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A group Γ is left-orderable if it admits a total order which is
invariant by left multiplications.

∀f , g , h ∈ Γ : If f < g then hf < hg



A folklore result

A countable group Γ is left-orderable iff it acts faithfully on the
real line by orientation preserving homeomorphisms.

Γ ↪→ Homeo+(R)

If p ∈ R is a free orbit (i.e. ∀g ∈ Γ, g(p) 6= p), then we can
define:

h <p g if h(p) < g(p).



Left-orderable groups:

1. Zn, Fn.

2. Braid groups. Some MCG’s of surfaces. RAAG’s.

3. Thompson’s group F (consist of piecewise homeomorphisms
of an interval)

4. Many more...



Non left-orderable groups:

1. Groups with torsion.

2. Γ = 〈a, b| ab7ab13ab = e, ab−3a−3b = e, a−7ba−2b3 =
e, a−5b−7a−3b−4 = e〉.

3. Random groups. (Orlef, 2014) (Unknown for actions in the
circle)

4. SLn(Z), when n ≥ 3. (Witte-Morris, 1994)

5. It is unknown whether there exists an orderable group with
property T.



Orders in Z2:

Orders in F2: There are many more orders (Super-exponentially
many when looking at balls in the Cayley graph).



I will discuss the left-orderability of irreducible lattices in
semi-simple Lie groups.

Notation: G is a Lie group, G = Isom(X ), where X is the
associated symmetric space. Γ is a lattice if vol(G/Γ) <∞.



Hyperbolic spaces, G = SO(n, 1):

Fundamental groups of hyperbolic surfaces are left-orderable.

A conjecture of Boyer-Gordon-Watson, relates left-orderability of
fundamental groups of 3-manifolds with taut foliations and Floer
homology. See a lecture of Nathan Dunfield on his webpage.

The fundamental group of a hyperbolic 3-manifold is virtually left
orderable. No examples known in dimension higher than 3.



Other rank one symmetric spaces

It seems, no lattice in other rank one symmetric spaces (complex
hyperbolic, quaternionic hyperbolic, Cayley plane) are known to be
left-orderable.

Higher rank symmetric spaces

Zimmer program: Every smooth action on a manifold of an
irreducible lattice in higher rank comes from a nice algebraic
construction.



Our main result concerns irreducible lattices in higher rank:

An irreducible lattice Γ in a connected semi-simple Lie group G of
rank at least two is left-orderable iff Γ is torsion free and there

exists a surjective morphism G → ˜PSL(2,R).

I Dave Witte-Morris proved this theorem for many lattices.



Example 1: The rank of SL(3,R) is 3 - 1. SL3(Z) is not
left-orderable.

Example 2: SL(2,Z(
√

2)) embeds as a lattice in SL2(R)× SL2(R)
via

A→ (A, σ(A)),

where σ(a + b
√

2) = a− b
√

2. SL(2,Z(
√

2)) is not left-orderable.
Passing to universal covering one gets a left-orderable lattice of
higher rank.

Remark: Margulis showed all lattices in higher rank are arithmetic.
So our theorem is mainly about groups similar to example 2.



A theorem of Ghys (1999):

If Γ is a lattice in a connected semi-simple Lie group G of rank at
least two and Γ→ Homeo+(S1) is an action, then:

1. Either Γ has a finite orbit on S1.

2. Or there exists a surjective morphism G → PSL(2,R).

I This result was also proven by Burger-Monod around the same time
for many lattices.Navas and Rezhnikov proved that any group with
property T do not act smoothly in S1. Ghys Theorem was
generalized by Bader-Furman for some non-linear groups.



Strategy of proof: Assume action minimal. Assume G simple.
Idea: Γ preserves a measure on R. This implies Γ→ Z,
contradiction.
Suspension space:

Y := (G × R)/(g , t) ∼ (gγ−1, γ(t))

I Y is an R-bundle over G/Γ. G acts on Y .

I Γ preserves a measure in R iff G preserves a measure on Y .



Stiffness 1: Construct a G -stationary measure on Y and show is
G -invariant.

Stiffness 2: Construct a P-invariant measure on Y and show is
G -invariant.



Philosophy: Higher rank abelian (hyperbolic) actions have rigidity.
Understand dynamics of A-action in Y and show G -invariance.

Remark 1: This strategy was used in work of
Brown,Rodriguez-Hertz,Wang (2014) about stiffness of actions of
lattices. This work was applied by Brown,Fisher,Hurtado in the
solution of Zimmer’s conjecture (2016).

Remark 2: Our method follows same philosophy but avoids use of
entropy

Big problems: R is not compact. Action is not smooth.



Theorem (Deroin’s space of quasi-periodic actions (2011))

Assume Γ∗ acts on R without a discrete orbit. There exists
one-dimensional laminated compact space D such that:

1. Γ acts on D and preserve each leaf.

2. The action is Lipschitz in each one dimensional leaf.

3. The original action is conjugate to the action in a leaf of D.

Warning: D is in general infinite dimensional and its size is related to
the possible left-orders of Γ.

Remark: D is related to space of orders constructed* by Witte-Morris.



Random walks by homeomorphisms of R:

Suppose µ is a finitely supported, symmetric measure on Γ.
Assume Γ fixed point free. Fix p ∈ R. Consider the random walk:

Xn(p) = g(Xn−1(p))

g is chosen as determined by µ.

What happen as n→∞?



