Measure rigidity and orbit closure classification of random walks on surfaces

Ping Ngai (Brian) Chung

briancpn@uchicago.edu

University of Chicago

April 20, 2020

Setting

Given a manifold M, a point $x \in M$ and a semigroup Γ acting on M,

what can we say about:

the orbit of x under Γ,

$$Orbit(x,\Gamma) := \{\varphi(x) \mid \varphi \in \Gamma\}?$$

• the Γ -invariant probability measures ν on M?

When can we classify all of them?

Circle

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,

- If x = p/q is rational, $\operatorname{Orbit}(x, \Gamma) \subset \{0, 1/q, \dots, (q-1)/q\}$ is finite.
- By the pointwise ergodic theorem, we know that for almost every point $x \in S^1$, $Orbit(x, \Gamma)$ is dense.
- But there are points $x \in S^1$ where $\operatorname{Orbit}(x, \Gamma)$ is neither finite nor dense, for instance for certain $x \in S^1$, the closure of its orbit

$$\overline{\mathrm{Orbit}(x,\Gamma)} =$$
 middle third Cantor set.

(And many orbit closures of Hausdorff dimension between 0 and 1!)

Furstenberg's $\times 2 \times 3$ problem

Nonetheless, if we take $M = S^1$ and $\Gamma = \langle f, g \rangle$, where

$$f(x) = 2x \bmod 1, \qquad g(x) = 3x \bmod 1,$$

we have the following theorem of Furstenberg:

Theorem (Furstenberg, 1967)

For all $x \in S^1$, $Orbit(x, \Gamma)$ is either finite or dense.

For invariant measures...

Conjecture (Furstenberg, 1967)

Every ergodic Γ -invariant probability measure ν on S^1 is either finitely supported or the Lebesgue measure.

Free group action on 2-torus

For dim M=2, one observes similar phenomenon. Say $M=\mathbb{T}^2$, and $\Gamma=\langle f,g\rangle$ with

$$f = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \qquad g = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \in SL_2(\mathbb{Z})$$

which acts on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ by left multiplication.

Then $\operatorname{Orbit}(x,\langle f\rangle)$ can be neither finite nor dense. Nonetheless it follows from a theorem of Bourgain-Furman-Lindenstrauss-Mozes that

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, 2007)

- For all $x \in \mathbb{T}^2$, $\operatorname{Orbit}(x, \langle f, g \rangle)$ is either finite or dense.
- Every ergodic Γ -invariant probability measure ν on \mathbb{T}^2 is either finitely supported or the Lebesgue measure.

Stationary measure

In fact, the theorem of BFLM classifies stationary measures on \mathbb{T}^d .

Let X be a metric space, G be a group acting continuously on X. Let μ be a probability measure on G.

Definition

A measure ν on X is μ -stationary if

$$u = \mu * \nu := \int_{\mathcal{G}} \mathsf{g}_* \nu \; \mathsf{d}\mu(\mathsf{g}).$$

In other words, ν is "invariant on average" under the random walk driven by $\mu.$

Stationary measure

Definition

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_{\mathcal{G}} \mathsf{g}_* \nu \; \mathsf{d}\mu(\mathsf{g}).$$

Basic facts: Let $\Gamma = \langle \text{supp } \mu \rangle \subset G$.

- Every Γ -invariant measure is μ -stationary.
- Every finitely supported μ -stationary measure is Γ -invariant.
- (Choquet-Deny) If Γ is abelian, every μ -stationary measure is Γ -invariant (stiffness).
- (Kakutani) If X is compact, there exists a μ -stationary measure on X. (Even though Γ -invariant measure may not exist for non-amenable Γ !)

Zariski dense toral automorphism

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, Benoist-Quint)

Let μ be a compactly supported probability measure on $SL_d(\mathbb{Z})$. If $\Gamma = \langle \sup \mu \rangle$ is a Zariski dense subsemigroup of $SL_d(\mathbb{R})$, then

- For all $x \in \mathbb{T}^d$, $\operatorname{Orbit}(x, \Gamma)$ is either finite or dense.
- Every ergodic μ -stationary probability measure ν on \mathbb{T}^d is either finitely supported or the Lebesgue measure.
- Every infinite orbit "equidistributes" on \mathbb{T}^d .
- The Zariski density assumption is necessary since the theorem is false for say cyclic Γ generated by a hyperbolic element in $SL_d(\mathbb{Z})$.
- The second conclusion implies that under the given assumptions, every μ -stationary measure is Γ -invariant (i.e. stiffness).

