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Notation

En∈[N]a(n) = 1
N
∑N

n=1 a(n), En∈Na(n) = limN→∞ En∈[N]a(n).

Elog
n∈[N]a(n) = 1

log N
∑N

n=1
a(n)

n , Elog
n∈Na(n) = limN→∞ Elog

n∈[N]a(n).

If n = pa1
1 · · · p

ak
k , then λ(n) = (−1)a1+···+ak .

If a : N→ U and Nk →∞ is s.t. all averages below exist, then the
corresponding Furstenberg system (X , µ,T ) satisfies∫

T n1 f · · ·T n` f dµ = lim
k→∞

Elog
n∈[Nk ]

a(n + n1) · · · a(n + n`),

for some f ∈ L∞(µ) for all ` ∈ N, n1, . . . ,n` ∈ Z.

If a = λ, any such system is called a Liouville system.



Möbius function and primes

Notation: En∈[N]a(n) = 1
N
∑N

n=1 a(n).

Definition (Möbius and von Mangoldt function)

µ(n) = (−1)k if n is a product of k distinct primes, otherwise µ(n) = 0.
Λ(n) = log p if n = pk , and Λ(n) = 0 elsewhere.

Using the identity
Λ(n) = −

∑
d |n

log(d)µ(d)

one can deduce asymptotics for averages of the form

En∈[N] Λ(n) a(n) or En∈[N] Λ(n + n1) · · ·Λ(n + n`)

from estimates of the form

En∈[N] µ(n) a(n) = O((log N)−A),

where a ∈ `∞(N), or the form

En∈[N] µ(n + n1) · · ·µ(n + n`) = O((log N)−A`).
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Randomness properties of the Liouville function

It is a bit more convenient to work with the Liouville function.

Definition (Liouville function)

If n = pa1
1 · · · p

ak
k , then λ(n) = (−1)a1+···+ak .

- - + - + - - + + - - - + + + - - - - + + - + + + - - - - - - + + + + - + + + -
Its signs appear to have “random type behavior”. Based on this several
well known conjectures have been formulated:

(Square root cancellation): En∈[N] λ(n) = O(N−b), ∀b < 1
2 (RH).

(Chowla conjecture): (λ(n))n∈N forms a normal sequence of ±1.

(Sarnak conjecture): limN→∞ En∈[N]λ(n)a(n) = 0 for every
a ∈ `∞(N) of “low complexity”.
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The Chowla conjecture

Chowla Conjecture (1965)
If ` ∈ N and n1, . . . ,n` ∈ N are distinct, then

lim
N→∞

En∈[N] λ(n + n1) · · ·λ(n + n`) = 0.

Equivalently: (λ(n))n∈N forms a normal sequence of ±1, meaning, all
length ` sign patterns appear on the range of λ with frequency 1/2`.

` = 1 (PNT): limN→∞ En∈[N]λ(n) = 0.
` = 2 (Tao 2015): Proof for logarithmic averages. For all n1 ∈ N

lim
N→∞

1
log N

N∑
n=1

1
n
λ(n)λ(n + n1) = 0.

Uses: limM→∞ En∈N|Em∈[M]λ(n + m)| = 0 (Matomäki, Radziwiłł).
Logarithmic version true for all odd ` (Tao, Teräväinen 2018).
Open for ` = 4 and for Cesàro averages for ` ≥ 2.
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The Sarnak conjecture

The Liouville (and the Möbius) function are expected to not correlate
with any bounded sequence of “low complexity”.

Sarnak Conjecture (Dynamical formulation)
Let Y be a compact metric space and R : Y → Y be a continuous
0-entropy transformation. Then for every g ∈ C(Y ) and y ∈ Y

lim
N→∞

En∈[N] λ(n) g(Rny) = 0.

Sarnak Conjecture (Arithmetic formulation)
If a : N→ {−1,1} satisfies Pa(`) = O(2ε`) for every ε > 0, then

lim
N→∞

En∈[N] λ(n) a(n) = 0.

