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Abstract

This paper provides empirical evidence on predictable shifts in the degree of bond return

predictability. Bond returns are predictable in high (low) economic activity (uncertainty)

states, which suggests that the expectations hypothesis of the term structure holds

periodically. These state-dependencies in predictability, established by introducing a

new multivariate test for equal conditional predictive ability, can be used in real-time

to improve out-of-sample bond risk premia estimates and investors’ economic utility

through a novel dynamic forecast combination scheme. Dynamically combined forecasts

exhibit strong countercyclical behavior and peak during recessions. The empirical

findings can be explained within a non-linear term structure model.
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I. Introduction

The expectations hypothesis (EH) of the term structure holds periodically. We establish

this fact with new empirical evidence of periodic and predictable shifts in bond return

predictability related to economic activity and uncertainty. Specifically, our findings suggest

that bond return predictability is associated with periods of high (low) economic activity

(uncertainty). These predictable shifts can be used in real-time to improve out-of-sample

risk premia estimates and investors’ economic utility. Existing evidence on bond return

predictability has traditionally been established using linear predictive regressions designed

to assess whether bond returns are predictable on average using time series that potentially

span many diverse states of nature.1 If predictability shifts over time, then an unconditional

approach may be misleading and lead to distorted inference. For example, while in-sample

evidence frequently points to predictability by means of variables such as forward spreads

(Fama and Bliss, 1987), yield spreads (Campbell and Shiller, 1991), forward rates (Cochrane

and Piazzesi, 2005), and macroeconomic variables (Cooper and Priestley, 2009, Ludvigson

and Ng, 2009, Cieslak and Povala, 2015, Eriksen, 2017), out-of-sample exercises often fail to

deliver consistent evidence of predictability and statistical and economic evaluations often

disagree (Thornton and Valente, 2012, Sarno, Schneider, and Wagner, 2016). Our empirical

findings suggest that accounting for state-dependencies in bond return predictability can

resolve these puzzling contradictions.

We address the issue of time-varying bond return predictability by adopting a condi-

tional perspective on predictability and using observable state variables to identify methods

anticipated to be informative of future relative forecast performance in a new modeling

1Early studies include Fama and Bliss (1987), Keim and Stambaugh (1986), Fama and French (1989), and

Campbell and Shiller (1991). More recent studies of bond return predictability includes Cochrane and Piazzesi

(2005), Cooper and Priestley (2009), Ludvigson and Ng (2009), Cieslak and Povala (2015), Eriksen (2017),

Ghysels, Horan, and Moench (2018), Gargano, Pettenuzzo, and Timmermann (2019), Berardi, Markovich,

Plazzi, and Tamoni (2020), and Bianchi, Büchner, and Tamoni (2020).
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framework.2 Our contributions are fivefold. First, we provide new empirical evidence on

predictable state-dependencies in bond return predictability. We document that bond return

predictability shifts over time for a collection of standard bond predictors from the literature

including yield curve information and macroeconomic variables. We begin with a traditional

evaluation of out-of-sample forecasts using unconditional predictive ability tests and find

little evidence that individual predictors are able to reliably outperform the EH. Importantly,

however, this does not exclude the possibility that a given method may display superior

predictability in certain states of the world. To facilitate a conditional, state-dependent view

of bond return predictability, we introduce a multivariate generalization of the statistical test

for equal (un)conditional predictive ability among two or more forecasting methods presented

in Giacomini and White (2006).3 We employ the test to assess di�erences in conditional

predictive abilities and find overwhelming evidence favoring state-dependencies in bond return

predictability.

Second, we show that the shifts in predictability are related to economic activity and

uncertainty measured using the Purchasing Manager’s Index (PMI) (see, e.g., Berge and Jordà

(2011) and Christiansen, Eriksen, and Møller (2014)) and the macroeconomic uncertainty

index (U) proposed in Jurado, Ludvigson, and Ng (2015), respectively.4 We uncover a striking

pattern in bond return predictability across states related to these variables. Interpreting

the EH as a no-predictability benchmark, which is standard practice in the literature, we

2Predictability of future relative forecast performance is even more relevant when viewed in the light of

the numerous studies that provide empirical evidence of model instabilities in predictive models. Prominent

examples include Pesaran, Pettenuzzo, and Timmermann (2006), Giacomini and Rossi (2009, 2010), Pettenuzzo

and Timmermann (2011), Rossi (2013), and Pettenuzzo and Timmermann (2017).
3The test also extends the (unconditional) multivariate Diebold and Mariano (1995) statistic proposed in

Mariano and Preve (2012) by allowing for comparison of a mixture of nested and non-nested models.
4A number of alternative measures of uncertainty have been proposed. The qualitative findings presented

in this paper remain unchanged if the Economic Political Uncertainty index by Baker, Bloom, and Davis

(2016) or the VXO index by CBOE are used in place of the index by Jurado et al. (2015).
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provide evidence that bond risk premia are predictable in high (low) economic activity

(uncertainty) states. Conversely, time invariant risk premia, as implied by the EH, provides a

reasonable approximation in low (high) economic activity (uncertainty) states. Consistent

with this, out-of-sample R2s (Campbell and Thompson, 2008) for individual predictors are

mostly negative in low (high) economic activity (uncertainty) states and positive in high

(low) activity (uncertainty) states. In short, albeit several predictors fail to provide valuable

information on average, many outperform the EH conditional on the state of the economy.

Third, we show that the predictable state-dependencies in bond return predictability

are exploitable for real-time forecasting purposes. We propose a simple dynamic ranking

rule for identifying the set of forecasting methods that possess the best, yet statistically

indistinguishable, conditional predictive ability in real-time inspired by the Model Confidence

Set (MCS) approach of Hansen, Lunde, and Nason (2011). As we shall see, our multivariate

test for conditional predictability ability is instrumental in identifying and eliminating

inferior methods by informing us of state-dependent di�erences. The rule is based on least

squares predictions of relative forecasting performance and is straightforward to implement.

Importantly, our method is based on expected predictive ability, which separates it from

methods relying on past performance (see, e.g., Aiolfi and Timmermann (2006), Samuels and

Sekkel (2017), and Adämmer and Schüssler (2020)). We show that this is a key feature in

correctly identifying conditional predictability in our setting. The best set of methods at any

given point in time may then consists of a single method, all methods, or any number in

between. If more than one method is selected, we perform equal-weighted forecast combination

(Bates and Granger, 1969) among the selected methods. It is well established that an equal-

weighted combination strategy among all initial methods is hard to beat (Timmermann, 2006)

and performs well for financial time series (Rapach, Strauss, and Zhou, 2010). Our approach

can thus be viewed as a data-driven and forward-looking way to select between dynamic

model selection and forecast combination. It further addresses an outstanding issue raised in

Aiolfi, Capistrán, and Timmermann (2011) that little attention has been paid to determining
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the optimal set of models to combine given a potential pool of candidate predictors. Our

dynamic approach provides a natural way to select the methods expected to perform well and

dynamically eliminate those expected to perform poorly.5 We show that the implementation

of the forecast combination scheme with dynamic trimming delivers sizeable gains in predictive

accuracy relative to (i) the EH, (ii) a static equal-weighted forecast combination strategy, and

(iii) a dynamic combination strategy based on past (unconditional) average predictability

when evaluated using both standard statistical criteria and when measuring the economic

value from the viewpoint of a mean-variance investor that trades in the Treasury bond market.

Importantly, dynamically combined forecasts deliver positive and sizeable out-of-sample R2

values and utility gains even in states where all individual predictors are weak. In fact,

dynamically combined forecasts always performs better than the EH in all states and at

least as good as the competing combination strategies. This suggests that a conditional view

of bond return predictability o�ers a resolution to the puzzling contradiction between the

statistical and economic evidence often found in the literature (Thornton and Valente, 2012,

Sarno et al., 2016). Importantly, this is achieved within a standard linear framework and

without having to adopt Bayesian approaches with stochastic volatility (Gargano et al., 2019)

or computationally expensive machine learning methods (Bianchi et al., 2020).

Fourth, we document that our dynamic forecast combination scheme generates out-of-

sample bond risk premia estimates that are strongly countercyclical and peak in recessions.

This is an important result as nearly all individual predictors (except the Ludvigson and Ng

(2009) factor) generates procyclical risk premia estimates. Unlike the individual predictors,

the dynamically combined forecasts are therefore consistent with standard finance theory in

which risk premia to expected be high in bad economic times due to heightened risk aversion

5A large empirical literature documents gains from (statically) trimming the sets of forecast methods

prior to averaging. Notable examples include Aiolfi and Favero (2005), Aiolfi and Timmermann (2006),

Timmermann (2006), Stock and Watson (2004), Rapach et al. (2010), Bjørnland, Gerdrup, Jore, Smith, and

Thorsrud (2012), and Genre, Kenny, Meyler, and Timmermann (2013).
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(Campbell and Cochrane, 1999, Wachter, 2006, Buraschi and Jiltsov, 2007), and support

models with time-varying risk and risk prices (Bekaert, Engstrom, and Xing, 2009, Carpenter,

Lu, and Whitelaw, 2020, Creal and Wu, 2020). The simple equal-weighted combination

schemes, on the other hand, generates acyclical out-of-sample forecasts with little relation

to the macroeconomy. The fact that our dynamic forecast combination scheme delivers

countercyclical out-of-sample risk premia forecasts that improve overall predictive accuracy

and economic value strongly supports our conclusion that the test reliably identifies and

exploits shifts in bond returns predictability.

Last, we illustrate that our empirical findings can be explained within a non-linear term

structure model that allows for state-dependencies in the yield curve. In particular, we

consider a one-factor version of the non-linear model presented in Feldhütter, Heyerdahl-

Larsen, and Illeditsch (2018) in which bond prices, short rates, and prices of risk can be

viewed as linear combination of the corresponding values in two artificial economics, which

we interpret as corresponding to two di�erent states of the world. The estimated model

predicts that the EH holds in one of two states, but not in the other, which is consistent with

state-dependent shifts in bond return predictability. The model-implied stochastic weight

on the state of the economy in which the EH holds is decreasing (increasing) with economic

activity (uncertainty), which is consistent with the patterns document in this paper. The

model therefore provides a simple, but clear, illustration of a mechanism that can rationalize

our empirical findings. Moreover, it is possible to interpret the stochastic state weight as a

measure of disagreement between agents in a reduced-form consumption-based asset pricing

model. Under this view, the model allows for an assessment of time-varying di�erences in

beliefs among agents, which Cujean and Hasler (2017) show can generate state-dependent

predictability in a theoretical framework.

In sum, we provide new empirical evidence of predictable state-dependencies in bond

return predictability that are linked to economic activity and uncertainty. We document

that these predictability shifts are exploitable in real-time and delivers sizable gains in both
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predictive accuracy and economic value. The gains originate from the method’s ability

to correctly predict relative forecasting performance and this, in turn, leads to better and

economically meaningful out-of-sample bond risk premia estimates.

Related literature Our paper relates to several strands of literature. First, an extensive

literature studies the predictability of Treasury bond excess returns. This literature has

traditionally evaluated predictability from an unconditional perspective. We contribute to

this literature by o�ering a conditional perspective on bond return predictability. Our paper

is therefore closely related to a large and active literature on time-varying predictability of

asset returns. Rapach et al. (2010), Henkel, Martin, and Nardari (2011), and Dangl and

Halling (2012) find that stock return predictability is closely linked to the business cycle

and mostly present in recessions. Cujean and Hasler (2017) o�er a theoretical model for

this observation based on time-varying disagreement among investors. Farmer, Schmidt,

and Timmermann (2019) show that predictability is mainly local in time and consists of

“pockets” with significant predictability. Gargano et al. (2019) argue that bond predictability

is stronger in recessions, but present in both states. A similar result is found in Bianchi

et al. (2020). Andreasen, Engsted, Møller, and Sander (2020) find in-sample evidence for

time-varying parameters in bond prediction models and show that bond risk premia relate

positively (negatively) to yield spreads in expansions (recessions). These findings are generally

consistent with studies such as Hamilton (1988), Gray (1996), and Ang and Bekaert (2002)

who provide evidence of regime switches in interest rates which are related to economic

activity. We add to this literature by providing new evidence on the real-time predictability of

time-variations in out-of-sample forecasting performance for a set of standard bond predictors.

Our empirical evidence further contributes to our understanding of bond market dynamics

by demonstrating that bond return predictability is stronger in high (low) economic activity

(uncertainty) states and that exploiting this using a dynamic forecast combination strategy

yields highly countercyclical out-of-sample forecasts in accordance with standard asset pricing
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theory. Although our results di�er from Gargano et al. (2019), a direct comparison is not

possible as our results are based on out-of-sample estimates, whereas their decomposition

is based on full-sample estimates. Moreover, our low (high) activity states are, like the

pockets of Farmer et al. (2019), more encompassing than the recession (expansion) periods

defined by the NBER. We further argue that adopting a conditional view of predictability

o�ers a solution to the puzzling contradiction between statistical and economic evaluations of

predictability (Thornton and Valente, 2012, Sarno et al., 2016).