Theorem (Deroin-Kleptsyn-Navas-Parwani (2012))

1. For all p ∈ R, lim supXn(p) =∞ and lim inf Xn(p) = −∞
almost surely.

2. There exists a stationary Radon measure in R. (unique* for
minimal action).

3. Under necessary assumptions**: For all p, q ∈ R
limXn(p)− Xn(q) = 0.



DNKP Theorem implies that up to conjugation, Lebesgue is
stationary: For all x , y ∈ R, x − y =

∑
µ(γ)(γ(x)− γ(y)),

moreover:

1. Lipschitz: |γ(x)− γ(y)| ≤ 1
µ(γ) |x − y |,

2. Bounded displacement and non-triviality:

∀x , 1

Cµ
≤

∑
µ(γ)|γ(x)− x | ≤ Cµ

3. Harmonicity: ∀x , x =
∑
µ(γ)γ(x).

D := {(Φ, p)|p ∈ R, Φ : Γ→ Homeo+(R) satisfying 1), 2) and 3)}/ ∼

The equivalence relation ∼ is defined by translations:
(Φ, p) ∼ (T tΦT−t , p + t).
There is an R-flow in D sending (Φ, p) to (Φ, p + t).



Example 1: For Γ = Z2, D consist of actions by translations. D is
topologically S1.

Example 2: For Γ lift of action by homeomorphisms of S1,
D = S1.

Example 3: For Γ = {a, b|aba−1 = b2}.



Some other applications of D:

1. A left orderable, amenable group has surjection to Z.
(Witte-Morris).

2. Understanding of Hyde-Lodha ’s example of f.g. simple left
orderable group. (Triestino-Matte Bon)

3. Rigidity of actions of Thompson’s groups and other related
work. (Rivas, Matte Bon, Lodha, Triestino).

Some open questions related to D and Harmonic actions:

1. Is there a CLT for harmonic actions?, large deviations?, LLT?

2. What are the groups with the most dense orbits in
1-dimensions.



Thank you and have a nice week.



Ideas of proof of main theorem Let X = (G × D)/Γ be the
suspension space for the Γ action on D. X is a G -space.
Fix a maximal compact subgroup K ⊂ G , and let mG be a
probability measure on G which is

I absolutely continuous wrt Haar.

I invariant by left and right multiplications by K , and

I symmetric.

A general machinery shows that there exists on X a measure mX

which is mG -stationary, namely which satisfies the convolution
equation

mG ?mX =

∫
g∗mX mG (dg) = mX .

Our goal is to establish that mX is indeed G -invariant; we construct
D, X and mX are constructed in such a way that mX is ergodic
and conditionals measures along leafs of D are abs. continuous
with respect to Lebesgue. For constructing D, we choose µ in Γ a
dicretization probability measure for the Brownian motion in the
symmetric space K\G . (G/P is the poisson boundary of (Γ, µ)).



Weyl chambers Consider the case G = SL(3,R). We set
K = SO(3,R), and let A ⊂ G = SL(3,R) be the subgroup of diagonal
matrices with positive coefficients. Each a ∈ lie(A) ' R2 determines a
solvable subgroup Pa = ANa, where Na is the strong unstable foliation of
a:

Na := {b ∈ G | etabe−ta →t→−∞ eG}.

For generic a’s, there are only six possibilities for the Na’s, which defines

a decomposition of A into six Weyl chambers:



PW-invariant measures

For each Weyl chamber W, we have the Iwasawa decomposition
G = KPW . Applying Furstenberg’s Poisson formula to the
function g 7→ g∗mX , which is harmonic and bounded (since mX is
stationary), one proves that:

There exists a unique probability measure mWX on X which satisfies

I mWX is PW -invariant and PW -ergodic,

I the K -average of mWX wrt the normalized Haar measure on K
equals mX .



Global contraction property

The lamination defined by the flow T on the quasi-periodic space
Z produces a one dimensional oriented lamination L on the
suspension space X , which is invariant by the G -action.

We say that an element a ∈ lie(A) has the global contraction
property wrt some probability measure m on X if for m-a.e.
x ∈ X , the flow associated to a contracts globally the leaf L(x) in
the sense that

d(eta(y), eta(z))→t→+∞ 0 for every y , z ∈ L(x).



Lyapunov exponents

For each Weyl chamber W, there exists an open half-space in
lie(A) consisting of elements whose exponential have the global

contraction property wrt to mWX . Moreover, this half-space
intersects the interior of W.

This half-space is determined by a Lyapunov exponent functional being

negative. The Lyapunov exponent is the exponential rate of the

derivative in the direction of L of an element of A. It is linear functional

in lie(A) and is denoted by χW : lie(A)→ R.



Propagating invariance

Assume that W,W ′ are two adjacent Weyl chambers, and denote
by aW,W ′

a non zero element in W ∩W ′. Assume that the flow a
has the global contraction property wrt mWX . Then mWX = mW

′
X .



Idea of the proof main Lemma: We show there are two generic
points x1, x2 for mWX and mW

′
X with the same ergodic averages.

There is a nice relation between mWX and mW
′

X , they are related
via: k∗mWX and mW

′
X for k ∈ K . (k is an element of the Weyl

group). So we can take x1, x2 generic in the same real leaf. As
both measures are Na-invariant, one can change the a-future of
πG/Γ(x1) to coincide** with the future of πG/Γx2. More formally,
there exists n1, n2 ∈ Na such that:

lim
t→∞

dG/Γ(etaπG/Γ(x1), etaπG/Γ(x2)) = 0

Using the global contraction property we have dX (etax1, e
tax2) = 0

and we are done.



Thank you!