(Pa(`) = | patterns of size ` of consecutive ±1 in the range of a(n)|.)
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Some known cases of the Sarnak conjecture

limN→∞ En∈[N] λ(n) g(Rny) = 0 holds when (Y ,S) comes from:
Rational rotations (PNT in arithmetic progressions), Irrational rotations (Vinogradov-Davenport 1937)

Nilsystems (Green, Tao 2012)

Horocycle flows (Bourgain, Sarnak, Ziegler 2013) and more general homogeneous dynamics (Peckner 2015)

Some rank one transformations (Bourgain 2013, Abdalaoui, Lemańczyk, de la Rue, 2014, Ferenczi, Mauduit 2015)

Various substitutions (Mauduit, Rivat 2015, Deshouillers, M. Drmota, C. Müllner 2015, Ferenczi, Kułaga-Przymus,
Lemańczyk, Mauduit 2016)

Any automatic sequence (Müllner 2017)

Some distal systems (Liu, Sarnak 2013, Kułaga-Przymus, Lemańczyk 2015, Wang 2017)

Some interval exchanges (Bourgain 2013, Ferenczi, C. Mauduit 2015, Chaika, Eskin 2016)

Some systems of number theoretic origin (Green 2012, Bourgain 2013)

And there are many other results...

Almost all proofs start by using variants of Vinogradov’s bilinear
method. One needs to show that a large class of g ∈ C(Y )

lim
N→∞

En∈[N] g(Rpny) g(Rqny) = 0

for all y ∈ Y and distinct primes p,q. But there are limits to this
approach... Many systems cannot be handled this way.
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The Sarnak conjecture for ergodic weights

Notation: Elog
n∈Na(n) = limN→∞

1
log N

∑N
n=1

a(n)
n .

Theorem (F., Host 2018)
Let a : N→ U be a 0-entropy sequence that is ergodic. Then

Elog
n∈N λ(n) a(n) = 0.

Assumptions apply when (Y ,R) is a 0-entropy uniquely ergodic
system and a(n) = g(Rny) for some g ∈ C(Y ) and y ∈ Y .

Subsequently we extended this result to a larger class of
multiplicative functions f : N→ U that are called strongly aperiodic.

These results follow from structural results of certain measure
preserving systems associated to multiplicative functions.
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Chowla averages with totally ergodic weights

Theorem (F., Host 2019)
If f1, . . . , f` : N→ U are arbitrary multiplicative functions and α ∈ R \Q,
then

Elog
n∈N e2πinα f1(n + n1) · · · f`(n + n`) = 0

for all n1, . . . ,n` ∈ N.

The result follows by showing that a certain measure preserving
system does not have irrational spectrum.

The weight (e2πinα) can be replaced with any 0-entropy, totally
ergodic, zero-mean sequence.



Chowla averages along deterministic sequences

Theorem (Tao 2015 and Tao-Teräväinen 2018)
For ` = 2 (n1 6= n2) and all odd ` we have

Elog
n∈N λ(n + n1) · · ·λ(n + n`) = 0.

For odd ` proof uses an ergodic decomposition result of A. Le for
sequences of the form A(p) =

∫
T n1pf · · ·T n`pf dµ, p ∈ P.

Theorem (F. 2019)
Let a : N→ N be a 0-entropy and totally ergodic sequence, for example
a(n) = [n

√
2]. For ` = 2 (n1 6= n2) and all odd ` we have

Elog
n∈N λ(a(n + n1)) · · ·λ(a(n + n`)) = 0.

If the Chowla conjecture holds, then λ is a normal sequence and
hence (by Kamae, Weiss 70’s) so is λ ◦ a.
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Furstenberg systems of sequences

Furstenberg Correspondence Principle
Let a : N→ U and Nk →∞ integers. Then there exist a subsequence
N ′k →∞, a mps (X , µ,T ), and a function f ∈ L∞(µ) such that∫

T n1 f · · ·T n` f dµ = lim
k→∞

Elog
n∈[N′k ]

a(n + n1) · · · a(n + n`),

for all ` ∈ N and n1, . . . ,n` ∈ Z.

X = UZ, (Tx)(k) = x(k + 1), f (x) = x(0), only µ varies.

µ =w∗ limk→∞ Elog
n∈[N′k ]

δT na.
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Definition (Furstenberg systems)
Any such system is called a Furstenberg system of a : N→ U. If
a = λ we call it a Liouville system.
A Furstenberg system of a strictly increasing a : N→ N with range
a set S of positive density, is any Furstenberg system of 1S.
A sequence a : N→ U (or a : N→ N) is ergodic, totally ergodic, or
0-entropy (deterministic) if all its Furstenberg systems are.
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The Chowla and Sarnak conjecture in ergodic terms

Chowla conjecture (Ergodic reformulation)
Logarithmic Chowla conjecture⇔ All Liouville systems are Bernoulli
systems.

