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Definition

A flow g : M → M on a compact Riemannian manifold M is a Anosov
flow if there is a continuous splitting

TM = E s ⊕ N ⊕ Eu

where N is the flow direction, E s is uniformly contracted by Dg1 and Eu is
uniformly expanded by Dg1.

It is known that for any Anosov flow, E s and Eu integrate to stable
foliation W s and unstable foliaton W u respectively (but they don’t have
to be jointly integrable).
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The topological and statistical properties of Anosov flow were studied by
many authors: Anosov, Bowen, Margulis, Plante, Ratner, Ruelle, Sinai,
Smale, etc.
For transitive Anosov flows, the following theorem is well-known.

Theorem (Anosov alternative)

A transitve Anosov flow is either topologically mixing or it is conjugate to
a suspension flow over an Anosov diffeomorphism with constant roof
function.

We say that g is topologically mixing if for any non-empty open sets
A,B ⊂ M, for all sufficiently large t > 0, we have g t(A) ∩ B 6= ∅.
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It is also important to study measure-theoretical mixing. For a Anosov
flow g , for any Hölder function F , there is a unique measure νg ,F which
maximizes ∫

Fdµ+ hµ(g1).

We call νg ,F an equilibrium measure for g with potential F .

1 when F = 0, νg ,F is the entropy maximizing measure (or
Bowen-Margulis measure);

2 when F = − log | det(Dg1|Eu)|, νg ,F is called the Sinai-Ruelle-Bowen
measure

µ = lim
n→∞

n−1
n−1∑
i=0

(g i )∗Leb.

In particular, when g is volume preserving, then νg ,F is the volume.
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Theorem (Bowen-Ruelle, 1975)

If a C 2 Anosov flow g is topologically mixing, then g is mixing with
respect to equilibrium measures with Hölder potential.

People are interested in the speed of the convergence when A,B are
Hölder functions.

Conjecture (Bowen-Ruelle)

If g is topologically mixing, then g is exponentially mixing with respect to
Hölder functions and equilibrium measures with Hölder potential.

The theorem is proved for a more general class of flow, called “Axiom
A flow”or “hyperbolic flow”. The conjecture was also originally about
hyperbolic flow, but counter-examples are found by Ruelle.
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Theorem (Tsujii-Z)

A topologically mixing C∞ 3D Anosov flow is exponentially mixing with
respect to any equilibrium measure with Hölder potential.
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Progress on Bowen-Ruelle conjecture:

1 (Chernov) Stretched-exponential decay of correlaction;

2 (Dolgopyat) it is true when E s and Eu are of class C 1 for SRB
measure (and all equilibrium measure when dimEu = 1, or more
generally equilibirum measure with doubling property);

3 (Liverani) when g preserves a contact form, exp. mixing w.r.t.
volume;

4 (Tsujii) w.r.t. volume in 3D, when g preserves a volume form, and
verifies certain C 3 open and C∞ dense condition;

5 (Butterley-War) when E s is C 1+ε for SRB measure.

Other related works: Giulietti-Liverani-Pollicott (zeta function, decay
under some pinching condition), Field-Melbourne-Török
(super-polynomial rate), Pollicott-Sharp(prime orbit theorem with
exponential error terms).

Usually, Eu and E s do not need to be smooth. They are always
Hölder. But in many cases they are strictly Hölder and exponent can
be arbitrarily small (Plante, Hasselblatt, Wilkinson).
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Markov partition: Π = ∪α∈IΠα where Πα is a parallelogram defined as
follows: there is a local unstable manifold Uα, and a local stable manifold
Sα such that Πα = [Uα,Sα]. Denote U = ∪αUα.

Return time: τ : Π→ R+ (invariance of the stable foliation gives
τ : U → R+).

Return map: σ̂ : Π→ Π. Map on the first coordinate is σ : U → U.

Markov property: for each α ∈ I , σ̂(Sα) is contained in Πβ1 for some
β1 ∈ I ; and σ̂−1(Uα) is contained in Πβ2 for some β2 ∈ I .

