Exponential mixing of 3D Anosov flows (joint with Masato Tsujii)

Zhiyuan Zhang

CNRS, LAGA - Paris 13

May 4, 2020

Definition

A flow $g: M \to M$ on a compact Riemannian manifold M is a **Anosov** flow if there is a continuous splitting

$$TM = E^s \oplus N \oplus E^u$$

where N is the flow direction, E^s is uniformly contracted by Dg^1 and E^u is uniformly expanded by Dg^1 .

It is known that for any Anosov flow, E^s and E^u integrate to stable foliation W^s and unstable foliaton W^u respectively (but they don't have to be jointly integrable).

The topological and statistical properties of Anosov flow were studied by many authors: Anosov, Bowen, Margulis, Plante, Ratner, Ruelle, Sinai, Smale, etc.

For transitive Anosov flows, the following theorem is well-known.

Theorem (Anosov alternative)

A transitve Anosov flow is either topologically mixing or it is conjugate to a suspension flow over an Anosov diffeomorphism with constant roof function.

We say that g is topologically mixing if for any non-empty open sets $A, B \subset M$, for all sufficiently large t > 0, we have $g^t(A) \cap B \neq \emptyset$.

It is also important to study measure-theoretical mixing. For a Anosov flow g, for any Hölder function F, there is a unique measure $\nu_{g,F}$ which maximizes

$$\int F d\mu + h_{\mu}(g^1).$$

We call $\nu_{g,F}$ an **equilibrium measure** for g with potential F.

٠

- when F = 0, ν_{g,F} is the entropy maximizing measure (or Bowen-Margulis measure);
- ② when $F = -\log |\det(Dg^1|_{E^u})|$, $\nu_{g,F}$ is called the Sinai-Ruelle-Bowen measure

$$\mu = \lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} (g^i)_* Leb.$$

In particular, when g is volume preserving, then $\nu_{g,F}$ is the volume.

Theorem (Bowen-Ruelle, 1975)

If a C^2 Anosov flow g is topologically mixing, then g is mixing with respect to equilibrium measures with Hölder potential.

People are interested in the speed of the convergence when A, B are Hölder functions.

Conjecture (Bowen-Ruelle)

If g is topologically mixing, then g is exponentially mixing with respect to Hölder functions and equilibrium measures with Hölder potential.

• The theorem is proved for a more general class of flow, called "Axiom A flow" or "hyperbolic flow". The conjecture was also originally about hyperbolic flow, but counter-examples are found by Ruelle.

Theorem (Tsujii-Z)

A topologically mixing C^{∞} 3D Anosov flow is exponentially mixing with respect to any equilibrium measure with Hölder potential.

Progress on Bowen-Ruelle conjecture:

- (Chernov) Stretched-exponential decay of correlaction;
- (Dolgopyat) it is true when E^s and E^u are of class C¹ for SRB measure (and all equilibrium measure when dim E^u = 1, or more generally equilibrium measure with doubling property);
- (Liverani) when g preserves a contact form, exp. mixing w.r.t. volume;
- (Tsujii) w.r.t. volume in 3D, when g preserves a volume form, and verifies certain C^3 open and C^{∞} dense condition;
- **(Butterley-War)** when E^s is $C^{1+\epsilon}$ for SRB measure.
 - Other related works: Giulietti-Liverani-Pollicott (zeta function, decay under some pinching condition), Field-Melbourne-Török (super-polynomial rate), Pollicott-Sharp(prime orbit theorem with exponential error terms).
 - Usually, E^u and E^s do not need to be smooth. They are always Hölder. But in many cases they are strictly Hölder and exponent can be arbitrarily small (Plante, Hasselblatt, Wilkinson).

Markov partition: $\Pi = \bigcup_{\alpha \in I} \Pi_{\alpha}$ where Π_{α} is a parallelogram defined as follows: there is a local unstable manifold U_{α} , and a local stable manifold S_{α} such that $\Pi_{\alpha} = [U_{\alpha}, S_{\alpha}]$. Denote $U = \bigcup_{\alpha} U_{\alpha}$.

Return time: $\tau : \Pi \to \mathbb{R}_+$ (invariance of the stable foliation gives $\tau : U \to \mathbb{R}_+$).

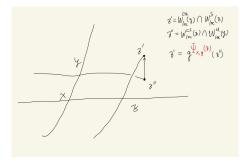
Return map: $\hat{\sigma} : \Pi \to \Pi$. Map on the first coordinate is $\sigma : U \to U$.

