Ergodic properties of multiplicative functions and applications (joint work with Bernard Host)

Nikos Frantzikinakis

University of Crete, Greece

May 2020

Notation

- $\mathbb{E}_{n\in[N]}a(n) = \frac{1}{N}\sum_{n=1}^{N}a(n), \quad \mathbb{E}_{n\in\mathbb{N}}a(n) = \lim_{N\to\infty}\mathbb{E}_{n\in[N]}a(n).$
- $\mathbb{E}_{n\in[N]}^{\log}a(n) = \frac{1}{\log N}\sum_{n=1}^{N}\frac{a(n)}{n}, \quad \mathbb{E}_{n\in\mathbb{N}}^{\log}a(n) = \lim_{N\to\infty}\mathbb{E}_{n\in[N]}^{\log}a(n).$
- If $n = p_1^{a_1} \cdots p_k^{a_k}$, then $\lambda(n) = (-1)^{a_1 + \cdots + a_k}$.
- If a: N → U and N_k → ∞ is s.t. all averages below exist, then the corresponding Furstenberg system (X, μ, T) satisfies

$$\int T^{n_1} f \cdots T^{n_\ell} f \, d\mu = \lim_{k \to \infty} \mathbb{E}^{\log}_{n \in [N_k]} a(n+n_1) \cdots a(n+n_\ell),$$

for some $f \in L^{\infty}(\mu)$ for all $\ell \in \mathbb{N}$, $n_1, \ldots, n_{\ell} \in \mathbb{Z}$.

• If $a = \lambda$, any such system is called a Liouville system.

Möbius function and primes

Notation:
$$\mathbb{E}_{n \in [N]} a(n) = \frac{1}{N} \sum_{n=1}^{N} a(n)$$
.

Definition (Möbius and von Mangoldt function)

 $\mu(n) = (-1)^k$ if *n* is a product of *k* distinct primes, otherwise $\mu(n) = 0$. $\Lambda(n) = \log p$ if $n = p^k$, and $\Lambda(n) = 0$ elsewhere.

Using the identity

$$\Lambda(n) = -\sum_{d|n} \log(d) \,\mu(d)$$

one can deduce asymptotics for averages of the form

 $\mathbb{E}_{n \in [N]} \Lambda(n) a(n)$ or $\mathbb{E}_{n \in [N]} \Lambda(n+n_1) \cdots \Lambda(n+n_\ell)$

from estimates of the form

$$\mathbb{E}_{n\in[N]}\,\mu(n)\,a(n)=O((\log N)^{-A}),$$

where $a \in \ell^{\infty}(\mathbb{N})$, or the form

 $\mathbb{E}_{n\in[N]}\,\mu(n+n_1)\cdots\mu(n+n_\ell)=O((\log N)^{-A_\ell}).$

Möbius function and primes

Notation:
$$\mathbb{E}_{n \in [N]} a(n) = \frac{1}{N} \sum_{n=1}^{N} a(n)$$
.

Definition (Möbius and von Mangoldt function)

 $\mu(n) = (-1)^k$ if *n* is a product of *k* distinct primes, otherwise $\mu(n) = 0$. $\Lambda(n) = \log p$ if $n = p^k$, and $\Lambda(n) = 0$ elsewhere.

Using the identity

$$\Lambda(n) = -\sum_{d|n} \log(d) \, \mu(d)$$

one can deduce asymptotics for averages of the form

 $\mathbb{E}_{n \in [N]} \Lambda(n) a(n)$ or $\mathbb{E}_{n \in [N]} \Lambda(n+n_1) \cdots \Lambda(n+n_\ell)$

from estimates of the form

$$\mathbb{E}_{n\in[N]}\,\mu(n)\,a(n)=O((\log N)^{-A}),$$

where $a \in \ell^{\infty}(\mathbb{N})$, or the form

 $\mathbb{E}_{n\in[N]}\,\mu(n+n_1)\cdots\mu(n+n_\ell)=O((\log N)^{-A_\ell}).$

Möbius function and primes

Notation:
$$\mathbb{E}_{n \in [N]} a(n) = \frac{1}{N} \sum_{n=1}^{N} a(n).$$

Definition (Möbius and von Mangoldt function)

 $\mu(n) = (-1)^k$ if *n* is a product of *k* distinct primes, otherwise $\mu(n) = 0$. $\Lambda(n) = \log p$ if $n = p^k$, and $\Lambda(n) = 0$ elsewhere.

Using the identity

$$\Lambda(n) = -\sum_{d|n} \log(d) \, \mu(d)$$

one can deduce asymptotics for averages of the form

 $\mathbb{E}_{n \in [N]} \Lambda(n) a(n)$ or $\mathbb{E}_{n \in [N]} \Lambda(n+n_1) \cdots \Lambda(n+n_\ell)$

from estimates of the form

$$\mathbb{E}_{n\in[N]}\,\mu(n)\,a(n)=O((\log N)^{-A}),$$

where $a \in \ell^{\infty}(\mathbb{N})$, or the form

 $\mathbb{E}_{n\in[N]}\,\mu(n+n_1)\cdots\mu(n+n_\ell)=O((\log N)^{-A_\ell}).$

Randomness properties of the Liouville function

It is a bit more convenient to work with the Liouville function.

Definition (Liouville function)

If $n = p_1^{a_1} \cdots p_k^{a_k}$, then $\lambda(n) = (-1)^{a_1 + \cdots + a_k}$.

Its signs appear to have "random type behavior". Based on this several well known conjectures have been formulated:

- (Square root cancellation): $\mathbb{E}_{n \in [N]} \lambda(n) = O(N^{-b}), \forall b < \frac{1}{2}$ (RH).
- (Chowla conjecture): $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 .
- (Sarnak conjecture): lim_{N→∞} E_{n∈[N]}λ(n)a(n) = 0 for every a ∈ ℓ[∞](ℕ) of "low complexity".

Randomness properties of the Liouville function

It is a bit more convenient to work with the Liouville function.

Definition (Liouville function)

If
$$n = p_1^{a_1} \cdots p_k^{a_k}$$
, then $\lambda(n) = (-1)^{a_1 + \cdots + a_k}$.