Measure: let νΠ be the measure induced by νg ,F , and let νU be the
projection of νΠ to U.

Foliation: since dimM = 3, both W cs and W cu are C 1+-foliations
(Hasselblatt).
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Temporal function: for x ∈ M, z ∈W u
loc(x) and y ∈W s

loc(x), we will
study Ψx ,y (z) defined as follows:

The return time function is related to temporal function. For any k > 0,
any w ∈ σ−k and any x , z ∈ Dom(w), there is xw ∈W s

loc(x) such that

τk ◦ w(x)− τk ◦ w(z) = Ψx ,xw (z)
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Complex RPF operator

Given a Hölder function f : U → R, we denote a family of bounded linear
operators on C θ(U) as follows.
For any a, b ∈ R, for any α ∈ I , for any x ∈ Uα, we set

La,bu(x) =
∑

y∈σ−1(x)

ef (y)+(a+ib)τ(y)u(y).

There is an argument to transfer the study of exponential mixing of the
flow with respect to a Hölder potential function F ∈ C θ(M), to the study
of these operators for certain Hölder potential function f ∈ C θ(U).
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The main step

Let g be a topologically mixing C∞ 3D Anosov flow on M.

Proposition (Dolgopyat’s estimate)

There exist C , κ, a0, b0 > 0 such that for any a, b with |a| < a0 and
b > |b0|, for any u ∈ C θ(U), for any n > C ln |b| we have

‖Lna,bu‖L2(νU) < |b|−κ max(‖u‖C0 , |b|−1‖u‖Cθ).

Consequences:

exponential mixing.

Ruell (dynamical) zeta function ζ(z) =
∏
γ(1− e−z|γ|)−1 only has a

single pole on htop on the half-plane {Re(z) > htop − ε}.
N(T ) = #{γ | |γ| < T} satisfies N(T ) = li(ehtopT ) + O(e(htop−ε)T )
where li(x) =

∫ x
0

dt
log t .
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We say that a sequence of functions {Λε : U → R+}ε>0 in L∞(U) is
• stable if there exist n, κ > 0 such that for all sufficiently small ε, we have

Λε(x) > ε−κ, ∀x ∈ U,

and for any integer m ≥ n,

‖Dg τm(x)|Eu(x)‖−1Λε(σm(x))−1 < e−mκΛε(x)−1, ∀x ∈ U.

• tame if there exist C , κ > 0 such that for all sufficiently ε > 0, for every
x ∈ U, for every y ∈ (−1, 1), there exists R ∈ C θ(−1, 1) such that

‖R‖θ ≤ C |y |κ,
|ε−1Ψx ,Φs

x (y)(Φu
x (Λε(x)−1s))− R(s)| < εκ, ∀s ∈ (−1, 1).
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• n-adapted to some subset Ω ⊂ U for some integer n ≥ 1 if there is a
constant C > 0 such that for all sufficiently small ε, for any x ∈ Ω, for any
v ∈ σ−nx , for any y ∈ U such that y ∈W u

g (v(x), 4Λ(y)−1), we have

Λ(x) < CΛ(y).

• Given a σ-invariant measure ν on U and an integer n ≥ 1, we say that a
subset Ω ⊂ U is n-recurrent with respect to ν if there exist C , κ > 0 such
that for any integer m > C we have

ν({x ∈ U | |{1 ≤ j ≤ m | σjn(x) ∈ Ω}| < κm}) < e−mκ.
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Given C > 0, a sequence of functions {Λε : U → R+}ε>0 and a subset
Ω ⊂ U. We say that C -UNI (short for uniform non-integrability) holds
on Ω at scales {Λε : U → R+}ε>0 if there exists κ > 0 such that for every
sufficiently small ε > 0, for every x ∈ U with W u

g (x ,CΛε(x)−1) ∩ Ω 6= ∅,
there exists ȳ ∈ (−%2, %2) such that for any y ∈ (ȳ − κ, ȳ + κ), for any
ω ∈ R/2πZ, for J0 = [0, 1) or (−1, 0], there is a sub-interval J1 ⊂ J0 with
|J1| > κ such that

inf
s∈J1

‖ε−1Ψx ,y (Φu
x (Λε(x)−1s))− ω‖R/2πZ > κ.
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I . Neither Eu nor E s for g is C 1+δ for any δ > 0;

IF .
∫
divVgdνg ,F ≤ 0.