Markov property: for each $\alpha \in I$, $\hat{\sigma}(S_{\alpha})$ is contained in Π_{β_1} for some $\beta_1 \in I$; and $\hat{\sigma}^{-1}(U_{\alpha})$ is contained in Π_{β_2} for some $\beta_2 \in I$.

Measure: let ν_{Π} be the measure induced by $\nu_{g,F}$, and let ν_U be the projection of ν_{Π} to U.

Foliation: since dim M = 3, both W^{cs} and W^{cu} are C^{1+} -foliations (Hasselblatt).

Temporal function: for $x \in M$, $z \in W^u_{loc}(x)$ and $y \in W^s_{loc}(x)$, we will study $\Psi_{x,y}(z)$ defined as follows:



The return time function is related to temporal function. For any k > 0, any $w \in \sigma^{-k}$ and any $x, z \in Dom(w)$, there is $x^w \in W^s_{loc}(x)$ such that

$$au_k \circ w(x) - au_k \circ w(z) = \Psi_{x,x^w}(z)$$

Given a Hölder function $f: U \to \mathbb{R}$, we denote a family of bounded linear operators on $C^{\theta}(U)$ as follows.

For any $a, b \in \mathbb{R}$, for any $\alpha \in I$, for any $x \in U_{\alpha}$, we set

$$\mathcal{L}_{a,b}u(x) = \sum_{y \in \sigma^{-1}(x)} e^{f(y) + (a+ib)\tau(y)} u(y).$$

There is an argument to transfer the study of exponential mixing of the flow with respect to a Hölder potential function $F \in C^{\theta}(M)$, to the study of these operators for certain Hölder potential function $f \in C^{\theta}(U)$.

Let g be a topologically mixing C^{∞} 3D Anosov flow on M.

Proposition (Dolgopyat's estimate)

There exist $C, \kappa, a_0, b_0 > 0$ such that for any a, b with $|a| < a_0$ and $b > |b_0|$, for any $u \in C^{\theta}(U)$, for any $n > C \ln |b|$ we have

$$\|\mathcal{L}_{a,b}^{n}u\|_{L^{2}(\nu_{U})} < |b|^{-\kappa}\max(\|u\|_{C^{0}}, |b|^{-1}\|u\|_{C^{\theta}}).$$

Consequences:

- exponential mixing.
- Ruell (dynamical) zeta function $\zeta(z) = \prod_{\gamma} (1 e^{-z|\gamma|})^{-1}$ only has a single pole on h_{top} on the half-plane $\{Re(z) > h_{top} \epsilon\}$.
- $N(T) = \#\{\gamma \mid |\gamma| < T\}$ satisfies $N(T) = li(e^{h_{top}}T) + O(e^{(h_{top}-\epsilon)T})$ where $li(x) = \int_0^x \frac{dt}{\log t}$.

We say that a sequence of functions $\{\Lambda^{\epsilon} : U \to \mathbb{R}_+\}_{\epsilon>0}$ in $L^{\infty}(U)$ is • **stable** if there exist $n, \kappa > 0$ such that for all sufficiently small ϵ , we have

$$\Lambda^{\epsilon}(x) > \epsilon^{-\kappa}, \quad \forall x \in U,$$

and for any integer $m \ge n$,

$$\|Dg^{\tau_m(x)}|_{E^u(x)}\|^{-1}\Lambda^{\epsilon}(\sigma^m(x))^{-1} < e^{-m\kappa}\Lambda^{\epsilon}(x)^{-1}, \quad \forall x \in U.$$

• tame if there exist $C, \kappa > 0$ such that for all sufficiently $\epsilon > 0$, for every $x \in U$, for every $y \in (-1, 1)$, there exists $R \in C^{\theta}(-1, 1)$ such that

$$\begin{split} \|R\|_{\theta} &\leq C|y|^{\kappa}, \\ |\epsilon^{-1}\Psi_{x,\Phi^{\mathfrak{s}}_{x}(y)}(\Phi^{u}_{x}(\Lambda^{\epsilon}(x)^{-1}s))-R(s)| &< \epsilon^{\kappa}, \quad \forall s\in(-1,1). \end{split}$$

• *n*-adapted to some subset $\Omega \subset U$ for some integer $n \ge 1$ if there is a constant C > 0 such that for all sufficiently small ϵ , for any $x \in \Omega$, for any $v \in \sigma_x^{-n}$, for any $y \in U$ such that $y \in W_{\varepsilon}^u(v(x), 4\Lambda(y)^{-1})$, we have

$$\Lambda(x) < C\Lambda(y).$$

• Given a σ -invariant measure ν on U and an integer $n \ge 1$, we say that a subset $\Omega \subset U$ is *n*-recurrent with respect to ν if there exist $C, \kappa > 0$ such that for any integer m > C we have

$$\nu(\{x \in U \mid |\{1 \le j \le m \mid \sigma^{jn}(x) \in \Omega\}| < \kappa m\}) < e^{-m\kappa}$$