Homogeneous Setting

The theorem of Benoist-Quint works more generally for homogeneous spaces G/Λ .

Theorem (Benoist-Quint, 2011)

Let G be a connected simple real Lie group, Λ be a lattice in G, μ be a compactly supported probability measure on G. If $\Gamma = \langle \text{supp } \mu \rangle$ is a Zariski dense subsemigroup of G, then

- For all $x \in G/\Lambda$, $\operatorname{Orbit}(x,\Gamma)$ is either finite or dense.
- Every ergodic μ -stationary probability measure ν on G/Λ is either finitely supported or the Haar measure.
- Every infinite orbit "equidistributes" on G/Λ .

Non-homogeneous setting

Let M be a closed manifold with (normalized) volume measure vol , μ be a probability measure on $\operatorname{Diff}^2(M)$, $\Gamma = \langle \operatorname{supp} \mu \rangle$. Under what condition on μ and/or Γ do we have that

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ -stationary probability measure ν on M is either finitely supported or vol.
- Every infinite orbit "equidistributes" on *M*?

Uniform expansion

Definition

Let M be a Riemannian manifold, μ be a probability measure on $\mathrm{Diff}^2(M)$. We say that μ is uniformly expanding if there exists C>0 and $N\in\mathbb{N}$ such that for all $x\in M$ and $v\in T_xM$,

$$\int_{\mathrm{Diff}^2(M)} \log \frac{\|D_{\mathsf{X}} f(v)\|}{\|v\|} d\mu^{(N)}(f) > C > 0.$$

Here $\mu^{(N)} := \mu * \mu * \cdots * \mu$ is the N-th convolution power of μ .

In other words, the random walk w.r.t. μ expands every vector $v \in T_x M$ at every point $x \in M$ on average.

Remark

Uniform expansion is an open condition.

Main result

Theorem (C.)

Let M be a closed 2-manifold with volume measure vol. Let μ be a compactly supported probability measure on $\operatorname{Diff}^2_{vol}(M)$ that is uniformly expanding, and $\Gamma := \langle \operatorname{supp} \mu \rangle$. Then

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ -stationary probability measure ν on M is either finitely supported or vol.

Remark

- For $M = \mathbb{T}^2$ and μ supported on $SL_2(\mathbb{Z})$, if $\Gamma = \langle \text{supp } \mu \rangle$ is Zariski dense in $SL_2(\mathbb{R})$, then μ is uniformly expanding.
- Since uniform expansion is an open condition, so the conclusion holds for small perturbations of Zariski dense toral automorphisms in Diff²_{vol}(M) too.

Result of Brown and Rodriguez Hertz

Theorem (Brown-Rodriguez Hertz, 2017)

Let M be a closed 2-manifold. Let μ be a measure on $\operatorname{Diff}^2_{\operatorname{vol}}(M)$, and $\Gamma := \langle \operatorname{supp} \mu \rangle$. Let ν be an ergodic hyperbolic μ -stationary measure on M. Then at least one of the following three possibilities holds:

- **1** ν is finitely supported.
- ② $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).
- **3** For ν -a.e. $x \in M$, there exists $v \in \mathbb{P}(T_x M)$ that is contracted by $\mu^{\mathbb{N}}$ -almost every word ω ("Stable distribution is non-random" in ν).
- Uniform expansion (UE) implies hyperbolicity and rules out (3).
- ② UE and some version of the Hopf argument (related to ideas of Dolgopyat-Krikorian) show that $\nu = \text{vol}$ in (2) (global ergodicity).
- UE together with techniques (Margulis function) originated from Eskin-Margulis show that the classification of stationary measures implies equidistribution and orbit closure classification.

Result of Brown and Rodriguez Hertz

Thus uniform expansion is stronger than the assumptions of Brown-Rodriguez Hertz. But in some sense this is best possible.