Its signs appear to have "random type behavior". Based on this several well known conjectures have been formulated:

- (Square root cancellation): $\mathbb{E}_{n \in [N]} \lambda(n) = O(N^{-b}), \forall b < \frac{1}{2}$ (RH).
- (Chowla conjecture): $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 .
- (Sarnak conjecture): lim_{N→∞} E_{n∈[N]}λ(n)a(n) = 0 for every a ∈ ℓ[∞](ℕ) of "low complexity".

Chowla Conjecture (1965)

If $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ are distinct, then

$$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

Equivalently: $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 , meaning, all length ℓ sign patterns appear on the range of λ with frequency $1/2^{\ell}$.

- $\ell = 1$ (PNT): $\lim_{N \to \infty} \mathbb{E}_{n \in [N]} \lambda(n) = 0.$
- $\ell = 2$ (Tao 2015): Proof for logarithmic averages. For all $n_1 \in \mathbb{N}$

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}\lambda(n)\,\lambda(n+n_1)\,=0.$$

Uses: $\lim_{M\to\infty} \mathbb{E}_{n\in\mathbb{N}} |\mathbb{E}_{m\in[M]}\lambda(n+m)| = 0$ (Matomäki, Radziwiłł).

- Logarithmic version true for all odd ℓ (Tao, Teräväinen 2018).
- Open for $\ell = 4$ and for Cesàro averages for $\ell \ge 2$.

Chowla Conjecture (1965)

If $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ are distinct, then

$$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

Equivalently: $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 , meaning, all length ℓ sign patterns appear on the range of λ with frequency $1/2^{\ell}$.

- $\ell = 1$ (PNT): $\lim_{N \to \infty} \mathbb{E}_{n \in [N]} \lambda(n) = 0.$
- $\ell = 2$ (Tao 2015): Proof for logarithmic averages. For all $n_1 \in \mathbb{N}$

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}\lambda(n)\,\lambda(n+n_1)\,=0.$$

Uses: $\lim_{M\to\infty} \mathbb{E}_{n\in\mathbb{N}} |\mathbb{E}_{m\in[M]}\lambda(n+m)| = 0$ (Matomäki, Radziwiłł).

- Logarithmic version true for all odd ℓ (Tao, Teräväinen 2018).
- Open for $\ell = 4$ and for Cesàro averages for $\ell \ge 2$.

Chowla Conjecture (1965)

If $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ are distinct, then

$$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

Equivalently: $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 , meaning, all length ℓ sign patterns appear on the range of λ with frequency $1/2^{\ell}$.

- $\ell = 1$ (PNT): $\lim_{N\to\infty} \mathbb{E}_{n\in[N]}\lambda(n) = 0.$
- $\ell = 2$ (Tao 2015): Proof for logarithmic averages. For all $n_1 \in \mathbb{N}$

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}\lambda(n)\,\lambda(n+n_1)\,=0.$$

Uses: $\lim_{M\to\infty} \mathbb{E}_{n\in\mathbb{N}} |\mathbb{E}_{m\in[M]}\lambda(n+m)| = 0$ (Matomäki, Radziwiłł). • Logarithmic version true for all odd ℓ (Tao, Teräväinen 2018). • Open for $\ell = 4$ and for Cesàro averages for $\ell \ge 2$

Chowla Conjecture (1965)

If $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ are distinct, then

$$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

Equivalently: $(\lambda(n))_{n \in \mathbb{N}}$ forms a normal sequence of ± 1 , meaning, all length ℓ sign patterns appear on the range of λ with frequency $1/2^{\ell}$.

- $\ell = 1$ (PNT): $\lim_{N\to\infty} \mathbb{E}_{n\in[N]}\lambda(n) = 0.$
- $\ell = 2$ (Tao 2015): Proof for logarithmic averages. For all $n_1 \in \mathbb{N}$

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}\lambda(n)\,\lambda(n+n_1)\,=0.$$

Uses: $\lim_{M\to\infty} \mathbb{E}_{n\in\mathbb{N}} |\mathbb{E}_{m\in[M]}\lambda(n+m)| = 0$ (Matomäki, Radziwiłł).

- Logarithmic version true for all odd ℓ (Tao, Teräväinen 2018).
- Open for $\ell = 4$ and for Cesàro averages for $\ell \ge 2$.

The Sarnak conjecture

The Liouville (and the Möbius) function are expected to not correlate with any bounded sequence of "low complexity".

Sarnak Conjecture (Dynamical formulation)

Let *Y* be a compact metric space and $R: Y \rightarrow Y$ be a continuous 0-entropy transformation. Then for every $g \in C(Y)$ and $y \in Y$

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,g(R^ny)=0.$

Sarnak Conjecture (Arithmetic formulation)

If $a: \mathbb{N} \to \{-1, 1\}$ satisfies $P_a(\ell) = O(2^{\epsilon \ell})$ for every $\epsilon > 0$, then

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,a(n)=0.$

 $(P_a(\ell) = | \text{ patterns of size } \ell \text{ of consecutive } \pm 1 \text{ in the range of } a(n)|.)$

The Sarnak conjecture

The Liouville (and the Möbius) function are expected to not correlate with any bounded sequence of "low complexity".

Sarnak Conjecture (Dynamical formulation)

Let *Y* be a compact metric space and $R: Y \rightarrow Y$ be a continuous 0-entropy transformation. Then for every $g \in C(Y)$ and $y \in Y$

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,g(R^ny)=0.$

Sarnak Conjecture (Arithmetic formulation)

If $a: \mathbb{N} \to \{-1, 1\}$ satisfies $P_a(\ell) = O(2^{\epsilon \ell})$ for every $\epsilon > 0$, then

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,a(n)=0.$

 $(P_a(\ell) = | \text{ patterns of size } \ell \text{ of consecutive } \pm 1 \text{ in the range of } a(n)|.)$

The Sarnak conjecture

The Liouville (and the Möbius) function are expected to not correlate with any bounded sequence of "low complexity".