Given C > 0, a sequence of functions $\{\Lambda^{\epsilon} : U \to \mathbb{R}_+\}_{\epsilon > 0}$ and a subset $\Omega \subset U$. We say that C-UNI (short for **uniform non-integrability**) holds on Ω at scales $\{\Lambda^{\epsilon} : U \to \mathbb{R}_+\}_{\epsilon > 0}$ if there exists $\kappa > 0$ such that for every sufficiently small $\epsilon > 0$, for every $x \in U$ with $W_g^u(x, C\Lambda^{\epsilon}(x)^{-1}) \cap \Omega \neq \emptyset$, there exists $\bar{y} \in (-\varrho_2, \varrho_2)$ such that for any $y \in (\bar{y} - \kappa, \bar{y} + \kappa)$, for any $\omega \in \mathbb{R}/2\pi\mathbb{Z}$, for $J_0 = [0, 1)$ or (-1, 0], there is a sub-interval $J_1 \subset J_0$ with $|J_1| > \kappa$ such that

$$\inf_{s\in J_1} \|\epsilon^{-1}\Psi_{x,y}(\Phi^u_x(\Lambda^\epsilon(x)^{-1}s)) - \omega\|_{\mathbb{R}/2\pi\mathbb{Z}} > \kappa.$$

 $\begin{array}{ll} I. \mbox{ Neither } E^u \mbox{ nor } E^s \mbox{ for } g \mbox{ is } C^{1+\delta} \mbox{ for any } \delta > 0; \\ I_F. \ \int div V_g d\nu_{g,F} \leq 0. \\ II. \ E^u \mbox{ for } g \mbox{ is } C^{1+\delta} \mbox{ for some } \delta > 0; \\ III. \ E^s \mbox{ for } g \mbox{ is } C^{1+\delta} \mbox{ for some } \delta > 0. \\ \mbox{We only need consider Case } I_F \mbox{ and } II. \end{array}$

Proposition

Given a potential function $F \in C^{\theta}(M)$ for some $\theta > 0$, a C^{∞} 3D Anosov flow g in Class I_F or II such that E^s and E^u are not jointly integrable. Then for any $C_1 > 1$, for any sufficiently large integer $n_1 > 0$, there exist

- a subset $\Omega \subset U$ which is n_1 -recurrent with respect to ν_U ;
- a stable, tame sequence of functions $\{\Lambda^{\epsilon}: U \to \mathbb{R}_+\}_{\epsilon>0}$ that is n_1 -adapted to Ω

such that C_1 -UNI holds on Ω at scales $\{\Lambda^{\epsilon}\}_{\epsilon>0}$.

Proposition

Given a potential function $F \in C^{\theta}(M)$ for some $\theta > 0$, a C^{∞} 3D Anosov flow g in Class I_F or II such that E^s and E^u are not jointly integrable. There exists $C_1 > 1$ such that if the conclusion of the previous proposition is satisfied for C_1 and all sufficiently large n_1 , then Dolgopyat's estimate holds. We introduce a family of coordinate charts on M: for each $x \in M$, there is $\iota_x : (-10, 10)^3 \to M$ so that the following holds:

- *ι*_x(z, 0, 0) is unstable normal coordinate chart, *ι*_x(0, y, 0) is stable normal coordinate chart and t → *ι*_x(z, y, t) parametrizes the flow.
- From chart ι_x to chart $\iota_{g^1(x)}$, the map g^1 writes

$$g_x(z, y, t) = (g_{x,1}(z, y), g_{x,2}(z, y), t + \psi_x(z, y)).$$

Then $\partial_y \psi_x(\cdot, 0)$ and $\partial_z \psi_x(0, \cdot)$ are polynomials of degree K; and $\partial_z g_{x,1}(0, \cdot)$ and $\partial_y g_{x,2}(\cdot, 0)$ are both constant functions.

Under this coordinate system, in each chart ι_x , W^{cu} is almost parallel to the plane y = 0 (near y = 0).