Proposition (C.)

Let M be a closed 2-manifold. Let μ be a measure on $\operatorname{Diff}^2_{\operatorname{vol}}(M)$. Then μ is uniformly expanding if and only if for every ergodic μ -stationary measure ν on M,

- $oldsymbol{0}$ ν is hyperbolic,
- 2 Stable distribution is **not** non-random in ν .

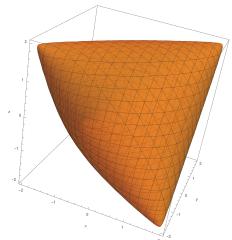
Verify uniform expansion

How hard is it to verify the uniform expansion condition? We checked it in two settings:

- Discrete perturbation of the standard map (verified by hand)
- ② $\operatorname{Out}(F_2)$ -action on the character variety $\operatorname{Hom}(F_2,\operatorname{SU}(2)) /\!\!/ \operatorname{SU}(2)$ (verified numerically).

The character variety $\text{Hom}(F_2, \mathrm{SU}(2)) /\!\!/ \mathrm{SU}(2)$ can be embedded in \mathbb{R}^3 via trace coordinates, with image given by

$$\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2-xyz-2\in[-2,2]\}\subset\mathbb{R}^3.$$



Moreover, under the natural action of $\mathrm{Out}(F_2)$, the ergodic components are the compact surfaces

$$\{x^2 + y^2 + z^2 - xyz - 2 = k\} \subset \mathbb{R}^3$$

for $k \in [-2,2]$, corresponding to relative character varieties $\operatorname{Hom}_k(F_2,\operatorname{SU}(2)) /\!\!/ \operatorname{SU}(2)$. Under such identification, the action of $\operatorname{Out}(F_2)$ is generated by two Dehn twists

$$T_X \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ z \\ xz - y \end{pmatrix}, \qquad T_Y \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \\ yz - x \end{pmatrix}.$$

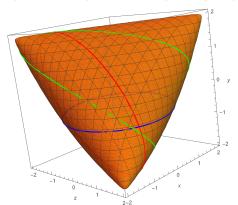
For k = 1.99, the relative character variety is

$$\{x^2 + y^2 + z^2 - xyz - 2 = k\} \subset \mathbb{R}^3$$

with maps

$$T_X(x, y, z) = (x, z, xz - y),$$

$$T_Y(x,y,z)=(z,y,yz-x).$$



Recall that uniform expansion means that there exists C > 0 and $N \in \mathbb{N}$ such that for all $P \in M$ and $v \in T_P M$,

$$\int_{\mathrm{Diff}^2(M)} \log \frac{\|D_P f(v)\|}{\|v\|} d\mu^{(N)}(f) > C > 0.$$

Given the explicit form of both the compact surface and the maps, one can verify uniform expansion numerically:

- **1** Check UE on a grid on the (compact) unit tangent bundle T^1M using a program,
- **2** Extend to nearby points by the smooth dependence of the left hand side on $(P, \theta) \in T^1M$.

Time complexity: $O(\lambda^6 A^2)$, where λ , A are C^1 and C^2 norms of f.

Theorem (C.)

For k near 2, $\mu = \frac{1}{2}\delta_{T_X} + \frac{1}{2}\delta_{T_Y}$ is uniformly expanding on $Hom_k(F_2, SU(2)) /\!\!/ SU(2)$.

Corollary

For k near 2, let $X = Hom_k(F_2, SU(2)) /\!\!/ SU(2)$, then

- every $Out(F_2)$ -orbit on X is either finite or dense.
- Every infinite orbit equidistribute on X.
- Every ergodic $Out(F_2)$ -invariant measure on X is either finitely supported or the natural volume measure.

Remark:

- **1** The topological statement was obtained by Previte and Xia for all $k \in [-2, 2]$ with a completely different method, using crucially the fact that $Out(F_2)$ is generated by Dehn twists.
- ② Our method is readily applicable for proper subgroups Γ of $\operatorname{Out}(F_2)$, including those without any powers of Dehn twists. It is only limited by computational power.
- 3 Are there faster algorithms to verify uniform expansion? Likely.

Thank you!