Sarnak Conjecture (Dynamical formulation)

Let *Y* be a compact metric space and $R: Y \rightarrow Y$ be a continuous 0-entropy transformation. Then for every $g \in C(Y)$ and $y \in Y$

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,g(R^ny)=0.$

Sarnak Conjecture (Arithmetic formulation)

If $a: \mathbb{N} \to \{-1, 1\}$ satisfies $P_a(\ell) = O(2^{\epsilon \ell})$ for every $\epsilon > 0$, then

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,\lambda(n)\,a(n)=0.$

 $(P_a(\ell) = |$ patterns of size ℓ of consecutive ± 1 in the range of a(n)|.)

$\lim_{N\to\infty} \mathbb{E}_{n\in[N]} \lambda(n) g(\mathbb{R}^n y) = 0$ holds when (Y, S) comes from:

- Rational rotations (PNT in arithmetic progressions), Irrational rotations (Vinogradov-Davenport 1937)
- Nilsystems (Green, Tao 2012)
- Horocycle flows (Bourgain, Sarnak, Ziegler 2013) and more general homogeneous dynamics (Peckner 2015)
- Some rank one transformations (Bourgain 2013, Abdalaoui, Lemańczyk, de la Rue, 2014, Ferenczi, Mauduit 2015)
- Various substitutions (Mauduit, Rivat 2015, Deshouillers, M. Drmota, C. Müllner 2015, Ferenczi, Kułaga-Przymus, Lemańczyk, Mauduit 2016)
- Any automatic sequence (Müllner 2017)
- Some distal systems (Liu, Sarnak 2013, Kułaga-Przymus, Lemańczyk 2015, Wang 2017)
- Some interval exchanges (Bourgain 2013, Ferenczi, C. Mauduit 2015, Chaika, Eskin 2016)
- Some systems of number theoretic origin (Green 2012, Bourgain 2013)
- And there are many other results...

Almost all proofs start by using variants of Vinogradov's bilinear method. One needs to show that a large class of $g \in C(Y)$

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,g(R^{pn}y)\,\overline{g(R^{qn}y)}=0$

$\lim_{N\to\infty} \mathbb{E}_{n\in[N]} \lambda(n) g(\mathbb{R}^n y) = 0$ holds when (Y, S) comes from:

Rational rotations (PNT in arithmetic progressions), Irrational rotations (Vinogradov-Davenport 1937)

Nilsystems (Green, Tao 2012)

- Horocycle flows (Bourgain, Sarnak, Ziegler 2013) and more general homogeneous dynamics (Peckner 2015)
- Some rank one transformations (Bourgain 2013, Abdalaoui, Lemańczyk, de la Rue, 2014, Ferenczi, Mauduit 2015)
- Various substitutions (Mauduit, Rivat 2015, Deshouillers, M. Drmota, C. Müllner 2015, Ferenczi, Kułaga-Przymus, Lemańczyk, Mauduit 2016)
- Any automatic sequence (Müllner 2017)
- Some distal systems (Liu, Sarnak 2013, Kułaga-Przymus, Lemańczyk 2015, Wang 2017)
- Some interval exchanges (Bourgain 2013, Ferenczi, C. Mauduit 2015, Chaika, Eskin 2016)
- Some systems of number theoretic origin (Green 2012, Bourgain 2013)
- And there are many other results...

Almost all proofs start by using variants of Vinogradov's bilinear method. One needs to show that a large class of $g \in C(Y)$

$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,g(R^{pn}y)\,\overline{g(R^{qn}y)}=0$

$\lim_{N\to\infty} \mathbb{E}_{n\in[N]} \lambda(n) g(\mathbb{R}^n y) = 0$ holds when (Y, S) comes from:

- Rational rotations (PNT in arithmetic progressions), Irrational rotations (Vinogradov-Davenport 1937)
- Nilsystems (Green, Tao 2012)
- Horocycle flows (Bourgain, Sarnak, Ziegler 2013) and more general homogeneous dynamics (Peckner 2015)
- Some rank one transformations (Bourgain 2013, Abdalaoui, Lemańczyk, de la Rue, 2014, Ferenczi, Mauduit 2015)
- Various substitutions (Mauduit, Rivat 2015, Deshouillers, M. Drmota, C. Müllner 2015, Ferenczi, Kułaga-Przymus, Lemańczyk, Mauduit 2016)
- Any automatic sequence (Müllner 2017)
- Some distal systems (Liu, Sarnak 2013, Kułaga-Przymus, Lemańczyk 2015, Wang 2017)
- Some interval exchanges (Bourgain 2013, Ferenczi, C. Mauduit 2015, Chaika, Eskin 2016)
- Some systems of number theoretic origin (Green 2012, Bourgain 2013)
- And there are many other results...

Almost all proofs start by using variants of Vinogradov's bilinear method. One needs to show that a large class of $g \in C(Y)$

 $\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,g(R^{pn}y)\,\overline{g(R^{qn}y)}=0$

$\lim_{N\to\infty} \mathbb{E}_{n\in[N]} \lambda(n) g(\mathbb{R}^n y) = 0$ holds when (Y, S) comes from:

- Rational rotations (PNT in arithmetic progressions), Irrational rotations (Vinogradov-Davenport 1937)
- Nilsystems (Green, Tao 2012)
- Horocycle flows (Bourgain, Sarnak, Ziegler 2013) and more general homogeneous dynamics (Peckner 2015)
- Some rank one transformations (Bourgain 2013, Abdalaoui, Lemańczyk, de la Rue, 2014, Ferenczi, Mauduit 2015)
- Various substitutions (Mauduit, Rivat 2015, Deshouillers, M. Drmota, C. Müllner 2015, Ferenczi, Kułaga-Przymus, Lemańczyk, Mauduit 2016)
- Any automatic sequence (Müllner 2017)
- Some distal systems (Liu, Sarnak 2013, Kułaga-Przymus, Lemańczyk 2015, Wang 2017)
- Some interval exchanges (Bourgain 2013, Ferenczi, C. Mauduit 2015, Chaika, Eskin 2016)
- Some systems of number theoretic origin (Green 2012, Bourgain 2013)
- And there are many other results...

Almost all proofs start by using variants of Vinogradov's bilinear method. One needs to show that a large class of $g \in C(Y)$

$$\lim_{N\to\infty}\mathbb{E}_{n\in[N]}\,g(R^{pn}y)\,\overline{g(R^{qn}y)}=0$$

Notation:
$$\mathbb{E}_{n\in\mathbb{N}}^{\log}a(n) = \lim_{N\to\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a(n)}{n}$$
.