Under chart ι_x , $E^s(z, 0, 0)$ writes

 $\mathbb{R}(*,1,\varphi_x^{u,s}(z));$

and $E^{u}(0, y, 0)$ writes

 $\mathbb{R}(1,*,\varphi_x^{s,u}(y)).$

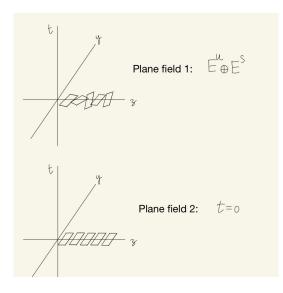
We define

$$\mathcal{T}_x^s = \{ c\varphi_x^{u,s} + P \mid c \in \mathbb{R}, P \in Poly^K, P(0) = 0 \}.$$

Define \mathcal{T}_x^u is a similar way. We define

$$\begin{aligned} \mathcal{T}_{x,n} &= \{h_1 \varphi_{g^n(x)}^{u,s} + h_2 \varphi_x^{s,u} + Q \mid h_1, h_2 \in \mathbb{R}, \\ Q \in \textit{Poly}^{K,K}, Q(\cdot,0) = Q(0, \cdot) = 0\}. \end{aligned}$$

- 3 →



•
$$\varphi_x^{u,s} = \tan \angle (PF1, PF2).$$

May 4, 2020 20 / 29

Proposition

If there is $x \in M$ such that $\varphi_x^{u,s} \in Poly^K$, then $\varphi_y^{u,s} \in Poly^K$ for all $y \in M$. In this case, g is in Class II.

Proof.

 $\varphi_x^{u,s} \in Poly^K \implies \varphi_y^{u,s} \in Poly^K$ for y in an open set of $W_g^u(g^1(x)) \implies \varphi_z^{u,s} \in Poly^K$ for z in a dense subset of M. Prove by continuity of $x \mapsto \mathcal{T}_x^s$.

In this case, $E^u \oplus E^s$ is C^{∞} on each W_g^u . Since $E^s \oplus N$ is C^{1+} everywhere, E^s is C^{1+} on each W_g^u . But E^s is C^{∞} on each W_g^{cs} . We conclude by Journé's lemma.

Proposition (Template approximation I)

For all sufficiently large K > 1, there exist $\delta_0, \eta_0 \in (0, 1/2)$, $C_2 > 0$, and a sequence $\{D_n > 0\}_{n \ge 1}$ with $\lim_{n \to \infty} D_n = 0$ such that for all sufficiently small $\epsilon > 0$, for any $x \in M$, for any integer $n \ge 1$ satisfying $\|Dg^n|_{E^s(x)}\|, \|Dg^n|_{E^u(x)}\|^{-1} < \epsilon$, there exist $R \in \mathcal{T}_{x,n}, \ \varkappa \in \{\pm 1\}$, and functions $a_2, \cdots, a_K : (-10, 10) \to \mathbb{R}$ satisfying

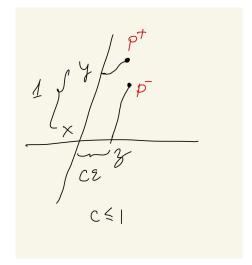
$$|a_i(y)| \leq C'|y| \sum_{m=0}^{(1-\eta_0)n} \|Dg^m|_{E^s(x)}\|\|Dg^{n-m}|_{E^u(g^m(x))}\|^{-i}$$

such that for any $y \in (-\varrho_1, \varrho_1)$

$$\begin{split} |\Psi_{x}(\Lambda_{n}(x)^{-1}\varkappa z,y)-R(z,y)-\sum_{i=2}^{K}a_{i}(y)z^{i}| &< C_{2}((\epsilon|y|)^{1+\delta_{0}}+\epsilon^{2}),\\ \|R(\cdot,y)\|_{(-10,10)} &< D_{n}|y|^{\delta_{0}}. \end{split}$$

• □ ▶ • 4□ ▶ • Ξ ▶ •

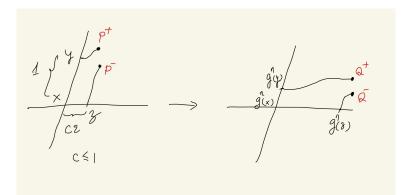
Illustration of the idea



Zhiyuan Zhang

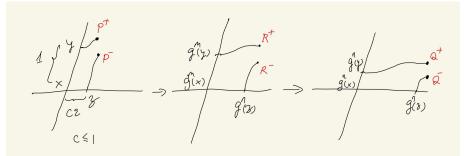
May 4, 2020 23/29

Illustration of the idea



- (日)

