splitting

$$T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$$
, with $E^c = \mathbb{R}^2 \times \{0\}$;

 it does not admit any further dominated decomposition of the center direction;

For N large enough, f_N has the following properties:

It is partially hyperbolic with splitting

$$T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$$
, with $E^c = \mathbb{R}^2 \times \{0\}$;

- it does not admit any further dominated decomposition of the center direction;
- ∃c > 0 s.t. the Lebesgue measure is hyperbolic for f_N and the exponents have absolute value larger than c log N (Berger-Carrasco, 2014);

For N large enough, f_N has the following properties:

It is partially hyperbolic with splitting

$$T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$$
, with $E^c = \mathbb{R}^2 \times \{0\}$;

- it does not admit any further dominated decomposition of the center direction;
- ③ ∃c > 0 s.t. the Lebesgue measure is hyperbolic for f_N and the exponents have absolute value larger than c log N (Berger-Carrasco, 2014);
- properties 1 3 are C²-robust among volume preserving diffeomorphisms.

For N large enough, f_N has the following properties:

It is partially hyperbolic with splitting

$$T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$$
, with $E^c = \mathbb{R}^2 \times \{0\}$;

- it does not admit any further dominated decomposition of the center direction;
- ∃c > 0 s.t. the Lebesgue measure is hyperbolic for f_N and the exponents have absolute value larger than c log N (Berger-Carrasco, 2014);
- properties 1 3 are C²-robust among volume preserving diffeomorphisms.

Theorem (O., 2018)

For N large enough, f_N is C^2 -stably ergodic.

Let $\mathrm{Sk}^r(\mathbb{T}^2 \times \mathbb{T}^2)$ to be the set of diffeomorphism $g \in \mathrm{Diff}^r(\mathbb{T}^4)$ such that

$$g(x, y, z, w) = (g_1(x, y, z, w), g_2(z, w)).$$

Let $\mathrm{Sk}^r(\mathbb{T}^2 \times \mathbb{T}^2)$ to be the set of diffeomorphism $g \in \mathrm{Diff}^r(\mathbb{T}^4)$ such that

$$g(x, y, z, w) = (g_1(x, y, z, w), g_2(z, w)).$$

Main Theorem

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists \mathcal{U} \subset \mathrm{Sk}^2(\mathbb{T}^2 \times \mathbb{T}^2)$, C^2 -nbd of f_N , and \mathcal{V} an open and dense subset of \mathcal{U} s.t. if $g \in \mathcal{V} \cap \mathrm{Sk}^{2+\alpha}(\mathbb{T}^2 \times \mathbb{T}^2)$, then $\exists!$ SRB measure μ_g for g.

Let $\mathrm{Sk}^r(\mathbb{T}^2 \times \mathbb{T}^2)$ to be the set of diffeomorphism $g \in \mathrm{Diff}^r(\mathbb{T}^4)$ such that

$$g(x, y, z, w) = (g_1(x, y, z, w), g_2(z, w)).$$

Main Theorem

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists \mathcal{U} \subset \operatorname{Sk}^2(\mathbb{T}^2 \times \mathbb{T}^2)$, C^2 -nbd of f_N , and \mathcal{V} an open and dense subset of \mathcal{U} s.t. if $g \in \mathcal{V} \cap \operatorname{Sk}^{2+\alpha}(\mathbb{T}^2 \times \mathbb{T}^2)$, then \exists ! SRB measure μ_g for g.Moreover, μ_g has the following properties:

• μ_g is Bernoulli;

Let $\mathrm{Sk}^r(\mathbb{T}^2 \times \mathbb{T}^2)$ to be the set of diffeomorphism $g \in \mathrm{Diff}^r(\mathbb{T}^4)$ such that

$$g(x, y, z, w) = (g_1(x, y, z, w), g_2(z, w)).$$

Main Theorem

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists \mathcal{U} \subset \operatorname{Sk}^2(\mathbb{T}^2 \times \mathbb{T}^2)$, C^2 -nbd of f_N , and \mathcal{V} an open and dense subset of \mathcal{U} s.t. if $g \in \mathcal{V} \cap \operatorname{Sk}^{2+\alpha}(\mathbb{T}^2 \times \mathbb{T}^2)$, then \exists ! SRB measure μ_g for g.Moreover, μ_g has the following properties:

• μ_g is Bernoulli;

• Leb
$$(\mathcal{B}(\mu_g))=1;$$

Let $\mathrm{Sk}^r(\mathbb{T}^2 \times \mathbb{T}^2)$ to be the set of diffeomorphism $g \in \mathrm{Diff}^r(\mathbb{T}^4)$ such that

$$g(x, y, z, w) = (g_1(x, y, z, w), g_2(z, w)).$$

Main Theorem

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists \mathcal{U} \subset \operatorname{Sk}^2(\mathbb{T}^2 \times \mathbb{T}^2)$, C^2 -nbd of f_N , and \mathcal{V} an open and dense subset of \mathcal{U} s.t. if $g \in \mathcal{V} \cap \operatorname{Sk}^{2+\alpha}(\mathbb{T}^2 \times \mathbb{T}^2)$, then \exists ! SRB measure μ_g for g.Moreover, μ_g has the following properties:

- μ_g is Bernoulli;
- Leb $(\mathcal{B}(\mu_g)) = 1;$
- $\operatorname{supp}(\mu_g) = \mathbb{T}^4$.