Theorem (F., Host 2018)

Let $a \colon \mathbb{N} \to \mathbb{U}$ be a 0-entropy sequence that is **ergodic**. Then

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(n)\,a(n)=0.$

- Assumptions apply when (Y, R) is a 0-entropy uniquely ergodic system and a(n) = g(Rⁿy) for some g ∈ C(Y) and y ∈ Y.
- Subsequently we extended this result to a larger class of multiplicative functions *f* : N → U that are called strongly aperiodic.
- These results follow from structural results of certain measure preserving systems associated to multiplicative functions.

Notation:
$$\mathbb{E}_{n\in\mathbb{N}}^{\log}a(n) = \lim_{N\to\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a(n)}{n}$$
.

Theorem (F., Host 2018)

Let $a \colon \mathbb{N} \to \mathbb{U}$ be a 0-entropy sequence that is **ergodic**. Then

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,a(n)=0.$

- Assumptions apply when (Y, R) is a 0-entropy uniquely ergodic system and a(n) = g(Rⁿy) for some g ∈ C(Y) and y ∈ Y.
- Subsequently we extended this result to a larger class of multiplicative functions *f* : N → U that are called strongly aperiodic.
- These results follow from structural results of certain measure preserving systems associated to multiplicative functions.

Notation:
$$\mathbb{E}_{n\in\mathbb{N}}^{\log}a(n) = \lim_{N\to\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a(n)}{n}$$
.

Theorem (F., Host 2018)

Let $a \colon \mathbb{N} \to \mathbb{U}$ be a 0-entropy sequence that is **ergodic**. Then

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(n)\,a(n)=0.$

- Assumptions apply when (Y, R) is a 0-entropy uniquely ergodic system and a(n) = g(Rⁿy) for some g ∈ C(Y) and y ∈ Y.
- Subsequently we extended this result to a larger class of multiplicative functions *f*: N → U that are called strongly aperiodic.
- These results follow from structural results of certain measure preserving systems associated to multiplicative functions.

Notation:
$$\mathbb{E}_{n\in\mathbb{N}}^{\log}a(n) = \lim_{N\to\infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a(n)}{n}$$
.

Theorem (F., Host 2018)

Let $a \colon \mathbb{N} \to \mathbb{U}$ be a 0-entropy sequence that is **ergodic**. Then

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,a(n)=0.$

- Assumptions apply when (Y, R) is a 0-entropy uniquely ergodic system and a(n) = g(Rⁿy) for some g ∈ C(Y) and y ∈ Y.
- Subsequently we extended this result to a larger class of multiplicative functions *f*: N → U that are called strongly aperiodic.
- These results follow from structural results of certain measure preserving systems associated to multiplicative functions.

If $f_1, \ldots, f_\ell \colon \mathbb{N} \to \mathbb{U}$ are arbitrary multiplicative functions and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, then $\mathbb{E}_{n \in \mathbb{N}}^{\log} e^{2\pi i n \alpha} f_1(n + n_1) \cdots f_\ell(n + n_\ell) = 0$

for all $n_1, \ldots, n_\ell \in \mathbb{N}$.

- The result follows by showing that a certain measure preserving system does not have irrational spectrum.
- The weight (e^{2πinα}) can be replaced with any 0-entropy, totally ergodic, zero-mean sequence.

Chowla averages along deterministic sequences

Theorem (Tao 2015 and Tao-Teräväinen 2018)

For $\ell = 2$ ($n_1 \neq n_2$) and all odd ℓ we have

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

For odd ℓ proof uses an ergodic decomposition result of A. Le for sequences of the form $A(p) = \int T^{n_1 p} f \cdots T^{n_\ell p} f d\mu$, $p \in \mathbb{P}$.

Theorem (F. 2019)

Let $a: \mathbb{N} \to \mathbb{N}$ be a 0-entropy and totally ergodic sequence, for example $a(n) = [n\sqrt{2}]$. For $\ell = 2$ ($n_1 \neq n_2$) and all odd ℓ we have

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(a(n+n_1))\cdots\lambda(a(n+n_\ell))=0.$

 If the Chowla conjecture holds, then λ is a normal sequence and hence (by Kamae, Weiss 70's) so is λ ∘ a.

Chowla averages along deterministic sequences

Theorem (Tao 2015 and Tao-Teräväinen 2018)

For $\ell = 2$ ($n_1 \neq n_2$) and all odd ℓ we have

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

For odd ℓ proof uses an ergodic decomposition result of A. Le for sequences of the form $A(p) = \int T^{n_1 p} f \cdots T^{n_\ell p} f d\mu$, $p \in \mathbb{P}$.

Theorem (F. 2019)

Let a: $\mathbb{N} \to \mathbb{N}$ be a 0-entropy and totally ergodic sequence, for example $a(n) = [n\sqrt{2}]$. For $\ell = 2$ $(n_1 \neq n_2)$ and all odd ℓ we have

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(a(n+n_1))\cdots\lambda(a(n+n_\ell))=0.$

 If the Chowla conjecture holds, then λ is a normal sequence and hence (by Kamae, Weiss 70's) so is λ ∘ a.

Chowla averages along deterministic sequences

Theorem (Tao 2015 and Tao-Teräväinen 2018)

For $\ell = 2$ ($n_1 \neq n_2$) and all odd ℓ we have

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0.$$

For odd ℓ proof uses an ergodic decomposition result of A. Le for sequences of the form $A(p) = \int T^{n_1 p} f \cdots T^{n_\ell p} f d\mu$, $p \in \mathbb{P}$.

Theorem (F. 2019)

Let $a: \mathbb{N} \to \mathbb{N}$ be a 0-entropy and totally ergodic sequence, for example $a(n) = [n\sqrt{2}]$. For $\ell = 2$ $(n_1 \neq n_2)$ and all odd ℓ we have

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\lambda(a(n+n_1))\cdots\lambda(a(n+n_\ell))=0.$

 If the Chowla conjecture holds, then λ is a normal sequence and hence (by Kamae, Weiss 70's) so is λ ∘ a.