Our paper is also related to a growing literature on forecast evaluation. Our multivariate

generalization of the Giacomini and White (2006) test provides forecasters with the opportu-

nity to test equal (un)conditional predictive ability among many forecast methods without

having to rely on multiple testing adjustments (Hubrich and West, 2010) or non-standard

and context-specific distribution often found in the literature (Clark and McCracken, 2001,

McCracken, 2007, Clark and McCracken, 2012, Gonçalves, McCracken, and Perron, 2017).6

Our tests are applicable to a mixture of both nested and non-nested models, hold for a

general loss function, allow for non-stationarity in the data, and permit comparison of a wider

class of forecasting methods than those considered in this paper, including linear, non-linear,

Bayesian, and non-parametric methods.7 Finally, we contribute to the literature on forecast

combination and dynamic method selection. Early contributions include Makridakis and

Winkler (1983) and more recent contributions documenting the empirical benefits include

Jose and Winkler (2008), Rapach et al. (2010), Samuels and Sekkel (2017), Diebold and

Shin (2019), and Adämmer and Schüssler (2020). Samuels and Sekkel (2017) find that using

the (unconditional) MCS as a trimming device prior to constructing combined forecasts

6Moreover, our tests are generally invariant to any reordering of the forecasting methods under comparison,

ensuring that conclusions drawn from a single test is unaltered by any permutation of the ordering of the

forecasting methods. This alleviates the need for multiple testing adjustments.
7That the test allows for nested models is especially important in our setting as the EH is nested in all of

our predictive methods. This sets the test apart from those presented in Hubrich and West (2010), Mariano

and Preve (2012), and Clark and McCracken (2012).
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can greatly improve accuracy. Diebold and Shin (2019) propose a LASSO-based procedure

that sets some combining weights to zero and shrinks the remaining weights toward equal-

weighting. Adämmer and Schüssler (2020) perform model selection or forecast combination

by ranking multiple methods dynamically based on their past predictability. Our approach

di�ers by being rooted in a formal multivariate test of equal conditional predictive ability

and by focusing on future expected performance (Timmermann and Zhu, 2017, Granziera

and Sekhposyan, 2019) rather than past (unconditional) performance. For comparison, we

implement a version of the unconditional dynamic method selection rule (Samuels and Sekkel,

2017, Adämmer and Schüssler, 2020) and find that a conditional procedure provides superior

predictive ability and that, in our setting, the unconditional version does not improve upon

the static equal-weighed combination rule.

The remainder of the paper proceeds as follows. Section II outlines the setting and data.

Section III develops a multivariate tests for equal (un)conditional predictive ability and

introduces the dynamic forecast combination scheme. Section IV presents our main empirical

findings on state-dependencies in bond return predictability. Section V examines the link

between out-of-sample risk premia estimates and the real economy. Section VI quantifies

the economic value of predictable state-dependencies. Section VII presents a non-linear term

structure model that generates state-dependent predictability. Finally, Section VIII provides

concluding remarks.

II. Bond return predictability

This section describes the predictive regression framework for bond excess returns and provides

summary statistics. We then outline the bond predictors used in the empirical analyses and

discuss the state variables used to assess state-dependencies in bond return predictability.
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A. Predictive regression for bond returns

We consider a classic linear predictive regression model for bond risk premia

(1) rx(k)
t+· = –(k) + —(k)xt + Á(k)

t+· ,

where rx(k)
t+· = p(k≠·)

t+· ≠ p(k)
t ≠ p(·)

t denotes the · -month log excess holding period return on a

k-month zero-coupon Treasury bond and p(k)
t is the time-t log price of a bond with k months

to maturity. We are interested in determining whether a set of predictors xt can improve

the prediction of bond excess returns relative to the constant expected returns benchmark

—(k) = 0 (i.e. no predictability) implied by the EH. Our empirical analysis focuses on monthly

U.S. Treasury bond excess returns (· = 1) over the period 1962 to 2018 constructed using the

Gürkaynak, Sack, and Wright (2007) dataset and a one-month Treasury bill obtained from

the Center for Research in Security Prices (CRSP) as in Gargano et al. (2019).8 By using

monthly holding period returns, we avoid the issues that the artificial persistence induced

from using annual overlapping returns can have on inference procedures (Bauer and Hamilton,

2018). Additionally, the higher return frequency allows us to better capture short-lived

dynamics in bond excess returns across economic states (Farmer et al., 2019, Gargano et al.,

2019).

[Insert Figure 1 About Here]

Figure 1 plots time series of excess returns for Treasury bonds with two, three, four, and

five years to maturity, respectively.9 Bond excess returns are notably more volatile during

the early 1980s, smaller and less variable since the 1990s, but visibly increasing in size and

variability during the 2000 and 2008 recessions.

8We detail the construction of monthly log yields and bond prices in the Internet Appendix. The data

are available at https://www.federalreserve.gov/data/nominal-yield-curve.htm.
9The same set of maturities are considered in, e.g., Fama and Bliss (1987), Cochrane and Piazzesi (2005),

Ludvigson and Ng (2009), Thornton and Valente (2012), Eriksen (2017), and Gargano et al. (2019).
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[Insert Table 1 About Here]

Panel A of Table 1 presents descriptive statistics for monthly bond excess returns. Mean

excess returns and volatilities are increasing with maturity, whereas Sharpe ratios are

declining from a high of 0.46 for the two-year bond to 0.35 for the five-year bond. Short-term

bonds exhibit higher skewness, kurtosis, and have somewhat more persistent excess returns.

Importantly, first-order autocorrelation coe�cients for monthly bond excess returns are

substantially lower than those typically observed in studies using annual overlapping bond

excess returns (see, e.g., Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009)) and the

first-order autocorrelation coe�cient never exceeds 0.17 across the maturity spectrum. Panel

B of Table 1 provides contemporaneous bond excess return correlation across maturities and

confirms the well-known observation that bond excess returns are strongly cross-sectionally

correlated across maturities.

B. Predictor variables

Our empirical analysis centers on out-of-sample forecasts generated using predictive models

as in (1) with a collection of standard bond return predictors proposed in the literature.

Specifically, we consider (i) yields spreads (Campbell and Shiller, 1991, CS) computed as the

di�erence between the yield on a bond with k months to maturity and the implied yield on a

one-month Treasury bill obtained from CRSP, (ii) forward spreads (Fama and Bliss, 1987,

FB) computed as the di�erence between the k-month forward rate and the one-month yield,

(iii) the first three principal components (PC) of yields (Litterman and Scheinkman, 1991)

obtained using 12, 24, 36, 48, and 60 month yields, (iv) a linear combination of forward rates

(Cochrane and Piazzesi, 2005, CP) obtained from projecting 12, 24, 36, 48, and 60 month

forward rates onto the mean excess bond return across the maturity spectrum, and (v) a

linear combination of macroeconomic factors (Ludvigson and Ng, 2009, LN) obtained using
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the FRED-MD database (McCracken and Ng, 2016) and estimated analogously to CP.10

All variables are constructed recursively in the out-of-sample exercise.11 Section IA.C.2 in

the Internet Appendix provides additional details on variable construction and descriptive

statistics.

C. State variables

Traditional bond return predictability tests ask whether bond excess returns are predictable on

average, not if and when bond returns are predictability. We address this issue by introducing

a new method to gauge periodic, state-dependent predictability in a multivariate setting that

rests on the basic premise that even unconditionally poor predictors may sharpen bond risk

premia predictions in certain states of the world. To uncover such states, we need to identity

state variables that are likely to capture fluctuations in forecast losses. We consider two

variables well-known to the literature.12

The first state variable we consider is the Purchasing Managers’ Index (PMI) published

by the Institute of Supply Management. PMI is a closely watched barometer of business

conditions released on the first business day of every month and is regarded as a prime

leading indicator of the business cycle (Berge and Jordà, 2011, Christiansen et al., 2014).13

10The literature o�ers more variables for utilizing macroeconomic information in prediction and these

could naturally be entertained as well. We choose to focus on a standard set here, but note that variables

such as the output gap (Cooper and Priestley, 2009) and interest rate cycles (Cieslak and Povala, 2015)

similarly reveal predictable state-dependencies. Their inclusion does not alter our findings, if anything, our

results become stronger.
11Ghysels et al. (2018) argue that the predictive power of macro variables for future overlapping excess

bond returns originates largely from data revisions not available to forecasters in real-time (see also Fulop, Li,

and Wan (2020)). Eriksen (2017) and Huang, Jiang, Tong, and Zhou (2020), on the other hand, show that

carefully identifying the data available at the time of the forecast using vintages of real-time data recovers

most of this predictability.
12We provide additional details in Internet Appendix IA.C.3 along with descriptive statistics.
13Bloomberg, for example, o�ers a world map of business conditions based on PMI here:
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Using a variable that tracks business cycle fluctuations to assess state-dependencies in bond

predictability is motivated by a natural link to time-varying risk aversion (Campbell and

Cochrane, 1999, Wachter, 2006, Creal and Wu, 2020) and a large literature that documents

di�erences in predictability connected to the business cycle (Rapach et al., 2010, Henkel

et al., 2011, Dangl and Halling, 2012, Andreasen et al., 2020).

The second state variable is the macroeconomic uncertainty index (U) proposed in Jurado

et al. (2015).14 Macroeconomic uncertainty has recently been identified as an important

contributor to business cycle fluctuations (Bloom, 2009, Ludvigson, Ma, and Ng, 2019)

and asset prices (Drechsler, 2013, Bali, Brown, and Tang, 2017, Borup and Schütte, 2020).

Moreover, it has recently been used to study state-dependent performance of a�ne term

structure models (Sarno et al., 2016). Last, uncertainty is likely to be linked to risk aversion

(Bekaert, Engstrom, and Xu, 2019), which bears direct influence on the required compensation

for bearing interest rate risk.

[Insert Figure 2 About Here]

Figure 2 displays the evolution of the state variables over time. To identify states and to

facilitate interpretation, we define periods of high (low) activity and uncertainty, respectively,

using the 80% (20%) quantiles of their time series. These states are represented by green

(yellow) shaded areas in the graph. We refer to the remaining periods as normal activity

and uncertainty states, respectively. The quantiles are chosen to represent extreme states,

while ensuring a reasonable number of observations for inference.15 PMI and U both identify

https://www.bloomberg.com/graphics/global-pmi-tracker/.
14We focus on the index associated with h = 1 step ahead forecast errors to match the holding period

of the bond as well as the data frequency in general. The index is available from Sydney C. Ludvigson’s

website: https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes.
15Similar approaches to identifying high/low and good/bad states can be found in, among others, Liew

and Vassalou (2000), Rapach et al. (2010), and Sarno et al. (2016). We note that our definition of low activity

is broader than simply a recession, which would roughly correspond to using a 10% quantile.
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persistent states, where PMI (U) mostly takes on low (high) values in bad times. The two

series have a sample correlation of ≠0.48, suggesting that the series are related, but not

perfect substitutes.

III. Testing for state-dependent predictability

In this section, we develop a multivariate test for equal conditional predictive ability that

allows us to assess and identify state-dependencies in predictability in real-time. We further

propose a simple forecast combination scheme with dynamic trimming of methods designed to

capitalize on predictable state-dependencies. The method nests the standard equal-weighted

combination among all forecasts as well as dynamic method selection.

A. Notation

To introduce a general notation, let wt © (yt, xt)Õ be an observed vector defined on the

probability space (�,F,P), where yt is the target object of interest and xt is a vector of

predictors. We consider a setting in which p + 1, p Ø 1, methods are available for forecasting

· periods into the future. We denote the forecast of yt+· constructed at time t by ‚f i
t+· =

f i
3

wt, wt≠1, . . . , wt≠mi+1; ‚◊
i

t,mi

4
for i = 1, . . . , p+1, where f i is a measurable function. ‚◊

i

t,mi

denotes the parameter estimates used to construct the forecast for the ith forecasting method

obtained using observations from the mi most recent periods. For ease of exposition, and along

the lines of Giacomini and White (2006), we define m = max {m1, . . . , mp+1} and require that

m < Œ. This allows for rolling window estimators, but excludes expanding window forecasting

schemes from our test. The number of out-of-sample forecasts is T = N ≠ (m + · ≠ 1) for a

total sample size of N (time series) observations. In order to assess the forecasting ability

of each forecasting method, we use a real-valued loss function Lt+·

1
Yt+· , ‚f i

t+·

2
. Important

examples of L include economic measures such as utility or profits (Granger and Machina,

2006) and statistical measures such as the square or absolute value of the forecast errors
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(West, 2006), where forecast errors are given by ei
t+· = ‚f i

t+· ≠ yt+· . To ease notation, we

suppress the arguments of L and write the ith loss function as Li
t+· for the remainder of the

paper.

B. Rolling window forecasts

The empirical analysis is based on out-of-sample forecasts generated by predictive regression

models as in (1).16 We consider a set of p + 1 methods, indexed by i, defined by the p

predictors outlined in Section B in addition to the EH benchmark. We estimate the predictive

regression models by a rolling window OLS scheme, in accordance with our assumptions, and

generate forecasts at time t according to (suppressing maturity-dependence for notational

simplicity)

‚f i
t+· = ‚–i

t + ‚—
i

tx
i
t,(2)

for i = 1, . . . , p with ‚◊
i

t,mi =
3

‚–i
t,

‚—
i

t

4Õ
. The benchmark EH forecast naturally includes no

predictors and is simply defined as ‚fp+1
t+· = ‚–p+1

t , which is consistent with a no-predictability

interpretation implied by financial theory.

C. The hypothesis of equal conditional predictive ability

We are interested in formally evaluating whether a set of p + 1, p Ø 1, forecasting methods

display equal conditional predictive ability using some information set (‡-field), Gt. That is,

we wish to test the null hypothesis that

H0: E
Ë
Li

t+· |Gt

È
= E

Ë
Li+1

t+· |Gt

È
, i = 1, . . . , p,(3)

16We emphasize, however, that our econometric framework is not limited to such regressions, but naturally

includes a broader class of parametric, non-parametric, and Bayesian methods.
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or, equivalently, that

H0: E [�Lt+· |Gt] = 0,(4)

where �Lt+· =
1
�L1

t+· , . . . , �Lp
t+·

2Õ
is a p-dimensional vector of loss di�erentials (i.e.

�Li
t+· = Li

t+· ≠ Li+1
t+· for i = 1, . . . , p with Li

t+· being the loss function for the ith method).