II . Eu for g is C 1+δ for some δ > 0;

III . E s for g is C 1+δ for some δ > 0.

We only need consider Case IF and II .
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Proposition

Given a potential function F ∈ C θ(M) for some θ > 0, a C∞ 3D Anosov
flow g in Class IF or II such that E s and Eu are not jointly integrable.
Then for any C1 > 1, for any sufficiently large integer n1 > 0, there exist

a subset Ω ⊂ U which is n1-recurrent with respect to νU ;

a stable, tame sequence of functions {Λε : U → R+}ε>0 that is
n1-adapted to Ω

such that C1-UNI holds on Ω at scales {Λε}ε>0.
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Proposition

Given a potential function F ∈ C θ(M) for some θ > 0, a C∞ 3D Anosov
flow g in Class IF or II such that E s and Eu are not jointly integrable.
There exists C1 > 1 such that if the conclusion of the previous proposition
is satisfied for C1 and all sufficiently large n1, then Dolgopyat’s estimate
holds.
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Template approximation

We introduce a family of coordinate charts on M: for each x ∈ M, there is
ιx : (−10, 10)3 → M so that the following holds:

ιx(z , 0, 0) is unstable normal coordinate chart, ιx(0, y , 0) is stable
normal coordinate chart and t 7→ ιx(z , y , t) parametrizes the flow.

From chart ιx to chart ιg1(x), the map g1 writes

gx(z , y , t) = (gx ,1(z , y), gx ,2(z , y), t + ψx(z , y)).

Then ∂yψx(·, 0) and ∂zψx(0, ·) are polynomials of degree K ; and
∂zgx ,1(0, ·) and ∂ygx ,2(·, 0) are both constant functions.

Under this coordinate system, in each chart ιx , W cu is almost parallel to
the plane y = 0(near y = 0).
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Under chart ιx , E s(z , 0, 0) writes

R(∗, 1, ϕu,s
x (z));

and Eu(0, y , 0) writes

R(1, ∗, ϕs,u
x (y)).

We define

T s
x = {cϕu,s

x + P | c ∈ R,P ∈ PolyK ,P(0) = 0}.

Define T u
x is a similar way. We define

Tx ,n = {h1ϕ
u,s
gn(x) + h2ϕ

s,u
x + Q | h1, h2 ∈ R,

Q ∈ PolyK ,K ,Q(·, 0) = Q(0, ·) = 0}.
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ϕu,s
x = tan∠(PF1,PF2).
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Proposition

If there is x ∈ M such that ϕu,s
x ∈ PolyK , then ϕu,s

y ∈ PolyK for all
y ∈ M. In this case, g is in Class II.

Proof.

ϕu,s
x ∈ PolyK =⇒ ϕu,s

y ∈ PolyK for y in an open set of W u
g (g1(x)) =⇒

ϕu,s
z ∈ PolyK for z in a dense subset of M. Prove by continuity of x 7→ T s

x .

In this case, Eu ⊕ E s is C∞ on each W u
g . Since E s ⊕ N is C 1+

everywhere, E s is C 1+ on each W u
g . But E s is C∞ on each W cs

g . We
conclude by Journé’s lemma.
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Proposition (Template approximation I)