Furstenberg Correspondence Principle

Let $a: \mathbb{N} \to \mathbb{U}$ and $N_k \to \infty$ integers. Then there exist a subsequence $N'_k \to \infty$, a mps (X, μ, T) , and a function $f \in L^{\infty}(\mu)$ such that

$$\int T^{n_1} f \cdots T^{n_\ell} f \, d\mu = \lim_{k \to \infty} \mathbb{E}^{\log}_{n \in [N'_k]} a(n+n_1) \cdots a(n+n_\ell),$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{Z}$.

• $X = \mathbb{U}^{\mathbb{Z}}$, (Tx)(k) = x(k+1), f(x) = x(0), only μ varies.

• $\mu =^{w^*} \lim_{k \to \infty} \mathbb{E}_{n \in [N'_k]}^{\log} \delta_{T^n a}$.

Furstenberg Correspondence Principle

Let $a: \mathbb{N} \to \mathbb{U}$ and $N_k \to \infty$ integers. Then there exist a subsequence $N'_k \to \infty$, a mps (X, μ, T) , and a function $f \in L^{\infty}(\mu)$ such that

$$\int T^{n_1} f \cdots T^{n_\ell} f \, d\mu = \lim_{k \to \infty} \mathbb{E}^{\log}_{n \in [N'_k]} a(n+n_1) \cdots a(n+n_\ell),$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{Z}$.

•
$$X = \mathbb{U}^{\mathbb{Z}}$$
, $(Tx)(k) = x(k+1)$, $f(x) = x(0)$, only μ varies.

•
$$\mu =^{w^*} \lim_{k \to \infty} \mathbb{E}_{n \in [N'_k]}^{\log} \delta_{T^n a}$$
.

Furstenberg systems of sequences

Furstenberg Correspondence Principle

Let $a: \mathbb{N} \to \mathbb{U}$ and $N_k \to \infty$. Then there exist a subsequence $N'_k \to \infty$, a mps (X, μ, T) , and a function $f \in L^{\infty}(\mu)$ such that

$$\int T^{n_1} f \cdots T^{n_\ell} f \, d\mu = \lim_{k \to \infty} \mathbb{E}^{\log}_{n \in [N'_k]} a(n+n_1) \cdots a(n+n_\ell),$$

for all $n_1, \ldots, n_\ell \in \mathbb{Z}$.

Definition (Furstenberg systems)

- Any such system is called a Furstenberg system of a: N → U. If a = λ we call it a Liouville system.
- A Furstenberg system of a strictly increasing a: N → N with range a set S of positive density, is any Furstenberg system of 1_S.
- A sequence a: N → U (or a: N → N) is ergodic, totally ergodic, or 0-entropy (deterministic) if all its Furstenberg systems are.

Furstenberg systems of sequences

Furstenberg Correspondence Principle

Let $a: \mathbb{N} \to \mathbb{U}$ and $N_k \to \infty$. Then there exist a subsequence $N'_k \to \infty$, a mps (X, μ, T) , and a function $f \in L^{\infty}(\mu)$ such that

$$\int T^{n_1} f \cdots T^{n_\ell} f \, d\mu = \lim_{k \to \infty} \mathbb{E}^{\log}_{n \in [N'_k]} a(n+n_1) \cdots a(n+n_\ell),$$

for all $n_1, \ldots, n_\ell \in \mathbb{Z}$.

Definition (Furstenberg systems)

- Any such system is called a Furstenberg system of a: N → U. If a = λ we call it a Liouville system.
- A Furstenberg system of a strictly increasing a: N → N with range a set S of positive density, is any Furstenberg system of 1_S.
- A sequence a: N → U (or a: N → N) is ergodic, totally ergodic, or 0-entropy (deterministic) if all its Furstenberg systems are.

The Chowla and Sarnak conjecture in ergodic terms

Chowla conjecture (Ergodic reformulation)

Logarithmic Chowla conjecture \Leftrightarrow All Liouville systems are Bernoulli systems.

But it is not even known if any Liouville system is ergodic.
(F., 2016): If a Liouville system is ergodic iff it is Bernoulli.

Definition (Furstenberg 1967)

Two mps (X, μ, T) , (Y, ν, S) are disjoint if the only $(T \times S)$ -invariant measure on $X \times Y$ with marginals μ and ν is $\mu \times \nu$.

Sarnak conjecture (Ergodic reformulation)

The logarithmic Sarnak conjecture holds if all Liouville systems are disjoint from all 0-entropy mps.

The Chowla and Sarnak conjecture in ergodic terms

Chowla conjecture (Ergodic reformulation)

Logarithmic Chowla conjecture \Leftrightarrow All Liouville systems are Bernoulli systems.

- But it is not even known if any Liouville system is ergodic.
- (F., 2016): If a Liouville system is ergodic iff it is Bernoulli.

Definition (Furstenberg 1967)

Two mps (X, μ, T) , (Y, ν, S) are disjoint if the only $(T \times S)$ -invariant measure on $X \times Y$ with marginals μ and ν is $\mu \times \nu$.

Sarnak conjecture (Ergodic reformulation)

The logarithmic Sarnak conjecture holds if all Liouville systems are disjoint from all 0-entropy mps.

The Chowla and Sarnak conjecture in ergodic terms

Chowla conjecture (Ergodic reformulation)

Logarithmic Chowla conjecture \Leftrightarrow All Liouville systems are Bernoulli systems.

- But it is not even known if any Liouville system is ergodic.
- (F., 2016): If a Liouville system is ergodic iff it is Bernoulli.

Definition (Furstenberg 1967)

Two mps (X, μ, T) , (Y, ν, S) are disjoint if the only $(T \times S)$ -invariant measure on $X \times Y$ with marginals μ and ν is $\mu \times \nu$.

Sarnak conjecture (Ergodic reformulation)

The logarithmic Sarnak conjecture holds if all Liouville systems are disjoint from all 0-entropy mps.

All Liouville systems are disjoint from all totally ergodic systems of 0-entropy.

Ergodic Sarnak conjecture: If $a: \mathbb{N} \to \mathbb{U}$ is a totally ergodic sequence, using disjointness we get

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,a(n)=\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\cdot\mathbb{E}_{n\in\mathbb{N}}^{\log}\,a(n)=0.$$

In order to deal with more general ergodic sequences we also have to use:

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,\lambda(n+h)=0$

for every $h \in \mathbb{N}$ (Tao 2015).