The null hypothesis in (4) is empirically relevant for a number of financial and macroeconomic

applications and o�ers at least three main advantages.17 First, it allows us to study not only

if but also when there are detectable di�erences in the predictive accuracy of two or more

methods. This is distinctly di�erent from the traditional approach of assessing equal predictive

accuracy on average and may facilitate the discovery of predictive ability in certain states

of the world as captured by Gt. An equivalent viewpoint is that the null hypothesis implies

that Gt is uninformative about the relative predictive accuracy of one or more forecasting

methods when forecasting the object of interest · periods into the future, whereas a rejection

implies that the relative predictive accuracy is predictable by Gt and potentially exploitable

in a real-time forecasting environment. Second, if Gt is set to the trivial ‡-field, Gt = {ÿ, �},

then the null hypothesis reduces to an unconditional test comparable to that considered in

Mariano and Preve (2012) that provides information about the average predictive ability of

the forecasting methods as in Diebold and Mariano (1995) and West (1996). Third, the loss

functions depend explicitly on the parameter estimates and not on their probability limits,

leading to a test statistic that takes into account estimation uncertainty. Importantly, by

allowing for asymptotically non-vanishing estimation uncertainty, the test can accommodate

the empirically relevant case of nested models in the set of forecasting methods.18 This is

17The null nests the special case of studying predictability across recessions and expansions (see, e.g.,

Henkel et al. (2011) and Dangl and Halling (2012) for stocks and Gargano et al. (2019), Andreasen et al.

(2020), and Bianchi et al. (2020) for bonds), but is more general and allows for continuous state variables.
18Technically, with Gt = {ÿ, �} and asymptotically vanishing estimation uncertainty, the standard errors

of di�erences in forecast performance between a set of nested models will equal zero, leading to non-standard
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key in our context as the EH model is nested within all methods coming from the predictive

framework in (1).

D. The multivariate test statistic

The null hypothesis in (4) can equivalently be stated as

H0: E
Ë
Âht�Lt+·

È
= 0(5)

for all Gt-measurable functions Âht and Ft ™ Gt. We restrict attention to a subset of these

functions collected in the q-dimensional vector ht =
1

Âh(1)
t , . . . , Âh(q)

t

2Õ
. We refer to this vector

as a state function. Given a state function, we can then reformulate the multivariate null

hypothesis of equal conditional predictive ability as follows

H0,h: E [ht ¢ �Lt+· ] = 0,(6)

where the subscript h indicates the dependence on the state function and ¢ denotes the

Kronecker product. The specification in (6) is a natural multivariate extension of the null

hypothesis considered in Giacomini and White (2006) and we indeed obtain their econometric

framework as a special case for p = 1.

As is common in the bond return predictability literature, we consider one-step ahead

predictions, · = 1, as our leading example throughout, but provide theoretical results for

multi-step ahead forecasting, i.e. · > 1, in the Internet Appendix along with our assumptions

that are adopted from Giacomini and White (2006). The information set Gt contains the state

variables discussed in Section C. Finally, let dt+1 = ht ¢ �Lt+1 and consider the quadratic

limiting distributions of the test statistics.
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statistic

Sh = Td
Õ ‚�

≠1
T d,(7)

where d © T ≠1 qT
t=1 dt+1 and ‚�T © T ≠1 qT

t=1 dt+1d
Õ
t+1 is a (qp ◊ qp) sample covariance

matrix that consistently estimates the variance of dt+1.19 That is, Sh is a natural Wald

statistic constructed for testing whether d is a zero vector. When formulating an alternative

hypothesis, it is important to take into account that the data may exhibit non-stationarity. We

provide a discussion in the Internet Appendix. For some c > 0, we formulate the alternative

in line with Giacomini and White (2006) as

HA,h: E
Ë
d

ÕÈ
E

Ë
d

È
Ø c,(8)

for all T su�ciently large. Under stationarity, the null and alternative hypothesis are

exhaustive. Under non-stationarity, this is not necessarily the case. If an important Gt-

measurable variable is omitted from the state function, it may happen that E
Ë
d

ÕÈ
E

Ë
d

È
= 0 for

a particular sample size due to, for instance, shifting means without the null hypothesis being

true. As an example, one could easily imagine a situation where one method outperforms

(some of) the other methods in certain states, while it performs worse than those methods

in other states. Therefore, the test has little power against alternatives where the loss

di�erentials are correlated with Gt-measurable random variables not included in the state

function. While this concern is important, it also highlights the flexibility of the test statistic.

As mentioned above, the econometrician chooses the state function to include state variables

relevant for disentangling the forecasting abilities of two or more forecasting methods. The

19We note that for large values of q and/or p, the dimension of �T and d may become large, potentially

leading to issues with statistical inference in finite samples. We propose remedies in Borup and Thyrsgaard

(2017), but note that our empirical analyses imply reasonable dimensions with one state variable and p = 5

predictors plus the EH benchmark.
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test, therefore, only provides power in situations when this is possible. As a result, the test

statistic changes with the choice of state function, which is emphasized through the subscript

in Sh.

The asymptotic properties of the test statistic are summarized in Theorem 1 and we

provide proofs and derivations in the Internet Appendix.

Theorem 1 (One-step multivariate conditional predictive ability test). Suppose that

Assumptions 1-3 hold (see the Internet Appendix for details). Then the test statistic has the

following properties.

A. Asymptotic distribution under the null. For forecast horizon · = 1, state function

sequence {ht}, m < Œ, and under H0 in (4),

Sh
d≠æ ‰2 (qp) , as T æ Œ.(9)

B. Consistency under the alternative. For any c œ R+ and under HA,h in (8),

P [Sh > c] æ 1, as T æ Œ.(10)

C. Permutation invariance. Let Lú
t+1 be an arbitrary permutation of the vector of

forecast losses, and define �Lú
t+1 = DLú

t+1, where

D =

S

WWWWWWWWWWU

1 ≠1 0 . . . 0

0 1 ≠1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 ≠1

T

XXXXXXXXXXV

(11)

is a p ◊ (p + 1) matrix. Let d
ú = T ≠1 qT

t=1 dú
t+1 with dú

t+1 = ht ¢ �Lú
t+1 and ‚�

ú
T ©
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1
T

qT
t=1 dú

t+1d
úÕ

t+1. Then,

Sú
h © Td

úÕ

m

1
‚�

ú
T

2≠1
d

ú
m = Sh, ’ T.(12)

We provide a corresponding result for the unconditional, possibly multi-step, case, in the

Internet Appendix. The unconditional case, in which we compare the average performance

of the methods over the out-of-sample window, is obtained by setting ht = 1 for all t. The

limiting distribution is then ‰2 (p) for a test statistic that employs a HAC type covariance

matrix estimator to capture serial dependence. In the case of the conditional test and multi-

step forecast horizons, a ‰2 (qp) limiting distribution is obtained when using an appropriate

HAC type covariance matrix estimator. Although any reordering of the forecasting methods

alters the dynamics of dt+1, Theorem 1.C. shows that we obtain the same value of the test

statistics and the same limiting distribution under the null hypothesis for each permutation

(reordering) of the forecasting methods, regardless of the null being true or not. This is

important as it allows the researcher to perform just a single test. Appendix IA.B provides

Monte Carlo simulations confirming proper small sample properties of the test in a setting

that matches the empirical application below.

E. Understanding the test

This section provides an intuitive illustration of the test statistic. Consider the simple case

of p = 1, where the problem reduces to a comparison between a single pair of forecasting

methods. An unconditional test is equivalent to the regression

�Lt+1 = Ï0 + ÷t+1,(13)

where the null hypothesis that Ï0 = 0 can be tested using a standard t-test using an

appropriate HAC type of covariance estimator to account for serial correlation under the
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null hypothesis. The conditional test augments the regression with a set of state variables.

Suppose that we consider a single state variable h̃t (as in the empirical analysis below to

facilitate economic interpretation), then the conditional test amounts to running the extended

regression

�Lt+1 = Ïht + ÷t+1 = Ï0 + Ï1h̃t + ÷t+1,(14)

with Ï = (Ï0, Ï1) and ht =
1
1, Âht

2Õ
being the state function.20 In this case, we are interested

in testing jointly Ï0 = Ï1 = 0 using a Wald test and an appropriate estimator of the

covariance matrix. The limiting distribution under the null hypothesis is equivalent to the

ones provided in Theorem 1. From (14), it is clear that a rejection of Ï1 = 0 indicates

that the state variable Âht is informative about the future relative predictive ability of the

methods under consideration. That is, there is evidence of state-dependency. Importantly,

the expression in (14) is nothing more than a full sample predictive regression similar in spirit

to (1) estimated over the out-of-sample window. The key di�erence is that (14) predicts

the future relative predictive ability among the candidate forecasting methods using state

variables whose values are observable at the construction of the forecast and are picked by

the researcher. We refer to them as state regressions in the following. These ideas naturally

extend to our case of p > 1, in which case the test statistic is similar tox a seemingly unrelated

regression (SUR) framework. We will make use of this insight below when formulating a

simple decision rule to exploit rejections of the null hypothesis to dynamically select or

combine among forecasting methods with indistinguishable predicted performance.

20Using multiple state variables, in addition to the constant, is then equivalent to running a multiple

regression and conducting joint inference on all parameters.
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F. Ranking of forecasting methods

A rejection of the null hypothesis suggests that one or more forecasting methods exhibit

superior predictive ability in certain states, but provides little guidance towards identifying

the method(s) causing the rejection and the predictive state. This identification is of both

economic and practical interest. Central banks, international organizations (IMF, OECD,

and the World Bank), and professional forecasters (SPF and Blue Chip) frequently generate

forecasts that are widely followed by market participants and policy makers. Designing

routines that can identify when forecasts and/or forecasters are predicted to do well in

real-time is clearly relevant.

We therefore propose a dynamic rule that facilitates the identification of the best set of

methods in real time conditional on the realization of one or more state variables at the time

of the forecast. The procedure is designed to reveal potential fluctuations in predictive ability

over time, similar in spirit to the fluctuation test of Giacomini and Rossi (2010), and their

origins through the use of observable state variables. In formulating the rule, we consider a

MCS-type procedure (Hansen et al., 2011) that eliminates inferior methods according to a

prespecified elimination rule and rank forecasting methods into a best set whose elements

have equal predictive ability conditional on the information available at the time of the

forecast.

To identify the best set, we divide the out-of-sample window into two parts. The first

part has length T1 and is used for initially estimating the state regression. The second part

has length T2, with T1 + T2 = T , over which the dynamic procedure will be employed. We

introduce the following additional notation for the dynamic ranking rule. First, for every

time t we let Mt denote the set of forecasting methods available at time t. The goal of the

proposed procedure is to eliminate any inferior forecasting methods from this set, leaving

the set Mú
t of superior forecasting methods whose predictive ability are indistinguishable.

The rule is formulated using a single state variable (and a constant), but it can be extended
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directly to a setting with multiple state variables. We then propose the following three-step

ranking algorithm at each time point t = m + T1, . . . , N ≠ 1.

Step 0: For all pairwise combinations of forecasting methods, j, i œ Mt, i ”= j estimate

by OLS the regression model

�L(i,j)
s+1 = Li

s+1 ≠ Lj
s+1 = Ïjhs + ÷s+1(15)

with s = t ≠ T1 + 1, . . . , t, i.e. using a rolling window of the past T1 forecast errors.

The conditional expectation E

Ë
�Lj

t+1|Gt

È
is estimated by ‚Ïjht = ‚Ïj

0 + ‚Ïj
1
Âht, which

measures the time t prediction of the future relative performance of method i and j

given the current information in the state variable. Based on those predictions, rank

all p + 1 methods (using a normalization of one method). The forecasting method with

lowest predicted loss across all pairwise combinations is ranked first and the method

with highest predicted loss is ranked last.

Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set Mú
t = Mt. Otherwise, eliminate the lowest

ranked forecasting method from Mt based on the ranking of predicted forecast losses.

Iterate Steps 1–2 until the null is no longer rejected.

A few remarks are in order. First, the ranking rule exploits the state regression interpre-

tation of our test statistic and is strongly rooted in econometric theory. Second, since the

elimination of models is based on a state-specific ranking, the ranking rule will capture the

state-dependency of predictability over time. Third, the set of superior forecasting methods

at any given time t will not only depend on the states used, but also on the choice of loss

function. This leaves the researcher with some flexibility in choosing how di�erent types

of forecast errors should be weighted. Fourth, since the algorithm provides sets of equal

predictive ability within each state, the ranking rule can be viewed as a conditional MCS
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algorithm. Fifth, since the test is permutation invariant (see Theorem 1), the test only

needs to be carried out once each time Step 2 is conducted, even when elimination alters the

ordering of the methods. Sixth, the proposed method is forward looking in the sense that Mú
t

is comprised of the methods with lowest expected future loss. This sets our method apart

from others previously considered in the literature (see, e.g. Aiolfi and Timmermann (2006)

and Adämmer and Schüssler (2020)), which have focused solely on ranking methods based

on their past performance. Ranking solely on past, or even the most recent, performance is

especially problematic if the performance of the forecasting methods display abrupt shifts,

e.g. according to states, which our empirical evidence suggests is the case when it comes

to forecasting the bond risk premium. Finally, considering the constituents of Mú
t across

time or states informs about state-dependency in predictability, which we make use of in the

empirical section below to understand the success of this methodology and derive economic

insight.

G. Forecast combination with dynamic trimming

The set of best methods, Mú
t , may consist of a singleton, some methods, or all methods,

which suggests that the elimination rule can be interpreted as a way to dynamically trim the

set of candidate predictors. Accordingly, we propose a simple dynamically combined forecast
‚f ú
t+1 defined as

‚f ú
t+1 = 1

|Mú
t |

ÿ

iœMú
t

‚f i
t+1,(16)

where |Mú
t | denotes the number of elements in Mú

t . This definition is consistent with the

simple equal-weighting principle often found in the literature, but with the modification

that we dynamically trim the set of methods prior to combination based on the predicted
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losses from the dynamic ranking rule.21 In that way, this methodology allows for selecting

a single method, combining among all methods, or any number of methods in between

dynamically in real time. Our approach can therefore be interpreted as a data-driven and

forward-looking way to select between dynamic model selection and forecast combination.