Illustration of the idea



Definition

Given a sufficiently small $\epsilon > 0$, for any $x \in M$, we let

- $k^{\epsilon}(x)$ be the smallest integer $n \ge 1$ such that $\|Dg^n|_{E^s(x)}\|, \|Dg^n|_{E^u(x)}\|^{-1} < \epsilon;$
- the matching time of order ε at x, denoted by ς^ε(x), be the smallest integer n ≥ k^ε(x) satisfying that there is κ ∈ {±1} such that for every y ∈ (-1, 1), there exists φ ∈ T^s_{gⁿ(x)} such that

$$\begin{split} \|\Psi_x(\Lambda_n(x)^{-1}\varkappa\cdot,y)-\varphi\|_{(-2,2)} &\leq C_3((\epsilon|y|)^{1+\delta_5}+\epsilon^2),\\ \|\varphi\|_{(-2,2)} &\leq \max(\epsilon|y|^{\delta_5/2},C_3\epsilon|y|). \end{split}$$

For every $x \in U$, the matching scale of order ϵ at x is defined by

$$\Lambda^{\epsilon}(x) = \sup_{y \in W^{s}_{g}(x,1)} \Lambda_{\varsigma^{\epsilon}(y)}(x).$$

Proposition

For some sufficiently large $C_1 > 1$, there exist $\kappa_3, \kappa_4 > 0$ and an integer $n_1 > 0$ such that for any a with |a| sufficiently small, for any b with |b| sufficiently large, for any $u \in C^{\theta}(U)$, there is a sequence of functions $\{H_n\}_{0 \le n \le \lfloor \ln |b| \rfloor}$ in $C^0(U, \mathbb{R}_+)$ such that $H_0 \le \max(\|u\|_{C^0}, |b|^{-1}\|u\|_{\theta}, and$

• for any $0 \le n \le \ln |b|$ we have

$$|\widetilde{\mathcal{L}}^{C\ln|b|+nn_1}u(x)| \leq H_n(x), \quad \forall x \in U;$$

• for any $1 \le n \le \ln |b|$ there is a subset $\Omega_n \subset U$ such that

$$H_n^2(x) \leq egin{cases} (1-\kappa_4)\mathcal{M}^{n_1}H_{n-1}^2(x), & \textit{if } x\in\Omega_n, \ \mathcal{M}^{n_1}H_{n-1}^2(x), & \textit{otherwise}; \end{cases}$$

• for any $\frac{1}{2} \ln |b| \le n \le \ln |b|$, we have

 $\nu_U(\{x \in U \mid |\{1 \leq j \leq n \mid \sigma^{jn_1}(x) \in \Omega_j\}| < \kappa_3 n\}) < e^{-n\kappa_3}.$

イロト イヨト イヨト

We can deduce Dolgopyat's estimate from the previous proposition. Indeed, we define a *U*-valued random process *X* by $\{X_n(x) = \sigma^{nn_1}(x)\}_{n \ge 0}$ where *x* has distribution ν_U , and consider the \mathbb{R} -valued random process *G* defined by

$$G_0(x) = H_0^2(x), \quad G_{m+1}(x) = egin{cases} (1-\kappa_4)G_m(x), & ext{if } X_{m+1} \in \Omega_{m+1}, \ G_m(x), & ext{otherwise}. \end{cases}$$

By (2), we have $\mathbb{E}(G_m \mid X_m) \ge H_m^2(X_m)$. By (3) we only need to consider x such that

$$|\{1 \leq j \leq n \mid \sigma^{jn_1}(x) \in \Omega_j\}| \geq \kappa_3 n.$$

But for such x, we have $G_N(x) \leq (1 - \kappa_4/2)^{\kappa_3 L} G_0(x)$. We conclude the proof by (1).

It remains to construct Ω_n , H_n for each u. We construct them inductively using the hypotheses (stable, tame, n_1 -adapted, C_1 -UNI and recurrence):

- stableness and tameness allow us to control the Hölder regularity of $\mathcal{L}^{nn_1}u$ in terms of the C^0 norm of H_{n-1} .
- adaptedness and UNI property allow us to control pointwise $\mathcal{L}^{nn_1}u$ by H_n of the form $H_n = \mathcal{M}^{n_1}(P_nH_{n-1})$ where P_n has valued in [0,1] and is away from 1 in many places in (or near) Ω (this subset is Ω_n). This cancellation mechanism, in a similar form, is already in Dolgopyat's paper.
- Ω_n is "dense " and "thick " in a subset containing Ω . Recurrence property allow us to verify (3) by comparing the iterations of σ^{n_1} with a coin-flipping process.