All Liouville systems are disjoint from all totally ergodic systems of 0-entropy.

Ergodic Sarnak conjecture: If $a: \mathbb{N} \to \mathbb{U}$ is a totally ergodic sequence, using disjointness we get

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,a(n)=\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\cdot\mathbb{E}_{n\in\mathbb{N}}^{\log}\,a(n)=0.$$

In order to deal with more general ergodic sequences we also have to use:

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,\lambda(n+h)=0$

for every $h \in \mathbb{N}$ (Tao 2015).

All Liouville systems are disjoint from all totally ergodic systems of 0-entropy.

Ergodic Sarnak conjecture: If $a: \mathbb{N} \to \mathbb{U}$ is a totally ergodic sequence, using disjointness we get

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,a(n)=\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\cdot\mathbb{E}_{n\in\mathbb{N}}^{\log}\,a(n)=0.$$

In order to deal with more general ergodic sequences we also have to use:

$$\mathbb{E}_{n\in\mathbb{N}}^{\log}\,\lambda(n)\,\lambda(n+h)=\mathsf{0}$$

for every $h \in \mathbb{N}$ (Tao 2015).

All Liouville systems are disjoint from all totally ergodic systems of 0-entropy.

Chowla for totally ergodic weights: If $a: \mathbb{N} \to \mathbb{U}$ is totally ergodic, has 0-entropy and mean 0 (for ex. $a(n) = e(n\alpha)$ with α irrational), then using disjointness we get

$$\mathbb{E}_{n\in\mathbb{N}}^{\log} a(n) \lambda(n+n_1) \cdots \lambda(n+n_\ell) = \\ \mathbb{E}_{n\in\mathbb{N}}^{\log} a(n) \cdot \mathbb{E}_{n\in\mathbb{N}}^{\log} \lambda(n+n_1) \cdots \lambda(n+n_\ell) = 0.$$

All Liouville systems are disjoint from all totally ergodic systems of 0-entropy.

Chowla along deterministic sequences: If $a: \mathbb{N} \to \mathbb{N}$ is a totally ergodic sequence of 0-entropy, because of disjointness we get for every $\mathbf{M} = ([M_k])_{k \in \mathbb{N}}$ (assuming all limits exist)

$$\mathbb{E}_{m\in\mathbf{M}}^{\log}\prod_{j=1}^{\ell}\lambda(a(m+n_j))=\mathbb{E}_{n\in\mathbf{M}}^{\log}\Big(\mathbb{E}_{m\in\mathbf{M}}^{\log}\prod_{j=1}^{\ell}\lambda(m+a(n+n_j))\Big).$$

For $\ell = 2$ ($n_1 \neq n_2$) and ℓ odd, the last averages are 0 by the results of Tao and Tao-Teräväinen.

Theorem (Structural result)

• A Liouville system cannot have irrational eigenvalues. $(Tf = e^{2\pi i \alpha} f, \alpha \in \mathbb{R} \setminus \mathbb{Q}, \text{ implies } f = 0).$

The "building blocks" of a Liouville system are Bernoulli systems and systems of algebraic structure (nilsystems).

The first property is equivalent to showing that for every $lpha \in \mathbb{R} \setminus \mathbb{Q}$

$$\lim_{N\to\infty}\mathbb{E}^{\log}_{n\in[N]}e^{2\pi i n\alpha}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$, which is of independent interest.

Proposition (Disjointness)

Theorem (Structural result)

- A Liouville system cannot have irrational eigenvalues. $(Tf = e^{2\pi i \alpha} f, \alpha \in \mathbb{R} \setminus \mathbb{Q}, \text{ implies } f = 0).$
- The "building blocks" of a Liouville system are Bernoulli systems and systems of algebraic structure (nilsystems).

The first property is equivalent to showing that for every $lpha \in \mathbb{R} \setminus \mathbb{Q}$

$$\lim_{N\to\infty}\mathbb{E}^{\log}_{n\in[N]}e^{2\pi i n\alpha}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$, which is of independent interest.

Proposition (Disjointness)

Theorem (Structural result)

- A Liouville system cannot have irrational eigenvalues. $(Tf = e^{2\pi i \alpha} f, \alpha \in \mathbb{R} \setminus \mathbb{Q}, \text{ implies } f = 0).$
- The "building blocks" of a Liouville system are Bernoulli systems and systems of algebraic structure (nilsystems).

The first property is equivalent to showing that for every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$

$$\lim_{N\to\infty}\mathbb{E}^{\log}_{n\in[N]}e^{2\pi i n\alpha}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$, which is of independent interest.

Proposition (Disjointness)

Theorem (Structural result)

- A Liouville system cannot have irrational eigenvalues. $(Tf = e^{2\pi i \alpha} f, \alpha \in \mathbb{R} \setminus \mathbb{Q}, \text{ implies } f = 0).$
- 2 The "building blocks" of a Liouville system are Bernoulli systems and systems of algebraic structure (nilsystems).

The first property is equivalent to showing that for every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$

$$\lim_{N\to\infty}\mathbb{E}^{\log}_{n\in[N]}e^{2\pi i n\alpha}\,\lambda(n+n_1)\cdots\lambda(n+n_\ell)=0$$

for all $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$, which is of independent interest.

Proposition (Disjointness)

Tao's identity

Starting point in the proof of the two structural properties is:

Theorem (Tao's identity 2015)

If $a \in \ell^{\infty}(\mathbb{N})$, $\mathbf{N} = ([N_k])_{k \in \mathbb{N}}$, and all limits below exist, then $\mathbb{E}_{p \in \mathbb{P}} \mathbb{E}_{n \in \mathbb{N}}^{\log} a(pn) = \mathbb{E}_{n \in \mathbb{N}}^{\log} a(n).$

More generally, for all $\ell, n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{p\in\mathbb{P}} \mathbb{E}_{n\in\mathbb{N}}^{\log} \prod_{j=1}^{\ell} a(pn+pn_j) = \mathbb{E}_{p\in\mathbb{P}} \mathbb{E}_{n\in\mathbb{N}}^{\log} \prod_{j=1}^{\ell} a(n+pn_j).$

The identity is false for Cesàro averages (take $a(n) = n^i$).