We refer to this strategy as dynamic forecast combination. The strategy complements the

static combination and trimming rules found, for instance, in Rapach et al. (2010) and

provides a formal routine to identify the optimal set of methods prior to combination (Aiolfi

et al., 2011).22 It also extends the procedure suggested in Adämmer and Schüssler (2020) by

combining among methods that are predicted to have the smallest future losses via the use of

(15) in Step 0, as opposed to those that have the smallest past losses. Moreover, our selection

of methods is rooted in a formal multivariate testing procedure, resembling a conditional

MCS. In the special case with only two methods, p = 1, our scheme reduces to the switching

rule provided in Giacomini and White (2006). Timmermann and Zhu (2017) formally show

that forecast improvements are guaranteed when state variables are powerful and Granziera

and Sekhposyan (2019) provide empirical evidence consistent with this observation.

IV. State-dependencies in bond return predictability

This section presents empirical evidence on predictable state-dependencies in bond excess

return predictability. While individual bond predictors fail to consistently deliver reliable

21The equal-weighted combination scheme has a long tradition in the forecasting literature and is empirically

hard to beat as it involves no estimation error in weights (Timmermann, 2006, Rapach et al., 2010). Other

combination schemes are naturally possible, e.g. using estimated least squares weights, possibly with shrinkage

to equal weights (Bates and Granger, 1969, Granger and Ramanathan, 1984, Zellner, 1986, Diebold and

Pauly, 1987). While one could possibly increase forecast performance further by considering more complicated

combination schemes, this is not the aim of our paper.
22Alternative suggestions include determining the optimal set based on past performance (Aiolfi and

Timmermann, 2006), the (unconditional) model confidence set (Samuels and Sekkel, 2017), and lasso-based

procedures (Diebold and Shin, 2019).
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out-of-sample forecasts on average, we find strong evidence for state-dependent predictability

related to economic activity and uncertainty using the full sample test for equal conditional

predictability ability. Exploiting these state-dependencies using a dynamic forecast combi-

nation strategy leads to substantial gains in forecast accuracy. The empirical findings are

consistent with the EH holding periodically.

A. Out-of-sample predictability

We begin by gauging the unconditional predictive ability of individual bond predictors using

a rolling window estimation scheme. We use the period January 1962 to December 1989

as our initial in-sample estimation period, similarly to Gargano et al. (2019), leaving the

remaining period for out-of-sample predictions. The period January 1990 to December 1999

is set to our initial testing period, used in the dynamic ranking rule, and the period from

January 2000 to December 2018 as our evaluation period. We focus on U.S. Treasury bonds

with 24, 36, 48, and 60 months to maturity and consider models based on the predictor

variables outlined in Section B. To evaluate the out-of-sample performance of the predictive

methods relative to the constant expected return benchmark implied by the EH, we consider

the Campbell and Thompson (2008) out-of-sample R2 statistic

(17) R2
OS,i,k = 1 ≠

qN
t=R+1

1
rx(k)

t ≠ „rx(k)
t,i

22

qN
t=R+1

1
rx(k)

t ≠ „rx(k)
t,EH

22 ,

where „rx(k)
t+1,i and „rx(k)

t+1,EH denote the forecast from the ith predictor model and the EH

benchmark, respectively, R = m+T1 denotes the end of the testing period, and N denotes the

total number of observations.23 The R2
OS statistic in (17) is equivalent to one minus the ratio

of mean squared prediction errors, i.e. R2
OS,i,k = 1 ≠ MSP E

(k)
i

MSP E
(k)
EH

. Accordingly, we employ the

squared prediction error in place of Lt+1 when implementing our statistical tests on predictive

ability. An R2
OS > 0 implies that the MSPE of the ith predictor model is lower than that of

23See also Fama and French (1989) for a similar definition and use.
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the EH benchmark model, indicating higher predictive accuracy. We interpret the EH model

as a no-predictability benchmark and test the null of no predictability
1
R2

OS Æ 0
2

against

the one-sided alternative of predictability by the ith predictor model
1
R2

OS > 0
2

using the

Diebold and Mariano (1995) (DM) test for equal predictive ability.24

[Insert Table 2 About Here]

Panel A of Table 2 reports R2
OS values and DM p-values for individual bond predictors

across the maturity spectrum. The main conclusion is that no individual model is able to

reliably outperform the EH benchmark unconditionally for all maturities. The majority of

models deliver negative R2
OS values and those that are positive are far from being significant

at conventional levels.25 These results are in line with Gargano et al. (2019), who similarly

find few positive R2
OS values for linear predictive models.26 Panel B considers a simple (static)

equal-weighted forecast combination scheme (Bates and Granger, 1969, Timmermann, 2006,

Rapach et al., 2010). We denote this combined forecast by EW. The combined forecast

generates positive R2
OS values from 6.08% for the two-year bond to 4.58% for the five-year

bond. These values are all significant according to the DM p-value at the five percent level.

That is, although no individual predictor is able to consistently outperform the EH, a simple

equal-weighted average of the individual forecasts is.

[Insert Figure 3 About Here]

Figure 3 plots the cumulative di�erence in squared prediction errors (CDSPE) between

24Note that this is the unconditional version of the test statistic in Giacomini and White (2006) which is

nested within our framework for p = 1.
25We provide in-sample predictive regression results in the Internet Appendix, where we show that our set

of predictors are reliably related to bond risk premia.
26Our rolling window regression results for CP is poorer than in Gargano et al. (2019), indicating that

bond return predictability is sensitive to the forecasting setup. In unreported results, we indeed find that

many R2
OS

values improve when considering a forecasting environment with an expanding window instead.

However, the main conclusions remain qualitative similar.
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the EH and the ith predictor model

(18) CDSPE(k)
t,i =

tÿ

l=R+1

1
rx(k)

l ≠ „rx(k)
l,EH

22
≠

tÿ

l=R+1

1
rx(k)

l ≠ „rx(k)
l,i

22
,

where R+1 denotes the time of the first forecast, and „rx(k)
t+1,i and „rx(k)

t+1,EH denote the forecast

from the ith predictor model and the EH benchmark, respectively. This graphical device

is suggested by Goyal and Welch (2008) as a way to assess relative performance over time

(and is indirectly a visual inspection of state-dependencies). Figure 3 plots the CDSPEs

against economic activity and uncertainty states identified using PMI (left colum) and U

(right colummn), respectively, to assess the relation between relative forecasting performance

and the state variables. The plots supports the use of conditioning variables that tracks

salient features of the business cycle as several swings in CDSPE for the individual predictors

is related to states associated with high and low values of economic activity and uncertainty,

respectively.

B. Testing for equal conditional predictive ability

The previous section establishes that linear predictive methods are unable to reliably beat

the EH on average. However, this does not exclude the possibility that some methods provide

significantly better forecast in certain states of the world. We investigate this possibility

using the multivariate test for equal conditional predictive ability introduced in Section III.

We entertain three specifications for the state regression. First, we consider the information

in PMI to examine if predictive ability is related to economic activity and specify the

state function as ht = (1, PMIt)Õ. Second, we specify ht = (1,Ut)Õ to study the e�ect of

macroeconomic uncertainty.27 Third, we consider an unconditional version of the multivariate

27In principle, one could also combine the state variables into ht = (1, PMIt,Ut)Õ to exploit their joint

information. We leave the analysis of multivariate state regressions for further research and instead focus on

univariate state regressions here as they more easily facilitates state-wise interpretation.
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test in which we set ht = 1 for all t and denote the case by NONE.

[Insert Table 3 About Here]

Table 3 reports test statistics and corresponding p-values for the multivariate test for

equal (un)conditional predictive ability over the evaluation period for each of the three

specifications for the state regression. The implementation is based on a sample covariance

matrix as dictated by theory (see Section III and the Internet Appendix).28 The strong

rejections of the null hypothesis of equal conditional predictive ability across all maturities

for both specifications of ht that uses conditioning information provides substantial evidence

favoring state-dependencies in bond excess return predictability. The unconditional test, on

the other hand, fails to reject equal predictive abilities across all maturities. In other words,

the state variables enable the detection of conditional di�erences in predictive accuracy. We

conclude that individual predictors are equally accurate when evaluated unconditionally, but

statistically di�erent conditional on states of economic activity or uncertainty.

C. Ranking and elimination of methods

Having established that relative bond return predictability shifts over time with state variables

tracking economic activity and uncertainty, we turn to a more detailed analysis of these state-

dependencies. We start with an examination of the ranking and elimination of models over the

out-of-sample period using the dynamic forecast combination procedure (see Section F). The

scheme enables us to identify the best set of methods Mú
t with indistinguishable conditional

predictive ability at each point in time.29

28We note that NONE should, in theory, by evaluated using a HAC estimator, but we use a sample

estimator here to ease comparison. However, results are both qualitative and quantitatively similar when

employing a Newey and West (1987) estimator with a bandwidth of 12 lags.
29In Appendix IA.D.5 we depict the size of Mú

t
over time using PMI and U. This best set of models varies

considerably over time and includes situations in which the set include all models, leading to forecasts equal

to EW, and situations with a singleton (equivalent to dynamic method selection). That is, at times there is
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Panel C of Table 2 presents the results for the dynamic forecast combination scheme using

PMI and U, respectively, as conditioning variables and an unconditional alternative that uses

average past predictability as an indicator for future predictability. We label this alternative

NONE and consider it a natural and challenging benchmark. This unconditional alternative

is related to Samuels and Sekkel (2017) who suggest trimming a given set of models using

a recursive implementation of the unconditional MCS and Adämmer and Schüssler (2020)

who uses the set of models that, when combined, provides the best past performance. Our

conditional alternative trims the set of forecasting methods using a conditional MCS idea

with the elimination based on the projected future predictability of bond excess return using

current information in state variables. Strikingly, the dynamic forecast combination strategy

delivers positive R2
OS values relative to the EH across all conditioning variables and bond

maturities that are economically large with values between 5.11% and 7.98% for PMI and

between 4.98% and 9.86% for U. Moreover, these values always exceed those of the EW

strategy with a considerable margin. All (most) are significant relative to the EH (EW) at

conventional levels when using either PMI or U, whereas NONE does not deliver significant

improvements against the EW. This suggests that past relative predictive accuracy is not

informative about future predictability relative to just using all methods with equal weight.

On the other hand, the state variables are remarkably informative about future predictability

in the simple manner suggested by our multivariate test and the embedded state regressions,

cf. (15).

[Insert Figure 4 About Here]

Figure 4 plots the CDSPE for the dynamic forecast combination strategies and the

unconditional alternative NONE relative to the EH. Overall, we find that relative forecasting

gains are mostly uniformly distributed across the out-of-sample evaluation period and that

no need for trimming of the full set of models and at other times we should only use the forecasts from a

single model. Importantly, this tells us why dynamic method selection may lead to improvements over a

static forecast combination.
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no particular event or period drive the positive results, although we do observe a particularly

strong increase during the latest recession relative to the EH benchmark for the five-year

bond using PMI as the state variable.

[Insert Figure 5 About Here]

Figure 5 plots the CDSPE for the two dynamic forecast combination strategies and NONE

relative to EW. As above, the dynamic forecast combination strategy always performs on par

or better than EW. This is also reflected in Panel D of Table 2, where we observe positive R2
OS

values that are of economically meaningful magnitudes and most are significant at conventional

significance levels. These relative forecasting gains concentrate in periods with low (high)

economic activity (uncertainty). That is, our dynamic forecast combination scheme delivers

improvements in forecast accuracy in periods of turmoil, exactly when investors arguably

needs it the most. Moreover, we see that trimming the set of candidate methods prior to

combination using a dynamic rule rooted in a multivariate test for equal conditional predictive

ability delivers sizeable improvements. Lastly, the CDSPE curve is almost completely flat for

NONE, confirming that static equal-weighting combination performs about as well.

D. Understanding the sources of conditional predictability

This section studies the underlying sources of conditional predictability and the sizable

improvements in predictive accuracy established above. To facilitate interpretation, we

classify the continuous state variables, PMI and U, into low, normal, and high economic

activity (uncertainty) states using the 20% and 80% quantiles similarly to, e.g., Rapach et al.

(2010). We then proceed in two steps. We begin by computing inclusion frequencies for

each forecasting method within the low, normal, and high economic activity and uncertainty

states, respectively. We then study how the individual methods perform in each state and

relate it to the overall performance.
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1. Inclusion frequencies

We compute inclusion frequencies for each forecasting method and state variable using the

low, normal, and high states for economic activity (PMI) and uncertainty (U), respectively.

Within each state, we then define the inclusion frequency of the ith forecasting method as

the fraction of months the model is included in the best set relative to the total number of

months in the given state.

[Insert Table 4 About Here]

Table 4 reports a striking pattern in which the EH tends to be eliminated in high (low)

economic activity (uncertainty) states across the entire maturity spectrum. Interpreting

the EH as a no-predictability benchmark implies that bond excess returns are predictable

in high (low) economic activity (uncertainty) states, but less so in other states. The EH,

conversely, provides a reliable anchor in periods with low (high) and to some degree normal

economic activity (uncertainty). In Appendix IA.D.3, we device a methodology that identifies

predictability within states seen over the full out-of-sample period, conditioning on low,

normal, and high PMI and U states, respectively. This strongly supports the striking pattern

that EH tends to be eliminated in high (low) economic activity (uncertainty) states across

the entire maturity spectrum.