But it is not even known if any Liouville system is ergodic.
(F., 2016): If a Liouville system is ergodic iff it is Bernoulli.

Definition (Furstenberg 1967)
Two mps (X , µ,T ), (Y , ν,S) are disjoint if the only (T × S)-invariant
measure on X × Y with marginals µ and ν is µ× ν.

Sarnak conjecture (Ergodic reformulation)
The logarithmic Sarnak conjecture holds if all Liouville systems are
disjoint from all 0-entropy mps.



The Chowla and Sarnak conjecture in ergodic terms

Chowla conjecture (Ergodic reformulation)
Logarithmic Chowla conjecture⇔ All Liouville systems are Bernoulli
systems.

But it is not even known if any Liouville system is ergodic.
(F., 2016): If a Liouville system is ergodic iff it is Bernoulli.

Definition (Furstenberg 1967)
Two mps (X , µ,T ), (Y , ν,S) are disjoint if the only (T × S)-invariant
measure on X × Y with marginals µ and ν is µ× ν.
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A disjointess property and applications

Theorem (F., Host 2018)
All Liouville systems are disjoint from all totally ergodic systems of
0-entropy.

Ergodic Sarnak conjecture: If a : N→ U is a totally ergodic
sequence, using disjointness we get

Elog
n∈N λ(n) a(n) = Elog

n∈N λ(n) · Elog
n∈N a(n) = 0.

In order to deal with more general ergodic sequences we also have to
use:

Elog
n∈N λ(n)λ(n + h) = 0

for every h ∈ N (Tao 2015).
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0-entropy.

Chowla for totally ergodic weights: If a : N→ U is totally ergodic,
has 0-entropy and mean 0 (for ex. a(n) = e(nα) with α irrational), then
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A disjointess property and applications

Theorem (F., Host 2018)
All Liouville systems are disjoint from all totally ergodic systems of
0-entropy.

Chowla along deterministic sequences: If a : N→ N is a totally
ergodic sequence of 0-entropy, because of disjointness we get for
every M = ([Mk ])k∈N (assuming all limits exist)

Elog
m∈M

∏̀
j=1

λ(a(m + nj)) = Elog
n∈M

(
Elog

m∈M

∏̀
j=1

λ(m + a(n + nj))
)
.

For ` = 2 (n1 6= n2) and ` odd, the last averages are 0 by the results of
Tao and Tao-Teräväinen.



Disjointness property from a structural result

Theorem (Structural result)

1 A Liouville system cannot have irrational eigenvalues.
(Tf = e2πiαf , α ∈ R \Q, implies f = 0).

2 The “building blocks” of a Liouville system are Bernoulli systems
and systems of algebraic structure (nilsystems).

The first property is equivalent to showing that for every α ∈ R \Q

lim
N→∞

Elog
n∈[N] e

2πinα λ(n + n1) · · ·λ(n + n`) = 0

for all ` ∈ N and n1, . . . ,n` ∈ N, which is of independent interest.

Proposition (Disjointness)
If a system satisfies the previous two structural properties, then it is
disjoint from all totally ergodic systems of 0-entropy.
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Tao’s identity

Starting point in the proof of the two structural properties is:

Theorem (Tao’s identity 2015)
If a ∈ `∞(N), N = ([Nk ])k∈N, and all limits below exist, then

Ep∈P Elog
n∈N a(pn) = Elog

n∈N a(n).

More generally, for all `,n1, . . . ,n` ∈ N we have

Ep∈P Elog
n∈N

∏`
j=1 a(pn + pnj) = Ep∈P Elog

n∈N
∏`

j=1 a(n + pnj).

The identity is false for Cesàro averages (take a(n) = ni ).

Corollary (Tao’s identity for λ)
For every ` ∈ N and n1, . . . ,n` ∈ N we have

Elog
n∈N

∏`
j=1 λ(n + nj) = (−1)` Ep∈P Elog

n∈N
∏`

j=1 λ(n + pnj).
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Reduction to an ergodic statement

An ergodic consequence of Tao’s identity
Let (X , µ,T ) be a Liouville system. Then for some T -generating
f : X → {−1,1} we have for every ` ∈ N and n1, . . . ,n` ∈ N∫ ∏̀

j=1

T nj f dµ = (−1)` Ep∈P

∫ ∏̀
j=1

T pnj f dµ.