Corollary (Tao's identity for λ)

For every $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+n_j)=(-1)^{\ell}\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+pn_j).$

Tao's identity

Starting point in the proof of the two structural properties is:

Theorem (Tao's identity 2015)

If $a \in \ell^{\infty}(\mathbb{N})$, $\mathbf{N} = ([N_k])_{k \in \mathbb{N}}$, and all limits below exist, then $\mathbb{E}_{p \in \mathbb{P}} \mathbb{E}_{n \in \mathbf{N}}^{\log} a(pn) = \mathbb{E}_{n \in \mathbf{N}}^{\log} a(n).$

More generally, for all $\ell, n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}a(\rho n+\rho n_j)=\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}a(n+\rho n_j).$

The identity is false for Cesàro averages (take $a(n) = n^{i}$).

Corollary (Tao's identity for λ)

For every $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+n_j)=(-1)^{\ell}\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+pn_j).$

Tao's identity

Starting point in the proof of the two structural properties is:

Theorem (Tao's identity 2015)

If $a \in \ell^{\infty}(\mathbb{N})$, $\mathbf{N} = ([N_k])_{k \in \mathbb{N}}$, and all limits below exist, then $\mathbb{E}_{p \in \mathbb{P}} \mathbb{E}_{n \in \mathbf{N}}^{\log} a(pn) = \mathbb{E}_{n \in \mathbf{N}}^{\log} a(n).$

More generally, for all $\ell, n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}a(\rho n+\rho n_j)=\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbb{N}}^{\log}\prod_{j=1}^{\ell}a(n+\rho n_j).$

The identity is false for Cesàro averages (take $a(n) = n^{i}$).

Corollary (Tao's identity for λ)

For every $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$ we have

 $\mathbb{E}_{n\in\mathbf{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+n_j)=(-1)^{\ell}\mathbb{E}_{\rho\in\mathbb{P}}\mathbb{E}_{n\in\mathbf{N}}^{\log}\prod_{j=1}^{\ell}\lambda(n+\rho n_j).$

An ergodic consequence of Tao's identity

Let (X, μ, T) be a Liouville system. Then for **some** *T*-generating $f: X \to \{-1, 1\}$ we have for every $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$

$$\int \prod_{j=1}^{\ell} T^{n_j} f \, d\mu = (-1)^{\ell} \, \mathbb{E}_{
ho \in \mathbb{P}} \int \prod_{j=1}^{\ell} T^{
hon_j} f \, d\mu$$

T-generating: The algebra generated by $T^n f$, $n \in \mathbb{Z}$, is dense in $L^2(\mu)$. Hence, our task is reduced to showing that:

Theorem (Ergodic structural result)

- If (X, μ, T) satisfies the previous property, then
 - it has no irrational eigenvalues;
 - its "building blocks" are Bernoulli systems and nilsystems.

An ergodic consequence of Tao's identity

Let (X, μ, T) be a Liouville system. Then for **some** *T*-generating $f: X \to \{-1, 1\}$ we have for every $\ell \in \mathbb{N}$ and $n_1, \ldots, n_\ell \in \mathbb{N}$

$$\int \prod_{j=1}^{\ell} T^{n_j} f \, d\mu = (-1)^{\ell} \, \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=1}^{\ell} T^{pn_j} f \, d\mu.$$

T-generating: The algebra generated by $T^n f$, $n \in \mathbb{Z}$, is dense in $L^2(\mu)$. Hence, our task is reduced to showing that:

Theorem (Ergodic structural result)

- If (X, μ, T) satisfies the previous property, then
 - it has no irrational eigenvalues;
 - its "building blocks" are Bernoulli systems and nilsystems.

Systems of arithmetic progressions

It will be more convenient to work in an even more general setup:

Definition

Let (X, μ, T) be a system. On $X^{\mathbb{Z}}$ we define the measure $\widetilde{\mu}$ as follows

$$\int \prod_{j=-m}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=-m}^m T^{jp} f_j \, d\mu, \quad f_j \in L^{\infty}(\mu).$$

We call $(X^{\mathbb{Z}}, \tilde{\mu}, S)$, where *S* is the shift, the **system of arithmetic progressions (AP's)** with prime steps associated with (X, μ, T) .

Relevance to our problem:

Proposition (Factor property)

Every Liouville system is a factor of its associated system of AP's.

Systems of arithmetic progressions

It will be more convenient to work in an even more general setup:

Definition

Let (X, μ, T) be a system. On $X^{\mathbb{Z}}$ we define the measure $\widetilde{\mu}$ as follows

$$\int \prod_{j=-m}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=-m}^m T^{jp} f_j \, d\mu, \quad f_j \in L^{\infty}(\mu).$$

We call $(X^{\mathbb{Z}}, \tilde{\mu}, S)$, where *S* is the shift, the **system of arithmetic progressions (AP's)** with prime steps associated with (X, μ, T) .

Relevance to our problem:

Proposition (Factor property)

Every Liouville system is a factor of its associated system of AP's.

Two illuminating examples

Example (Irrational rotations)

 $Tt = t + \alpha \pmod{1}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, acting on \mathbb{T} with $m_{\mathbb{T}}$. Then

$$\int \prod_{j=-m}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=-m}^m f_j(t+jp\alpha) \, dt = \int \int \prod_{j=-m}^m f_j(t+js) \, dt ds.$$

System of AP's isomorphic to $(s, t) \mapsto (s, t + s)$ on \mathbb{T}^2 with $m_{\mathbb{T}^2}$.

Example (Weak mixing systems)

 $Tt = 2t \pmod{1}$ acting on \mathbb{T} with $m_{\mathbb{T}}$. Then

$$\int \prod_{j=1}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=1}^m f_j(2^{jp}t) \, dt = \prod_{j=1}^m \int f_j(x_j) \, d\widetilde{\mu}.$$

System of AP's isomorphic to a Bernoulli system on $\mathbb{T}^{\mathbb{Z}}$.