2. State-dependent predictability

The inclusion frequencies are indicative of when certain models are predicted to do well. In

this section, we ask whether the inclusion frequencies align with relative performance. That

is, we ask whether the procedure correctly identifies methods with good and bad relative

performance.

[Insert Table 5 About Here]

Table 5 reports state-specific R2
OS values for the individual predictors relative to the

EH. The results are supportive of the procedure correctly identifying methods that do well.
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We find that individual predictors are generally performing poorly (R2
OS < 0) in low (high)

economic activity (uncertainty) states and well (R2
OS > 0) in high (low) economic activity

(uncertainty) states.30 This is consistent with the inclusion frequencies of the EH. Specifically,

the procedure appears to correctly anticipate periods in which the EH provides a reasonable

anchor for expected bond excess returns and periods in which bond risk premia are predictable.

Moreover, there is also a close mapping between the inclusion frequencies and the magnitudes

of the R2
OS values, where models are more likely to be included (excluded) in a given state

the higher (lower) its R2
OS. That is, the gains in predictive accuracy are coming from the

rule’s ability to correctly predict predictability.

Corroborating this statement, the dynamic forecast combination schemes using PMI or

U deliver positive and sizable R2
OS values in all states and for all bonds. Moreover, the

improvements in accuracy are always comparable or greater than those observed for EW

and NONE. This is a central result that highlights the resilience of the dynamic forecasting

combination scheme. Even within states where all predictors are weak on average, dynamically

combined forecasts performs remarkably well because the scheme correctly trims away methods

predicted to perform poorly and retains those predicted to perform well conditional on the

realized state variable each period. We obtain similarly impressive performance in states

where most predictors are outperforming the EH, which is again attributable to the methods

ability to correctly identify which methods to trim and which to retain based on predicted

performance.

Overall, our empirical results are consistent with, and clearly points to, state-dependencies

in bond excess return predictability linked to economic activity and uncertainty. Bond excess

returns are predictable in states with high (low) economic activity (uncertainty), whereas the

30One exception is for CP in low uncertainty states using U as state variable. This is mainly due to

few, yet notable, observations. Importantly, our procedures are able to capture this fact; within this state,

they eliminate CP as the first predictor across all bond maturities in the full out-of-sample ranking and CP

possesses lowest (together with EH) inclusion frequency in the dynamic ranking.
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EH serves as a reliable anchor in the remaining states of the world. Moreover, these shifts in

predictability can be successfully exploited via the methodology proposed in this paper. It is

relevant to relate those findings to Gargano et al. (2019) who identify stronger predictability

in recessions than outside recessions. Our findings contrast this notion. The main di�erence

is that they use a di�erent set of models and Bayesian methods, incorporating time-varying

parameters and/or stochastic volatility, and not the conventional univariate linear models

considered in the present paper. Note, however, they do recover the pattern documented in

this paper when using FB as the single predictor. Interestingly, our out-of-sample forecasts for

bond risk premia remain fully consistent with the results in Gargano et al. (2019) regarding

the link to the real economy. We turn to this point below.

V. Links to the real economy

In this section, we examine the link between our out-of-sample bond risk premia forecasts and

the real economy. Standard finance theory implies that investors demand compensation for

risks associated with recessions due to heightened risk aversion (Campbell and Cochrane, 1999,

Wachter, 2006, Buraschi and Jiltsov, 2007) and risk premia should therefore be countercyclical

and peak in recessions.

[Insert Table 6 About Here]

We employ PMI as our measure of economic activity (Berge and Jordà, 2011, Christiansen

et al., 2014) and report in Table 6 the contemporaneous correlation among PMI and the

risk premia estimates from individual bond predictors, EW, and the dynamically combined

forecast generated by PMI, U, and NONE. The results o�er two main insights. First, yield-

based variables deliver risk premia estimates that are significantly positively correlated with

real economic activity. The methods therefore imply procyclical risk premia, which sharply

contrasts canonical theory. LN, on the other hand, realizes a significant negative correlation

of about -38% across the maturity spectrum, which is consistent with countercyclical risk
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premia. These observations are consistent with those of Ludvigson and Ng (2009). The

EW combination strategy produces risk premia estimates that are virtually acyclical and

unrelated to the state of the economy. The acyclicality is likely caused by the divergent

cyclicalities being washed out in the equal-weighted combination scheme. The dynamic

combination strategy, which selects individual methods for subsequent combination based on

information in the state variables, produces markedly negative and statistically significant

correlations with the real economy. Dynamically trimming the candidate set of methods

prior to combination based on predicted performance yields both economically meaningful

risk premia estimates that are strongly countercyclical as well as substantial improvements in

overall forecast accuracy.31

[Insert Figure 6 About Here]

Supporting this, Figure 6 depicts our dynamic combination forecasts using PMI and U as

state variables, along with recession periods as defined by the NBER. Risk premia display

a clear tendency to increase during recessionary periods and decline during expansionary

periods, resembling a countercyclicality with business cycles. These findings altogether

demonstrate the importance of appropriately selecting among plausible methods as proposed

here. Our empirical findings are consistent with recent evidence similarly documenting

countercyclical bond risk premia (Gargano et al., 2019, Andreasen et al., 2020, Bianchi et al.,

2020) and models with time-varying risk (Bekaert et al., 2009, Carpenter et al., 2020, Creal

and Wu, 2020).

31Other types of business cycle indicators can naturally be entertained. We report in the Internet Appendix

contemporaneous correlations among generated forecasts and each of the macroeconomic uncertainty (U),

recession probabilities of Chauvet and Piger (2008), the Chicago Fed National Activity Index (CFNAI),

and logarithmic growth rates to industrial production growth. It stands out that our dynamic forecasting

combination technique leads to much stronger countercyclical bond risk premia than all yield-based variables

and EW.
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VI. Economic value

This section quantifies the economic value attainable from dynamically combining forecasts

across methods predicted to perform well. Specifically, we consider the asset allocation

decision of a mean-variance investor with relative risk aversion “ that chooses the weight Ê(k)
t

to invest in a k-period bond and the weight
1
1 ≠ Ê(k)

t

2
to invest in a one-period safe bond

(Marquering and Verbeek, 2004).32 The resulting portfolio return is then

(19) r(k)
p,t+1 = y(1)

t + Ê(k)
t rx(k)

t+1,

where rx(k)
t+1 denotes monthly bond excess returns for a Treasury bond with k months to

maturity. Denoting moments conditional on Gt by subscript t, we assume that the investor

has a utility function U
1
r(k)

p,t+1

2
of the form

(20) U
1
r(k)

p,t+1

2
= Et

Ë
r(k)

p,t+1

È
≠ 1

2“Vart

Ë
r(k)

p,t+1

È
,

where “ is a measure of relative risk aversion. Solving the maximization problem yields the

optimal portfolio weights

(21) Ê(k)
t = 1

“

Et

Ë
rx(k)

t+1

È

Vart

Ë
rx(k)

t+1

È ,

32Assuming that investors have mean-variance preferences in asset allocation exercises has a long tradition

in predictability studies and similar approaches can be found in, among many, Campbell and Thompson

(2008), Goyal and Welch (2008), Wachter and Warusawitharana (2009), Thornton and Valente (2012), Sarno

et al. (2016), Eriksen (2017), Ghysels et al. (2018), and Gargano et al. (2019). A multivariate asset allocation

exercise is, in principle, also possible, yet due to the very high correlation among the considered bonds, cf.

Table 1, the inverse of their covariance matrix is highly unstable, leading to unrealistic and very large weights

that renders their winzoriation binding in all periods. For these reasons, we do not consider this approach.
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where Et

Ë
rx(k)

t+1

È
is estimated using the ith predictive method and Vart

Ë
rx(k)

t+1

È
is computed

using a rolling window of past bond excess return realizations.33 We winzorize weights

according to reasonable shorting and leverage constraints, similarly to Thornton and Valente

(2012) and Gargano et al. (2019), such that Ê(k)
t œ [≠1, 2] for all maturities. Using the

sequence of portfolio weights, we compute average utility, or certainty equivalent return

(CER), for each forecast method using (20). We similarly compute the CER for the EH

benchmark prediction in lieu of the predictive models. The CER gain is then the di�erence

between the CER for the predictive models and the CER for the EH benchmark. We annualize

the CER gain so that it can be interpreted as the annual portfolio management fee that an

investor would be willing to pay to have access to the information in the predictive forecast

relative to the EH benchmark.34 Thus, this setup enables a direct assessment of the economic

value associated with the increased forecasting precision.

A. Certainty equivalent returns

Table 7 reports annualized CER gains for all individual bond predictors (for comparison)

relative to the EH in Panel A, for EW in Panel B, and for our dynamic forecast combination

strategy relative to the EH and the equal-weighted combination strategy in Panels C and

D, respectively. In our main results, we set “ = 10 as in Eriksen (2017), but show in the

Internet Appendix that our results are qualitatively similar for other reasonable values of

relative risk aversion, e.g. “ = 5. In order to evaluate the statistical significance of the CER

gains, we follow Eriksen (2017) and Gargano et al. (2019) and conduct a conventional t-test

on the mean of the time series of realized utility di�erences. Standard errors are obtained

using a Newey and West (1987) estimator.

[Insert Table 7 About Here]

33We always use the same variance estimated over the same period as the forecasts for all models so that

the optimal portfolio weights only di�er because of di�erences in the excess bond return forecast.
34Trading costs are generally small in U.S. Treasury bond markets (Adrian, Fleming, and Vogt, 2017).
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Overall, we find little evidence that predictable deviations from the EH can be exploited

to generate economic value on average when considering individual methods (Panel A). The

exception is LN that generally do well utility-wise, something that contrast the statistical

results, yet is consistent with the literature that often find disagreeing economical and

statistical results. EW (Panel B), on the other hand, obtains positive CER gains for all

maturities, indicating that combination forecasts may improve the economic value.

Panel C considers the CER gains for the dynamically combined forecasts based on PMI,

U, and the unconditional benchmark NONE. Consistent with our statistical results, we

obtain positive CER gains in all cases that are reliably di�erent from zero. The PMI-based

dynamic forecasts deliver positive CER gains between 0.39 and 1.43, which are significantly

di�erent from zero at conventional significance levels for all maturities. The U-based dynamic

forecasts similarly deliver positive values that are significant on conventional significance

levels for all maturity bonds except the 2-year bond. NONE always deliver less economic

value than using PMI and U, yet all are positive, close to that of the EW, and the 4- and

5-year bonds deliver statistically significant gains on a five percent level. As such, the overall

message is clearly supportive of the notion that taking state-dependencies in bond return

predictability into account leads to substantial improvements in forecasting accuracy and

that these improvement translates into better investment performance for a mean-variance

investor that trades in the U.S. Treasury bond market.

Panel D confirms this conclusion by documenting positive CER gains for the dynamic

forecast combination strategies relative to EW. Moreover, those increases are all statistically

significant at conventional significance levels except in one case. We stress that this strongly

supports the idea that dynamically trimming the set of models prior to combining can

substantially improve forecast performance and the resulting economic value. That is,

eliminating forecasting methods predicted to perform poorly and only maintaining methods

with best, yet indistinguishable conditional predictive ability delivers both statistical as well

as economic value.
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[Insert Figure 7 About Here]

[Insert Figure 8 About Here]

Figures 7 and 8 plots the cumulative realized utilities for our dynamic forecast combination

strategies relative to the EH and the EW, respectively. Overall, we note that utility gains are

enjoyed uniformly over the out-of-sample period relative to the EH. This is remarkable as

our approach is not designed to capture utility, but statistical predictability.35 This finding is

also important in light of the puzzling contradiction between the statistical and economic

evidence typically documented in the literature (Thornton and Valente, 2012, Sarno et al.,

2016). That is, our conditional view of bond return predictability resolves the puzzle in a

simple manner, adding to the findings in Gargano et al. (2019).

B. State-dependent utility

Table 8 reports state-dependent CER gains for the individual predictors, EW, and dynamically

combined forecasts relative to the EH.

[Insert Table 8 About Here]

Individual predictors generally deliver negative CER gains in low (high) economic activity

(uncertainty) states and positive CER gains in high (low) economic activity (uncertainty)

states. This is fully consistent with the results from the statistical evaluation and suggests that

35In Appendix IA.D.5 we report resulting improvements in the Sharpe ratio earned by an active investor

exploiting predictive information (summarized by the R2
OS

) over the Sharpe ratio earned by a buy-and-hold

investor, following Gu, Kelly, and Xiu (2020). The results show that individual predictors almost always lead

to Sharpe ratio reductions and if any gain is achieved it is generally small. On the other hand, EW provides

notable Sharpe ratio improvements, yet our dynamic forecast combination is superior for all bond maturities.

For instance, the buy-and-hold Sharpe ratio of a 2-year bond, which is 0.90 in our out-of-sample period, can

be improved with 0.48 (0.59) using PMI (U) as state variable. Improvements for NONE are almost identical

to EW.
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PMI and U predict not only statistical performance, but economic value as well. LN, however,

stands out by delivering positive CER gains across all states and maturities. We note that

these findings contrast those of Sarno et al. (2016) who document positive (negative) economic

value relative to the EH during times of high (low) uncertainty. Their setting, however, is

di�erent as predictions are derived from a�ne term structure models and not predictive

regressions as here. We end this section by drawing attention to the strong and consistently

positive CER gains derived from the dynamically combined forecasts across all states and

bond maturities. This highlights the strength of dynamically combining forecasts predicted

to perform well and shows that applying a conditional view on bond return predictability is

key to resolving the contradicting results for statistical and economic evaluations found in

the literature.