T -generating: The algebra generated by T nf , n ∈ Z, is dense in L2(µ).
Hence, our task is reduced to showing that:

Theorem (Ergodic structural result)
If (X , µ,T ) satisfies the previous property, then

1 it has no irrational eigenvalues;
2 its “building blocks” are Bernoulli systems and nilsystems.
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Systems of arithmetic progressions

It will be more convenient to work in an even more general setup:

Definition
Let (X , µ,T ) be a system. On XZ we define the measure µ̃ as follows∫ m∏

j=−m

fj(xj) d µ̃ := Ep∈P

∫ m∏
j=−m

T jpfj dµ, fj ∈ L∞(µ).

We call (XZ, µ̃,S), where S is the shift, the system of arithmetic
progressions (AP’s) with prime steps associated with (X , µ,T ).

Relevance to our problem:

Proposition (Factor property)
Every Liouville system is a factor of its associated system of AP’s.
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Two illuminating examples

Example (Irrational rotations)
Tt = t + α (mod 1), α ∈ R \Q, acting on T with mT. Then∫ m∏

j=−m

fj(xj) d µ̃ := Ep∈P

∫ m∏
j=−m

fj(t + jpα) dt =

∫ ∫ m∏
j=−m

fj(t + js) dtds.

System of AP’s isomorphic to (s, t) 7→ (s, t + s) on T2 with mT2 .

Example (Weak mixing systems)
Tt = 2t (mod 1) acting on T with mT. Then∫ m∏

j=1

fj(xj) d µ̃ := Ep∈P

∫ m∏
j=1

fj(2jpt) dt =
m∏

j=1

∫
fj(xj) d µ̃.

System of AP’s isomorphic to a Bernoulli system on TZ.
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Systems of AP’s: Structure of building blocks

Theorem (Structure of building blocks)
The ergodic components of a system of AP’s are direct products of
Bernoulli systems and inverse limits of nilsystems.

Proof uses:
1 Gowers uniformity of the modified von Mangoldt function (Green,

Tao, and Ziegler, 2012).
2 A result about characteristic factors of Furstenberg averages

(Host and Kra, 2005).
3 Equidistribution results on nilmanifolds in order to get explicit limit

formulas for Furstenberg averages.
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Systems of AP’s: No irrational eigenvalues

Theorem (No irrational eigenvalues)
A system of AP’s has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

(XZ, ν,S) is partially strongly stationary if maps τr : XZ → XZ, defined
(x(j))j∈Z 7→ (x(rj))j∈Z, are measure preserving for every r ∈ dN + 1.

Proposition
A system of AP’s is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)
A partial sst system has no irrational eigenvalues.



Systems of AP’s: No irrational eigenvalues

Theorem (No irrational eigenvalues)
A system of AP’s has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

(XZ, ν,S) is partially strongly stationary if maps τr : XZ → XZ, defined
(x(j))j∈Z 7→ (x(rj))j∈Z, are measure preserving for every r ∈ dN + 1.

Proposition
A system of AP’s is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)
A partial sst system has no irrational eigenvalues.



Systems of AP’s: No irrational eigenvalues

Theorem (No irrational eigenvalues)
A system of AP’s has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

(XZ, ν,S) is partially strongly stationary if maps τr : XZ → XZ, defined
(x(j))j∈Z 7→ (x(rj))j∈Z, are measure preserving for every r ∈ dN + 1.

Proposition
A system of AP’s is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)
A partial sst system has no irrational eigenvalues.



Systems of AP’s: No irrational eigenvalues

Theorem (No irrational eigenvalues)
A system of AP’s has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

(XZ, ν,S) is partially strongly stationary if maps τr : XZ → XZ, defined
(x(j))j∈Z 7→ (x(rj))j∈Z, are measure preserving for every r ∈ dN + 1.

Proposition
A system of AP’s is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)
A partial sst system has no irrational eigenvalues.



Some open problems

Problem (No non-trivial rational spectrum)
A Liouville system has no rational eigenvalues different than 1.

On the other hand, Möbius system does have rational eigenvalues.

Problem (Not a mixture of circle rotations)
A Liouville system is not isomorphic to the non-ergodic system
(T2,mT2 ,T ), where T (s, t) = (s, t + s), s, t ∈ T.

Problem (Dichotomy)
If f : N→ {−1,1} is multiplicative, then it has a unique Furstenberg
system that is isomorphic to a procyclic or a Bernoulli system.

THANK YOU!
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