For all sufficiently large K > 1, there exist δ0, η0 ∈ (0, 1/2), C2 > 0, and a
sequence {Dn > 0}n≥1 with limn→∞Dn = 0 such that for all sufficiently
small ε > 0, for any x ∈ M, for any integer n ≥ 1 satisfying
‖Dgn|E s(x)‖, ‖Dgn|Eu(x)‖−1 < ε, there exist R ∈ Tx ,n, κ ∈ {±1}, and
functions a2, · · · , aK : (−10, 10)→ R satisfying

|ai (y)| ≤ C ′|y |
(1−η0)n∑
m=0

‖Dgm|E s(x)‖‖Dgn−m|Eu(gm(x))‖−i

such that for any y ∈ (−%1, %1)

|Ψx(Λn(x)−1κz , y)− R(z , y)−
K∑
i=2

ai (y)z i | < C2((ε|y |)1+δ0 + ε2),

‖R(·, y)‖(−10,10) < Dn|y |δ0 .
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Illustration of the idea
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Illustration of the idea
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Illustration of the idea
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Construction of Λε in Class I

Definition

Given a sufficiently small ε > 0, for any x ∈ M, we let

kε(x) be the smallest integer n ≥ 1 such that
‖Dgn|E s(x)‖, ‖Dgn|Eu(x)‖−1 < ε;

the matching time of order ε at x , denoted by ςε(x), be the smallest
integer n ≥ kε(x) satisfying that there is κ ∈ {±1} such that for
every y ∈ (−1, 1), there exists ϕ ∈ T s

gn(x) such that

‖Ψx(Λn(x)−1κ·, y)− ϕ‖(−2,2) ≤ C3((ε|y |)1+δ5 + ε2),

‖ϕ‖(−2,2) ≤ max(ε|y |δ5/2,C3ε|y |).

For every x ∈ U, the matching scale of order ε at x is defined by

Λε(x) = sup
y∈W s

g (x ,1)
Λςε(y)(x).
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Proposition

For some sufficiently large C1 > 1, there exist κ3, κ4 > 0 and an integer
n1 > 0 such that for any a with |a| sufficiently small, for any b with |b|
sufficiently large, for any u ∈ C θ(U), there is a sequence of functions
{Hn}0≤n≤bln |b|c in C 0(U,R+) such that H0 ≤ max(‖u‖C0 , |b|−1‖u‖θ, and

for any 0 ≤ n ≤ ln |b| we have

|L̃C ln |b|+nn1u(x)| ≤ Hn(x), ∀x ∈ U;

for any 1 ≤ n ≤ ln |b| there is a subset Ωn ⊂ U such that

H2
n(x) ≤

{
(1− κ4)Mn1H2

n−1(x), if x ∈ Ωn,

Mn1H2
n−1(x), otherwise;

for any 1
2 ln |b| ≤ n ≤ ln |b|, we have

νU({x ∈ U | |{1 ≤ j ≤ n | σjn1(x) ∈ Ωj}| < κ3n}) < e−nκ3 .
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We can deduce Dolgopyat’s estimate from the previous proposition.
Indeed, we define a U-valued random process X by {Xn(x) = σnn1(x)}n≥0

where x has distribution νU , and consider the R-valued random process G
defined by

G0(x) = H2
0 (x), Gm+1(x) =

{
(1− κ4)Gm(x), if Xm+1 ∈ Ωm+1,

Gm(x), otherwise.

By (2), we have E(Gm | Xm) ≥ H2
m(Xm). By (3) we only need to consider

x such that

|{1 ≤ j ≤ n | σjn1(x) ∈ Ωj}| ≥ κ3n.

But for such x , we have GN(x) ≤ (1− κ4/2)κ3LG0(x). We conclude the
proof by (1).
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It remains to construct Ωn, Hn for each u. We construct them inductively
using the hypotheses (stable, tame, n1-adapted, C1-UNI and recurrence):

stableness and tameness allow us to control the Hölder regularity of
Lnn1u in terms of the C 0 norm of Hn−1.

adaptedness and UNI property allow us to control pointwise Lnn1u by
Hn of the form Hn =Mn1(PnHn−1) where Pn has valued in [0, 1] and
is away from 1 in many places in (or near) Ω (this subset is Ωn). This
cancellation mechanism, in a similar form, is already in Dolgopyat’s
paper.

Ωn is “dense ”and “thick ”in a subset containing Ω. Recurrence
property allow us to verify (3) by comparing the iterations of σn1 with
a coin-flipping process.
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