VII. A model for time-varying predictability

Our empirical findings imply that (i) bond return predictability is state-dependent, (ii) the

EH should hold periodically in some states, but not in others, and (iii) the states should

be related to economic activity and/or uncertainty such that the EH holds in low (high)

economic activity (uncertainty) states. In this section, we show that these findings can be

explained within a non-linear term structure model that allows for state-dependencies in

the yield curve. Specifically, we consider a version of the non-linear model presented in

Feldhütter et al. (2018) and, in addition, draw upon the theoretical insights of Cujean and

Hasler (2017). We focus on a one-factor specification to illustrate the predictions of the

model in a simple setting and adopt a notation similar to that of Feldhütter et al. (2018).

Appendix IA.E provides further details on the model and the estimation procedure using a

square-root unscented Kalman filter.
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A. The model

The model is an arbitrage-free dynamic term structure model in which the short rate and

market prices of risk are non-linear functions of a Gaussian state variable X (t) with dynamics

(22) dX(t) = Ÿ (◊ ≠ X (t)) dt + �dW (t),

where Ÿ, ◊, and � are constants, and W (t) is a standard Brownian motion. The model

assumes a functional form for the stochastic discount factor (SDF)

(23) M (t) = M0 (t)
1
1 + “e≠—X(t)

2
= M0 (t) + M1 (t) ,

where M1(t) = M0(t)“e≠—X(t), “ > 0 and — are constants, and M0 (t) is a strictly positive

stochastic process that follows the dynamics

(24) dM0 (t) = ≠r0 (t) M0 (t) dt ≠ �0 (t) M0(t)dW (t),

where r0(t) is the short (risk-free) rate, and �0(t) the market price of risk. M0(t) and M1(t)

can be viewed as the SDFs corresponding to two artificial economies: economy 0 and economy

1. We interpret these artificial economies as corresponding to di�erent states of the world.

The short rate and market price of risk in the two states are given by

ri (t) = fli,0 + fli,XX (t) , i = 1, 2(25)

�i(t) = ⁄i,0 + ⁄i,XX (t) , i = 1, 2(26)

⁄1,0 = ⁄0,0 + �—,(27)

⁄1,X = ⁄0,X ,(28)

fl1,0 = fl0,0 + —Ÿ◊ ≠ 1
2—2�2,(29)

fl1,X = fl0,X ≠ Ÿ— ≠ ⁄0,X�—,(30)
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where all parameters are scalars due to one-dimensionality of X(t). The price of a zero-coupon

bond is then a linear combination of the prices in two artificial economies

(31) P (t, T ) = s(t)P0 (t, T ) + (1 ≠ s(t)) P1 (t, T ) ,

where Pi (t, T ) denotes the zero-coupon bond price in the ith economy and the stochastic

weighting between the two states is determined by s(t) = 1
1+“e≠—X(t) œ [0, 1]. If either “ = 0

or — = 0, then the model collapses to a Gaussian term structure model. Provided that

the short rate is a�ne in economy 0, the short rate is also a�ne in economy 1, implying

that Pi (t, T ) is exponential a�ne for both i = 0, 1. From Du�e and Kan (1996), we then

have that Pi (t, T ) = eAi(·)+Bi(·)X(t) for i = 0, 1. The expected log excess return of buying a

zero-coupon bond with k periods to maturity and a holding period of · in the ith economy is

Et

Ë
rx(k)

t+·

È
=Ai (k ≠ ·) + Bi (k ≠ ·)Et [X(t + ·)]

≠ Ai (k) ≠ Bi (k) X (t) + Ai (·) + Bi (·) X (t) ,(32)

where Ai (T ≠ t) and Bi (T ≠ t) are the solutions to some ordinary di�erential equations. If

the EH holds in economy i, then (32) must be a constant, and, hence, independent of X(t).

This restriction is satisfied if Bi (t) = 0 for all t and implies, in the ith economy, that the

short rate ri (t) = fli,0 + fli,XX(t) must be independent of X(t) and equal to a constant, i.e.

fli,X = 0.

B. Estimating the model

In estimating the model, we follow Sarno et al. (2016) and base our estimates on both zero-

coupon yields and excess holding period returns. More specifically, we include zero-coupon

yields with k = {12, 24, 36, 48, 60} months to maturity as well as monthly excess returns for

bonds with a maturity of k = {24, 36, 48, 60} months. The parameters are estimated over the
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out-of-sample period (i.e. from January 1990 to December 2018) and we use a square-root

unscented Kalman filter. To ensure identification of the parameters when s(t) is close to zero

or one, “ = 0, or — = 0, we impose the normalization proposed in Dai and Singleton (2000),

as do Feldhütter et al. (2018).

C. Results

The implications described above translate into the following three testable hypotheses:

H
(1): State-dependency requires that both “ and — must be di�erent from zero and

that “ is not too large,

H
(2): The EH holding periodically requires that either fl0,X or fl1,X is equal to zero,

H
(3): The state weight s(t) must be related to U and/or PMI and the EH should hold

in low (high) PMI (U) states.

[Insert Table 9 About Here]

Panel A of Table 9 presents parameter estimates and p-values from an asymptotic t-test for

“, —, and fl0,X . First, both “ and — are, consistent with H
(1), statistically significant. Hence,

nonlinearity is important for explaining yields and excess returns and state-dependency is

present.36 Second, fl0,X is economically and statistically insignificant and numerically close to

zero, implying that the model identifies economy 0 as corresponding to a state of the world

in which the EH holds. Moreover, since the estimated — ”= 0, the short rate in economy 1 is

strongly related to X(t) and we conclude that the EH is violated in economy 1. That is, the

two economies are distinctly di�erent and consistent with the hypothesis H
(2) that the EH

holds periodically.

36In unreported results, we perform two likelihood-ratio tests to test for “ = 0 and “ = 100. These

two hypotheses correspond to s(t) being equal to zero or one for all periods, respectively. We reject both

hypotheses and conclude that the two tests confirm the importance of state-dependencies.
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[Insert Figure 9 About Here]

The final testable hypothesis from the model is whether the weighting between states s(t),

i.e. between economy 0 (EH) and economy 1, is related to economic activity and uncertainty

(our conditioning variables). Figure 9 plots s(t) against NBER recession dates and 20%

and 80% percentiles of PMI and U, respectively. Increases (decreases) in s(t) correspond to

larger weights on economy 0 (economy 1). We highlight three observations: (i) s(t) increases

during recessions, (ii) s(t) increases (decreases) during periods with low (high) values of PMI,

and (iii) s(t) increases (decreases) during periods with high (low) values of U. This is fully

consistent with our empirical results and H
(3). To further quantify this relation, Panel B

of Table 9 reports correlations between changes in s(t) and our conditioning variables with

p-values for the null of zero correlation. The negative (positive) sign with PMI (U) and

magnitude of the correlation coe�cients are in line with the figures and our results and both

are significantly di�erent from zero at a 5% significance level.

These findings suggest that zero-coupon bond prices (and excess returns) are mainly set

in a way consistent with the EH in states of low (high) economic activity (uncertainty), but

vary with X(t) in the others. This implies state-dependent predictability of bond excess

returns and demonstrates that our empirical findings regarding state-dependencies in bond

return predictability are consistent with the predictions of a non-linear term structure model

that allows for state-dependencies in yields.

Combining the model with the theoretical insight from Cujean and Hasler (2017) provides

a natural explanation for the observed state-dependency of predictability. The functional

form of the SDF is similar to that considered in Xiong and Yan (2010), which implies that

the model can be interpreted as a reduced-form consumption-based asset pricing model in

which two agents with di�erent beliefs co-exist and agree to disagree about the stance of

the economy (consumption growth rate). Under this view, e≠—X(t) represents the Radon-

Nikodym derivative between the probability measure associated with future consumption

growth applied by the two agents. If the Radon-Nikodym derivative between two agents is
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(di�erent from) 1 they have (un)equal expectations. A model-implied estimate of overall

economic disagreement may then be represented as

‚÷(t) = |e≠‚— ‚X(t) ≠ 1|(33)

where ‚÷(t) = 0 corresponds to no disagreement and ‚÷(t) > 0 whenever the two agents’

expectations di�er. The larger the ‚÷(t), the larger the amount of disagreement. Figure 9

depicts the dynamics of estimated ÷(t) and its correlations with PMI and U are reported in

Table 9. Disagreement is negatively (positively) correlated with PMI (U) and is generally

increasing in bad states and remains elevated or increases during normal times. Importantly,

at the onset of good times (high (low) economic activity (uncertainty)) disagreement is at

its highest and then starts tapering o�. Cujean and Hasler (2017) theorize in a two-agent

economy that predictability is generated in exactly those periods where disagreement is at

its highest and subsequently decays, with predictability persisting during a short period

following the spikes. This aligns perfectly with our high (low) economic activity (uncertainty)

states and how they relate to the estimated ÷(t) in our model, thus providing a coherent

explanation of our empirical findings of state-dependent predictability.

VIII. Concluding remarks

We study predictable state-dependencies in bond return predictability and provide empirical

evidence that bond return predictability is state-dependent and closely related to economic

activity and macroeconomic uncertainty. We show that bond risk premia are predictable in

times of high (low) economic activity (uncertainty) states identified using the Purchasing

Managers’ Index (PMI) and the uncertainty index proposed in Jurado et al. (2015), whereas

the EH implication of constant risk premia (no-predictability) provides a reasonable anchor in

low (high) economic activity (uncertainty) states. A dynamic forecast combination strategy

that averages across forecasting methods predicted to do well delivers substantially more
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informative forecasts than both its individual constituents and a simple, static equal-weighted

forecast combination scheme. The conclusion hold both across standard statistical evaluation

metrics and when considering the economic value to a mean-variance investor. We provide

evidence that the improved forecast performance originates from the state variables ability to

correctly predict periods in which individual predictors are likely to perform well. Dynamically

combined forecasts are strongly countercyclical in contrast to most individual predictors’

forecasts and the static (equal-weighted) and dynamic unconditional benchmarks. Last, we

show that these findings can be explained within a non-linear term structure model that

allows for state-dependencies in yields. The model allows for an assessment of time-varying

di�erences in beliefs among agents, which through the theoretical explanation of Cujean and

Hasler (2017) explains the generation of state-dependent predictability documented in this

paper.

We end by emphasizing that our econometric methodology of conditional predictive ability

is not confined to studies of the Treasury bond market, but may find many and diverse

applications across the fields of economics and finance. For example, it would be natural

to study the conditional predictive ability of the Goyal and Welch (2008) set of predictors

in a multivariate setting as a complement to the large literature on their unconditional

performance and relation to the business cycle (Henkel et al., 2011, Dangl and Halling,

2012). Similarly, the approach is likely to be useful in evaluating inflation predictability and

identifying periods in which variables such as unemployment rates provides useful information.

Finally, we also envision its use in comparing professional forecasters and, in particular, to

determine if some forecasters are better than others conditional on being in a certain state.

We leave these considerations for future research.
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Table 1: Descriptive statistics

This table presents descriptive statistics for monthly excess bond returns. Panel A reports

mean, standard deviation, skewness, kurtosis, Sharpe ratios, and first-order autocorrelation

(AC(1)) of bond excess returns for two- to five-year bond maturities. Bond returns are in

excess of the implied yield on a one-month Treasury bill. Gross returns do not subtract

the one-month implied Treasury bill yield. Monthly bond excess returns are constructed

using end-of-month Treasury yield data from Gürkaynak et al. (2007). Panel B reports

contemporaneous correlations between the excess bond return series. The sample period is

January 1962 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Descriptive statistics

Mean 1.29 1.60 1.85 2.06
Mean (Gross) 5.73 6.04 6.29 6.50
Std. dev. 2.80 3.92 4.95 5.93
Skewness 0.57 0.25 0.08 0.03
Kurtosis 16.68 11.76 8.58 7.05
Sharpe ratio 0.46 0.41 0.37 0.35
AR(1) 0.17 0.15 0.13 0.12

Panel B: Correlations

2-year bond 1.00
3-year bond 0.99 1.00
4-year bond 0.96 0.99 1.00
5-year bond 0.93 0.97 0.99 1.00
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Table 2: Out-of-sample results

This table reports out-of-sample R2
OS values for various linear predictive models for bond

excess return. We consider five di�erent predictors: yield spreads (Campbell and Shiller,

1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman and

Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson

and Ng (2009) macroeconomic factor. For each model, we report the out-of-sample R2 from

Campbell and Thompson (2008) and the associated Diebold and Mariano (1995) p-value in

parenthesis for the null of no predictability implied by the EH (Panels A, B, and C) and

against the static (equal-weighted) forecast combination strategy (Panel D). PMI denotes the

Purchasing Managers Index published by the Institute for Supply Management and U is the

macroeconomic uncertainty index from Jurado et al. (2015). The out-of-sample evaluation

period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -2.73 -0.53 0.67 1.38
(0.70) (0.56) (0.40) (0.27)

FB -0.02 1.31 1.72 1.78
(0.50) (0.29) (0.22) (0.23)

PC -9.86 -7.64 -5.91 -4.83
(0.92) (0.93) (0.92) (0.90)

CP -6.63 -5.29 -4.27 -3.43
(0.96) (0.96) (0.94) (0.90)

LN -7.61 -0.48 1.93 2.43
(0.73) (0.52) (0.42) (0.39)

Panel B: Static forecast combination against EH

EW 6.08 5.28 4.89 4.58
(0.03) (0.02) (0.02) (0.02)

Panel C: Dynamic forecast combination against EH

PMI 7.98 5.64 5.11 6.16
(0.01) (0.02) (0.02) (0.01)

U 9.86 6.77 6.09 4.98
(0.01) (0.00) (0.00) (0.01)

NONE 6.66 5.31 5.25 4.81
(0.02) (0.02) (0.01) (0.02)

Panel D: Dynamic forecast combination against EW

PMI 2.02 0.39 0.23 1.66
(0.01) (0.24) (0.33) (0.06)

U 4.02 1.58 1.26 0.42
(0.02) (0.00) (0.00) (0.22)