Two illuminating examples

Example (Irrational rotations)

 $Tt = t + \alpha \pmod{1}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, acting on \mathbb{T} with $m_{\mathbb{T}}$. Then

$$\int \prod_{j=-m}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{p \in \mathbb{P}} \int \prod_{j=-m}^m f_j(t+jp\alpha) \, dt = \int \int \prod_{j=-m}^m f_j(t+js) \, dt ds.$$

System of AP's isomorphic to $(s, t) \mapsto (s, t + s)$ on \mathbb{T}^2 with $m_{\mathbb{T}^2}$.

Example (Weak mixing systems)

 $Tt = 2t \pmod{1}$ acting on \mathbb{T} with $m_{\mathbb{T}}$. Then

$$\int \prod_{j=1}^m f_j(x_j) \, d\widetilde{\mu} := \mathbb{E}_{\rho \in \mathbb{P}} \int \prod_{j=1}^m f_j(2^{j\rho}t) \, dt = \prod_{j=1}^m \int f_j(x_j) \, d\widetilde{\mu}.$$

System of AP's isomorphic to a Bernoulli system on $\mathbb{T}^{\mathbb{Z}}$.

Theorem (Structure of building blocks)

The ergodic components of a system of AP's are direct products of Bernoulli systems and inverse limits of nilsystems.

Proof uses:

- Gowers uniformity of the modified von Mangoldt function (Green, Tao, and Ziegler, 2012).
- A result about characteristic factors of Furstenberg averages (Host and Kra, 2005).
- Equidistribution results on nilmanifolds in order to get explicit limit formulas for Furstenberg averages.

Theorem (Structure of building blocks)

The ergodic components of a system of AP's are direct products of Bernoulli systems and inverse limits of nilsystems.

Proof uses:

- Gowers uniformity of the modified von Mangoldt function (Green, Tao, and Ziegler, 2012).
- A result about characteristic factors of Furstenberg averages (Host and Kra, 2005).
- Equidistribution results on nilmanifolds in order to get explicit limit formulas for Furstenberg averages.

Theorem (No irrational eigenvalues)

A system of AP's has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

 $(X^{\mathbb{Z}}, \nu, S)$ is partially strongly stationary if maps $\tau_r \colon X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, defined $(x(j))_{j \in \mathbb{Z}} \mapsto (x(rj))_{j \in \mathbb{Z}}$, are measure preserving for every $r \in d\mathbb{N} + 1$.

Proposition

A system of AP's is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)

Theorem (No irrational eigenvalues)

A system of AP's has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

 $(X^{\mathbb{Z}}, \nu, S)$ is partially strongly stationary if maps $\tau_r \colon X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, defined $(x(j))_{j \in \mathbb{Z}} \mapsto (x(rj))_{j \in \mathbb{Z}}$, are measure preserving for every $r \in d\mathbb{N} + 1$.

Proposition

A system of AP's is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)

Theorem (No irrational eigenvalues)

A system of AP's has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

 $(X^{\mathbb{Z}}, \nu, S)$ is partially strongly stationary if maps $\tau_r \colon X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, defined $(x(j))_{j \in \mathbb{Z}} \mapsto (x(rj))_{j \in \mathbb{Z}}$, are measure preserving for every $r \in d\mathbb{N} + 1$.

Proposition

A system of AP's is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)

Theorem (No irrational eigenvalues)

A system of AP's has no irrational eigenvalues.

Proof uses the following notion (Furstenberg and Katznelson 91):

Definition (Partial strong stationarity)

 $(X^{\mathbb{Z}}, \nu, S)$ is partially strongly stationary if maps $\tau_r \colon X^{\mathbb{Z}} \to X^{\mathbb{Z}}$, defined $(x(j))_{j \in \mathbb{Z}} \mapsto (x(rj))_{j \in \mathbb{Z}}$, are measure preserving for every $r \in d\mathbb{N} + 1$.

Proposition

A system of AP's is an inverse limit of partially sst systems.

Following an argument of Jenvey (1997) we show:

Proposition (No irrational eigenvalues)

A Liouville system has no rational eigenvalues different than 1.

On the other hand, Möbius system does have rational eigenvalues.

Problem (Not a mixture of circle rotations)

A Liouville system is not isomorphic to the non-ergodic system $(\mathbb{T}^2, m_{\mathbb{T}^2}, T)$, where T(s, t) = (s, t + s), $s, t \in \mathbb{T}$.

Problem (Dichotomy)

If $f : \mathbb{N} \to \{-1, 1\}$ is multiplicative, then it has a unique Furstenberg system that is isomorphic to a procyclic **or** a Bernoulli system.

A Liouville system has no rational eigenvalues different than 1.

On the other hand, Möbius system does have rational eigenvalues.

Problem (Not a mixture of circle rotations)

A Liouville system is not isomorphic to the non-ergodic system $(\mathbb{T}^2, m_{\mathbb{T}^2}, T)$, where T(s, t) = (s, t + s), $s, t \in \mathbb{T}$.

Problem (Dichotomy)

If $f : \mathbb{N} \to \{-1, 1\}$ is multiplicative, then it has a unique Furstenberg system that is isomorphic to a procyclic **or** a Bernoulli system.

A Liouville system has no rational eigenvalues different than 1.

On the other hand, Möbius system does have rational eigenvalues.

Problem (Not a mixture of circle rotations)

A Liouville system is not isomorphic to the non-ergodic system $(\mathbb{T}^2, m_{\mathbb{T}^2}, T)$, where T(s, t) = (s, t + s), $s, t \in \mathbb{T}$.

Problem (Dichotomy)

If $f: \mathbb{N} \to \{-1, 1\}$ is multiplicative, then it has a unique Furstenberg system that is isomorphic to a procyclic **or** a Bernoulli system.

A Liouville system has no rational eigenvalues different than 1.

On the other hand, Möbius system does have rational eigenvalues.

Problem (Not a mixture of circle rotations)

A Liouville system is not isomorphic to the non-ergodic system $(\mathbb{T}^2, m_{\mathbb{T}^2}, T)$, where T(s, t) = (s, t + s), $s, t \in \mathbb{T}$.

Problem (Dichotomy)

If $f: \mathbb{N} \to \{-1, 1\}$ is multiplicative, then it has a unique Furstenberg system that is isomorphic to a procyclic **or** a Bernoulli system.