There are two different problems involved in the main theorem.

Existence and Uniqueness

For N large enough, $\exists U \subset \text{Diff}^2(\mathbb{T}^4)$ a C^2 -nbd of f_N s.t. if $g \in U$ then g has at most one SRB measure.

For N large enough, $\exists \mathcal{U} \subset \text{Diff}^2(\mathbb{T}^4)$ a C^2 -nbd of f_N s.t. if $g \in \mathcal{U}$ then g has at most one SRB measure. Furthermore, if μ_g is an SRB measure for g then

• μ_g is Bernoulli;

•
$$\operatorname{supp}(\mu_g) = \mathbb{T}^4$$

For N large enough, $\exists \mathcal{U} \subset \text{Diff}^2(\mathbb{T}^4)$ a C^2 -nbd of f_N s.t. if $g \in \mathcal{U}$ then g has at most one SRB measure. Furthermore, if μ_g is an SRB measure for g then

- μ_g is Bernoulli;
- $\operatorname{supp}(\mu_g) = \mathbb{T}^4$.

Remarks:

• This is a problem of finding transverse intersections between invariant manifolds.

For N large enough, $\exists \mathcal{U} \subset \text{Diff}^2(\mathbb{T}^4)$ a C^2 -nbd of f_N s.t. if $g \in \mathcal{U}$ then g has at most one SRB measure. Furthermore, if μ_g is an SRB measure for g then

- μ_g is Bernoulli;
- $\operatorname{supp}(\mu_g) = \mathbb{T}^4$.

Remarks:

- This is a problem of finding transverse intersections between invariant manifolds.
- The same type of techniques allow me to prove the uniquness of the measure of maximal entropy for the standard map.

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists \mathcal{U} \subset Sk^2(\mathbb{T}^2 \times \mathbb{T}^2)$, *C*²-nbd of f_N , s.t. if $g \in \mathcal{U}$ is $C^{2+\alpha}$ then:

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists U \subset Sk^2(\mathbb{T}^2 \times \mathbb{T}^2)$, *C*²-nbd of f_N , s.t. if $g \in U$ is $C^{2+\alpha}$ then:

• either g has an SRB measure, or;

2 \exists T^{su} a 2-torus tangent to $E^s \oplus E^u$.

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists U \subset Sk^2(\mathbb{T}^2 \times \mathbb{T}^2)$, *C*²-nbd of f_N , s.t. if $g \in U$ is $C^{2+\alpha}$ then:

• either g has an SRB measure, or;

2 \exists T^{su} a 2-torus tangent to $E^s \oplus E^u$.

Remark 1

This is an adaptation to the skew product p.h. setting of a rigidity theorem for stationary measures of random products of surface diffeomorphisms by Aaron Brown and Federico Rodriguez-Hertz.

Fix $\alpha \in (0, 1)$. For *N* large enough, $\exists U \subset Sk^2(\mathbb{T}^2 \times \mathbb{T}^2)$, *C*²-nbd of f_N , s.t. if $g \in U$ is $C^{2+\alpha}$ then:

• either g has an SRB measure, or;

2 \exists T^{su} a 2-torus tangent to $E^s \oplus E^u$.

Remark 1

This is an adaptation to the skew product p.h. setting of a rigidity theorem for stationary measures of random products of surface diffeomorphisms by Aaron Brown and Federico Rodriguez-Hertz.

Remark 2

In this adaptation, I use many times the fact that the center foliations is smooth.

Questions

• In the Main Theorem, can we extend the result to the entire neighborhood?

Questions

- In the Main Theorem, can we extend the result to the entire neighborhood?
- How "typical" is this example?

Questions

- In the Main Theorem, can we extend the result to the entire neighborhood?
- How "typical" is this example?
- Can we remove the "skew product" hypothesis? (smooth center foliation)
Questions

- In the Main Theorem, can we extend the result to the entire neighborhood?
- How "typical" is this example?
- Can we remove the "skew product" hypothesis? (smooth center foliation)
- Is f_N , for N large, accessible?

Thank you!

æ