NONE 0.62 0.04 0.38 0.24
(0.21) (0.47) (0.16) (0.32)
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Table 3: Testing for equal (un)conditional predictive ability

This table reports full sample multivariate test statistics for equal (un)conditional predictive

ability using three di�erent conditioning variables. PMI refers to the case of ht = (1, PMIt)Õ

that is designed to capture business cycle fluctuations. U refers to the case of ht = (1,Ut)Õ that

is chosen to study the e�ect of macroeconomic uncertainty. NONE refers to an unconditional

version of the tests in which ht = 1 for all t. PMI is the Purchasing Managers’ Index and

UNC is the macroeconomic uncertainty index of Jurado et al. (2015). p-values are presented

in parenthesis. The full sample test period runs from January 1990 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

PMI 31.36 34.65 29.76 26.73
(0.00) (0.00) (0.00) (0.00)

U 27.03 27.95 26.16 26.22
(0.00) (0.00) (0.00) (0.00)

NONE 8.07 5.68 5.10 5.77
(0.15) (0.34) (0.40) (0.33)
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Table 4: Inclusion frequencies across states

This table reports the inclusion frequencies of the predictor models in three di�erent states

of the world identified using the 20% and 80% quantiles of the Purchasing Managers’ Index

(PMI). We consider five di�erent predictors: yield spreads (Campbell and Shiller, 1991),

forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman and

Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson

and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations hypothesis

model. The out-of-sample evaluation periods runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS 1.00 1.00 1.00 1.00 0.25 0.64 0.64 0.57
FB 0.94 1.00 0.88 0.76 0.25 0.64 0.64 0.57
PC 0.45 0.36 0.42 0.42 1.00 1.00 0.93 1.00
CP 0.88 0.91 1.00 1.00 0.25 0.57 0.54 0.46
LN 0.73 0.67 0.70 0.64 0.96 1.00 1.00 1.00
EH 0.97 1.00 1.00 1.00 0.18 0.50 0.57 0.46

Panel B: Normal activity Panel E: Normal uncertainty

CS 0.86 0.90 0.94 0.98 0.69 0.88 0.86 0.84
FB 0.90 0.98 0.98 0.95 0.79 0.93 0.88 0.76
PC 0.51 0.41 0.47 0.50 0.43 0.53 0.54 0.58
CP 0.65 0.68 0.68 0.62 0.62 0.71 0.63 0.51
LN 0.71 0.79 0.87 0.86 0.83 0.85 0.90 0.92
EH 0.70 0.84 0.85 0.82 0.63 0.83 0.85 0.75

Panel C: High activity Panel F: High uncertainty

CS 0.58 0.75 0.85 0.93 0.95 1.00 1.00 0.98
FB 0.65 0.80 0.88 0.83 0.95 1.00 0.98 0.95
PC 0.83 0.74 0.78 0.88 0.49 0.51 0.44 0.28
CP 0.53 0.53 0.45 0.08 0.95 1.00 0.98 0.98
LN 1.00 1.00 1.00 0.95 0.72 0.98 0.95 1.00
EH 0.33 0.45 0.45 0.48 1.00 1.00 1.00 0.98
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Table 5: Out-of-sample R
2

across states

This table reports out-of-sample R2
OS values for various predictive methods for bond excess

return conditional on states identified by the Purchasing Manager’s Index (PMI) and the

the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We consider five

di�erent predictors: yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and

Bliss, 1987), principal components of yields (Litterman and Scheinkman, 1991), the Cochrane

and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng (2009) macroeconomic

factor. In addition, we report values for a static equal-weighted forecast (EW), dynamically

combined forecasts based on PMI and U, and an unconditional alternative based on past

performance (NONE). For each method, we report the out-of-sample R2 from Campbell and

Thompson (2008) relative to the expectations hypothesis. High (low) states are identified

using the 80% (20%) quantiles of the time series of PMI and U. The out-of-sample evaluation

period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -19.73 -10.56 -6.41 -3.85 14.33 9.87 7.79 6.40
FB -13.17 -6.09 -3.43 -2.22 15.19 8.57 5.00 3.03
PC -37.08 -26.84 -20.98 -17.02 24.53 16.39 12.09 10.05
CP -13.30 -7.27 -3.54 -0.83 -83.09 -42.16 -23.01 -12.28
LN -23.94 -15.44 -12.03 -11.24 14.05 10.04 7.52 5.73
EW 1.34 2.53 2.74 2.47 18.52 12.96 10.19 8.65
PMI 3.55 1.53 2.28 6.30 21.23 13.55 10.59 10.09
U 9.65 4.93 4.37 2.58 26.34 15.83 13.15 10.27
NONE 4.09 4.45 4.19 3.00 14.83 8.77 9.23 8.33

Panel B: Normal activity Panel E: Normal uncertainty

CS 2.16 1.68 1.95 2.20 -2.64 -0.51 0.61 1.28
FB 4.26 3.25 2.90 2.62 1.09 1.78 2.00 2.00
PC -5.04 -5.29 -4.19 -3.26 -4.86 -4.46 -3.44 -2.74
CP -6.09 -6.42 -6.06 -5.61 -1.03 -2.14 -2.56 -2.90
LN -2.58 3.80 5.78 6.25 -2.15 4.31 6.44 7.16
EW 7.77 6.03 5.41 5.10 7.46 5.17 4.37 3.98
PMI 8.96 6.62 5.71 6.02 9.96 6.39 4.95 4.15
U 9.60 7.42 6.77 5.99 9.10 5.96 4.93 4.16
NONE 8.00 5.72 5.46 5.76 7.49 5.02 4.52 4.23

Panel C: High activity Panel F: High uncertainty

CS 6.86 5.32 5.38 5.78 -4.29 -2.03 -0.67 0.30
FB 4.44 3.79 3.83 4.02 -2.82 -0.55 0.50 0.98
PC 20.26 12.96 9.43 7.36 -19.49 -16.08 -13.96 -12.51
CP 9.32 7.30 6.43 6.00 -7.19 -4.90 -3.26 -1.81
LN -8.41 -2.57 0.26 2.18 -18.80 -11.59 -8.99 -8.73
EW 10.24 7.96 7.13 6.75 2.66 3.77 4.21 4.16
PMI 14.44 10.28 8.37 6.45 3.73 2.85 3.77 8.25
U 11.49 7.97 6.82 5.74 8.37 5.99 5.95 4.51
NONE 7.09 5.50 6.54 4.67 4.50 5.00 5.30 4.55
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Table 6: Correlations between forecasts and economic activity

This table reports correlation coe�cients between out-of-sample generated forecasts from

individual bond predictors (Panel A), the static (equal-weighted) forecast combination strategy

(Panel B), and the dynamic forecast combination strategy (Panel C) and economic activity

as measured by the Purchasing Managers’ Index (PMI). We report p-values for the null of no

correlation in parenthesis. The out-of-sample evaluation period runs from January 2000 to

December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS 0.36 0.31 0.27 0.23
(0.00) (0.00) (0.00) (0.00)

FB 0.27 0.19 0.14 0.09
(0.00) (0.00) (0.01) (0.08)

PC 0.33 0.36 0.36 0.35
(0.00) (0.00) (0.00) (0.00)

CP 0.15 0.16 0.16 0.16
(0.01) (0.00) (0.00) (0.00)

LN -0.38 -0.38 -0.38 -0.38
(0.00) (0.00) (0.00) (0.00)

EH 0.07 0.14 0.16 0.17
(0.17) (0.01) (0.00) (0.00)

Panel B: Static forecast combination

EW 0.01 0.01 0.00 -0.01
(0.88) (0.87) (0.98) (0.90)

Panel C: Dynamic forecast combination

PMI -0.39 -0.40 -0.39 -0.35
(0.00) (0.00) (0.00) (0.00)

U -0.40 -0.36 -0.37 -0.39
(0.00) (0.00) (0.00) (0.00)

NONE -0.29 -0.26 -0.27 -0.28
(0.00) (0.00) (0.00) (0.00)
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Table 7: Economic Value

This table reports certainty equivalent return (CER) gains for various linear predictive

models for bond excess return. We consider five di�erent predictors: yield spreads (Campbell

and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields

(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and

the Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gains

relative to the expectations hypothesis (Panels A, B and C) and a static (equal-weighted)

forecast combination strategy (Panel D). PMI denotes the Purchasing Managers’ Index

published by the Institute for Supply Management and U is the macroeconomic uncertainty

index from Jurado et al. (2015). CER gains are based on an investor with mean-variance

preferences and a relative risk aversion of “ = 10. The out-of-sample evaluation period runs

from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.64 -0.35 0.10 0.45
(0.90) (0.75) (0.43) (0.20)

FB -0.43 -0.12 0.32 0.58
(0.84) (0.62) (0.24) (0.17)

PC -1.65 -1.78 -1.65 -1.44
(0.98) (0.96) (0.93) (0.89)

CP -0.66 -0.83 -0.76 -0.48
(0.96) (0.95) (0.87) (0.73)

LN 0.85 1.75 2.32 2.74
(0.00) (0.00) (0.00) (0.00)

Panel B: Static forecast combination against EH

EW 0.10 0.34 0.86 1.07
(0.36) (0.16) (0.03) (0.02)

Panel C: Dynamic forecast combination against EH

PMI 0.39 0.59 1.05 1.43
(0.08) (0.06) (0.02) (0.00)

U 0.26 0.60 1.17 1.18
(0.16) (0.05) (0.01) (0.02)

NONE 0.17 0.33 0.92 1.16
(0.26) (0.19) (0.03) (0.02)

Panel D: Dynamic forecast combination against EW

PMI 0.28 0.25 0.19 0.37
(0.01) (0.04) (0.09) (0.03)

U 0.16 0.25 0.31 0.12
(0.06) (0.02) (0.01) (0.27)

NONE 0.06 -0.02 0.06 0.09
(0.13) (0.56) (0.24) (0.26)
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Table 8: CER gains across states

This table reports certainty equivalent return (CER) gains for various predictive methods for

bond excess return conditional on states identified by the Purchasing Manager’s Index (PMI)

and the the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We

consider five di�erent predictors: yield spreads (Campbell and Shiller, 1991), forward spreads

(Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 1991),

the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng (2009)

macroeconomic factor. In addition, we report values for a static equal-weighted forecast

(EW), dynamically combined forecasts based on PMI and U, and an unconditional alternative

based on past performance (NONE). For each method, we report the CER gain relative to

the expectations hypothesis. High (low) states are identified using the 80% (20%) quantiles

of the time series of PMI and U. CER gains are based on an investor with mean-variance

preferences and a relative risk aversion of “ = 10. The out-of-sample evaluation period runs

from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -3.22 -2.41 -2.04 -2.05 0.02 0.08 1.29 1.68
FB -2.44 -1.82 -1.83 -2.70 0.01 0.16 0.98 0.86
PC -7.17 -7.06 -6.92 -6.77 0.02 0.94 2.28 2.76
CP -2.42 -1.85 -0.91 -0.05 0.08 0.78 2.13 2.70
LN 1.22 2.47 2.05 0.25 0.02 0.41 1.30 1.55
EW -0.50 0.46 0.88 0.62 -0.01 0.37 1.39 2.10
PMI 0.11 0.58 1.42 1.09 0.05 0.37 1.60 2.26
U 0.07 1.18 1.49 1.14 0.37 0.47 1.93 1.92
NONE 0.21 0.92 1.28 1.25 0.02 0.17 1.24 1.96

Panel B: Normal activity Panel E: Normal uncertainty

CS -0.19 0.01 0.32 0.48 -0.36 -0.21 0.03 0.24
FB -0.10 0.04 0.13 -0.01 -0.32 -0.21 0.01 0.07
PC -1.00 -1.20 -0.96 -0.72 -0.66 -0.72 -0.58 -0.49
CP -0.35 -0.78 -1.03 -1.02 -0.58 -0.80 -0.68 -0.69
LN 0.82 1.32 1.50 1.78 0.90 1.47 1.72 1.94
EW 0.18 0.21 0.64 0.97 0.04 0.24 0.66 0.92
PMI 0.26 0.31 0.61 1.13 0.38 0.60 0.89 1.06
U 0.26 0.38 0.96 1.04 0.11 0.41 0.84 1.00
NONE 0.22 0.21 0.66 0.96 0.15 0.26 0.63 0.92

Panel C: High activity Panel F: High uncertainty

CS 0.51 0.57 1.43 1.82 -1.41 -0.57 -0.06 -0.18
FB 0.25 0.23 1.17 1.38 -0.82 -0.38 -0.55 -1.69
PC 1.75 2.44 2.84 2.56 -5.19 -5.62 -5.67 -5.60
CP 0.34 0.80 1.61 1.86 -0.74 -1.14 -1.98 -1.42
LN 0.59 1.34 1.99 1.88 1.16 2.30 1.71 0.29
EW 0.31 0.81 1.73 1.85 0.41 0.71 1.23 0.95
PMI 1.17 1.74 2.56 2.17 0.61 0.69 1.28 1.52
U 0.45 0.97 1.74 1.72 0.76 1.37 1.86 1.29
NONE 0.33 0.49 1.29 1.72 0.70 0.85 1.42 1.34
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Table 9: Non-linear term structure model

This table reports parameter estimates and test for relevant restrictions for the non-linear one-

factor model of Feldhütter et al. (2018). Panel A reports relevant parameters with associated

p-values from a t-test with asymptotic standard errors. Panel B provides correlations between

the stochastic weighting s(t) and disagreement ÷(t) with and each our conditioning variables

(PMI and U) with corresponding p-values for the null of no correlation in parentheses. All

estimates are based on yield and excess return data using our out-of-sample observations

(i.e. January 1990 to December 2018). The bond maturities are ranging between one and

five years for the yields while we consider the excess return of maturities between two and

five years with a holding period of one month. The model is estimated using a square-root

unscented Kalman filter.

Panel A: Parameters Panel B: Correlations

fl0,X 1.01e≠06 PMI Ut

(1.00) �s(t) -0.15 0.13
“ 3.14 (0.01) (0.01)

(0.00) �÷(t) -0.17 0.11
— -0.14 (0.00) (0.04)

(0.00)
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Figure 1: Bond excess returns

This figure plots times series of monthly bond excess returns (in percentage) for Treasury

bonds with maturities ranging from two to five years. Shaded areas represent NBER recession

dates. Monthly bond returns are in excess of the implied yield on a one-month Treasury bill

rate. Yield data are end-of-month and have been obtained from Gürkaynak et al. (2007) over

the period January 1962 to December 2018.
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Figure 2: Conditioning variables

This figure shows times series of the Purchasing managers’ index (PMI) published by the

Institute for Supply Management and the macroeconomic uncertainty (U) index from Jurado

et al. (2015). Green (yellow) shaded ares represent periods of (high) low activity and

uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)

quantiles of their time series. The sample period covers January 1962 to December 2018.
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Figure 3: Relative forecasting performance

This figure plots the recursively updated cumulative di�erence in the squared prediction

errors from the EH benchmark model and the ith predictor model over the out-of-sample

evaluation period. We consider five di�erent predictors: yield spreads (Campbell and Shiller,

1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman and

Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson

and Ng (2009) macroeconomic factor. We also consider a simple equal-weighted combination

of the individual forecasts. A positive (negative) slope indicates that the predictive model

delivers more (less) accurate forecasts than the EH benchmark. Green (yellow) shaded

ares represent periods of high (low) activity and uncertainty, respectively, where activity is

measured using the Purchasing Managers’ Index (PMI) (left column) and uncertainty (right

column) is the index developed by Jurado et al. (2015). High (low) episodes are identified

using the 80% (20%) quantiles of their time series. White areas are normal times. The

out-of-sample evaluation period runs from January 2000 to December 2018.
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Figure 4: Dynamic forecast combinations

This figure plots the recursively updated cumulative di�erence in the squared prediction

errors from the EH benchmark model and the dynamic forecast combination forecast for

each of the tree conditioning cases. We consider the Purchasing Managers’ Index (PMI)

and the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning

variables along with an unconditional version labeled NONE. A positive (negative) slope

indicates that the dynamic forecast combination delivers more (less) accurate forecasts than

the EH benchmark. Green (yellow) shaded ares represent periods of high (low) activity

and uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)

quantiles of their time series. White areas are normal times. The out-of-sample evaluation

periods runs from January 2000 to December 2018.
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Figure 5: Dynamic versus static forecast combination

This figure plots the recursively updated cumulative di�erence in the squared prediction

errors from a static equal-weighted forecast combination benchmark and the dynamic forecast

combination forecast for each of the tree conditioning cases. We consider the Purchasing

Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from Jurado et al.

(2015) as our conditioning variables along with an unconditional version labeled NONE. A

positive (negative) slope indicates that the dynamic forecast combination delivers more (less)

accurate forecasts than the static equal-weighted forecast combination benchmark. Green

(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively,

where high (low) episodes are identified using the 80% (20%) quantiles of their time series.

White areas are normal times. The out-of-sample evaluation periods runs from January 2000

to December 2018.
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Figure 6: Bond risk premia forecasts for dynamic combination strategy

This figure illustrates the time series behavior of bond risk premia forecasts originating from

our dynamic forecast combination strategy. Shaded areas represent NBER recession dates.

PMI is the Purchasing Managers’ Index published by the Institute for Supply Management

and U is the macroeconomic uncertainty index proposed in Jurado et al. (2015). The

out-of-sample forecasting periods runs from January 2000 to December 2018.
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Figure 7: Dynamic forecast combinations: CER gains

This figure plots the recursively updated cumulative di�erence in realized utility from

the dynamic forecast combination forecast for each of the tree conditioning cases and

the EH benchmark model. We consider the Purchasing Managers’ Index (PMI) and the

macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning variables

along with an unconditional version labeled NONE. A positive (negative) slope indicates

that the dynamic forecast combination delivers more (less) accurate forecasts than the

EH benchmark. Green (yellow) shaded ares represent periods of high (low) activity and

uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)

quantiles of their time series. White areas are normal times. The out-of-sample evaluation

periods runs from January 2000 to December 2018.
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Figure 8: Dynamic versus static forecast combination: CER gains

This figure plots the recursively updated cumulative di�erence in the squared prediction

errors from the dynamic forecast combination forecast for each of the tree conditioning cases

and a static equal-weighted forecast combination benchmark. We consider the Purchasing

Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from Jurado et al.

(2015) as our conditioning variables along with an unconditional version labeled NONE. A

positive (negative) slope indicates that the dynamic forecast combination delivers more (less)

accurate forecasts than the static equal-weighted forecast combination benchmark. Green

(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively,

where high (low) episodes are identified using the 80% (20%) quantiles of their time series.

White areas are normal times. The out-of-sample evaluation periods runs from January 2000

to December 2018.
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Figure 9: Stochastic weights on economy 0 and disagreement

The figure illustrates the time series of the estimated stochastic weights s(t) on economy 0

as well as the estimated disagreement ÷(t) in the non-linear model term structure model.

s(t) = 1 corresponds to an economy in which the expectation hypothesis (EH) holds, and

÷(t) = 0 (÷(t) > 0) corresponds to an economy without (with) disagreement. Grey shaded

areas represent NBER recessions. Green (yellow) shaded areas represent periods of high (low)

activity and uncertainty, respectively, where high (low) episodes are identified using the 80%

(20%) quantiles of their time series. White areas are normal times. The model is estimated

using data from January 1990 to December 2018.
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IA.A. Theoretical results, assumptions, and proofs

This section explains the adopted Giacomini and White (2006) assumptions used in Theorem 1

along with its proof. The outline of several of the proofs follows Giacomini and White (2006),

making the necessary adjustments to account for the multivariate nature of our tests. We also

provide theoretical results with associated proofs for the case of multi-step ahead forecasting,

· > 1, and the unconditional case, Gt = {ÿ, �}.

IA.A.1. One-step ahead forecasting and Giacomini and White (2006)

assumptions

In the one-step ahead case, · = 1, we impose the following assumptions that are adopted

from Giacomini and White (2006).

Assumption 1. {ht} and {wt} are „-mixing with „(t) = O
1
t≠r/(2r≠1)≠ÿ

2
, r Ø 1, or

–-mixing with –(t) = O
1
t≠ r

r≠1 ≠ÿ
2
, r > 1, for some ÿ > 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure and het-

erogeneity of data. We do not impose the stricter and common (covariance) stationarity

assumption as used in for instance Diebold and Mariano (1995) and Mariano and Preve (2012).

Specifically, data may exhibit arbitrary structural changes, which is a common feature found

in many empirical studies within macroeconomic prediction (see e.g. Stock and Watson (2003)

and Schrimpf and Wang (2010)), stock return prediction (see e.g. Fama and French (1997)

and Paye and Timmermann (2006)), and exchange rate prediction (see e.g. Giacomini and

Rossi (2010)), to name a few, and is especially relevant in our context of possible instabilities.

Assumption 2. E[|dt+1,i|2(r+”)] < Œ for some ” > 0, i = 1, . . . , qp, and for all t, where

subscript i indicate the ith element of dt+1.

Assumption 3. �T © T ≠1 qT
t=1 E[dt+1d

Õ
t+1] is uniformly positive definite.
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Assumptions 2–3 are mainly technical assumptions ensuring (uniformly) bounded moments

of data and positive definiteness of the asymptotic variance. Both assumptions are commonly

found in the forecast evaluation literature.

IA.A.1.1. Proof of Theorem 1

The proof of part A. and B. adopts the necessary steps in Giacomini and White (2006). We

start by proving part A. Let dt+1 = ht ¢ �L+1 and write

dt+1d
Õ
t+1 = g (ht, wt+1, . . . , wt≠m)(IA.A.1)

for some measurable function g. Since m < Œ, and {ht} and {wt} are mixing of the same

size according to Assumption 1, it follows from Theorem 3.49 in White (2001) that {dt+1d
Õ
t+1}

is mixing of the same size as {ht} and {wt}.

By Assumption 2, there exists a C œ R+ and ” > 0 such that E[|dm,t+1,i|2(r+”)] < C < Œ

for i = 1, . . . , qp and for all t, where subscript i indicates the ith element in dt+1. Hence, by

the Cauchy-Schwartz inequality, one obtains

E[|dt+1,idt+1,j|r+”] Æ E[|d2
t+1,i|r+”]1/2

E[|d2
t+1,j|r+”]1/2 < C(IA.A.2)

for i, j = 1, . . . , qp and for all t. By Corollary 3.48 in White (2001), it then follows that ‚�T ≠

�T
P≠æ 0. Furthermore, by Assumption 2, it follows that �T is finite and, by Assumption 3,

that it is uniformly positive definite.

Next, let ⁄ œ R
qp with ⁄Õ⁄ = 1 and consider

⁄Õ
�

≠1/2
T

Ô
Tdt+1 = T ≠1/2

T ≠1ÿ

t=1
⁄Õ

�
≠1/2
T dt+1.(IA.A.3)

Let Â⁄i denote the ith element of the product ⁄Õ
�

≠1/2
T , such that ⁄Õ

�
≠1/2
T dt+1 = qqp

i=1
Â⁄idt+1,i.
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Hence, under the null hypothesis

E[⁄Õ
�

≠1/2
T dt+1|Gt] = E

C qpÿ

i=1

Â⁄idt+1,i|Gt

D

=
qpÿ

i=1

Â⁄iE[dt+1,i|Gt] = 0,(IA.A.4)

by measurability of Â⁄i, such that the sequence {⁄Õ
�

≠1/2
T dt+1,Gt} is an MDS. The asymptotic

variance is

‡2
d = Var[⁄Õ

�
≠1/2
T

Ô
Td]

= ⁄Õ
�

≠1/2
T Var[

Ô
Td]�≠1/2

T ⁄

= ⁄Õ
�

≠1/2
T �T �

≠1/2
T ⁄

= 1(IA.A.5)

for su�ciently large T . Furthermore, since ‚�T ≠ �T
P≠æ 0 it follows by the Continuous

Mapping Theorem that

1
T

Tÿ

t=1
⁄Õ

�
≠1/2
T dÕ

t+1dt+1�
≠1/2
T ⁄ ≠ ‡2

d

= ⁄Õ
�

≠1/2
T

‚�T �
≠1/2
T ⁄ ≠ ⁄Õ

�
≠1/2
T �T �

≠1/2
T ⁄

P≠æ 0.(IA.A.6)

Lastly, we need to check that ⁄Õ
�

≠1/2
T dt+1 has absolute 2 + ” moment. By Minkowski’s

inequality and Assumption 2 we obtain

E[|⁄Õ
�

≠1/2
T dt+1|2+”] = E

C----
qpÿ

i=1

Â⁄idt+1,i

----
2+”

D

Æ
A qpÿ

i=1

Â⁄iE

Ë
|dt+1,i|2+”

È1/(2+”)
B2+”

< Œ.(IA.A.7)

Consequently, we can apply the CLT for MDS and deduce that ⁄Õ
�

≠1/2
T

Ô
Td

d≠æ N(0, 1). By
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the Cramér-Wold device it then follows that

�
≠1/2

Ô
Td

d≠æ N(0, Iqp).(IA.A.8)

Since ‚�T ≠ �T
P≠æ 0, we deduce that

Ô
T

3
‚�

≠1/2
T d̄

4Õ Ô
T�

≠1/2
T d = Td

Õ ‚�
≠1
T d = Sh

d≠æ ‰2(qp),(IA.A.9)

as T æ Œ.

We now prove part B. By the same arguments as in the proof for part A., it follows that the

sequence {dt+1} is mixing of the same size as {wt} and {ht}. Furthermore, Assumption 2

ensures that each element of dt+1 is bounded uniformly in t such that

d ≠ E[d] P≠æ 0(IA.A.10)

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists ÷ > 0 such

that E[dÕ
m]E[dm] > 2÷ for T su�ciently large. It follows that

P[dÕ
d > ÷] Ø P[dÕ

d ≠ E[dÕ]E[d] > ≠÷]

Ø P[|dÕ
md ≠ E[dÕ]E[d]| < ÷] æ 1,(IA.A.11)

where the convergence to unity is due to (IA.A.10). By identical arguments as the proof

of part A., dÕ
t+1dt+1 is mixing with the same size as {wt} and each element is uniformly

bounded in t. Corollary 3.48 in White (2001) can then be applied, and it follows that ‚�T is a

consistent estimator of �T . By Assumption 3, �T is uniformly positive definite. Let c œ R+.
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It then follows from Theorem 8.13 in White (1994) that

P[Sh > c] æ 1, as T æ Œ.(IA.A.12)

Last, we prove part C. Let Lú
t+1 be an arbitrary permutation of the forecasting losses, i.e.

Lú
t+1 = P Lt+1, where P is a (p+1)◊(p+1) permutation matrix and Lt+1 = (L1

t+1, . . . , Lp+1
t+1 )Õ.

Define the p ◊ (p + 1) matrix D by

D =

S

WWWWWWWWWWU

1 ≠1 0 . . . 0

0 1 ≠1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 ≠1

T

XXXXXXXXXXV

such that �Lú
t+1 = DLú

t+1 = DP Lt+1. In total, the number of permutations of the forecast

losses at each point of time t is (p + 1)!. Mariano and Preve (2012) show that there always

exists a nonsingular matrix B of dimension p ◊ p such that B�Lt+1 = �Lú
t+1. Consequently,

define the qp ◊ qp matrix A = (Iq ¢ B), where Iq is the q ◊ q identity matrix. By standard

properties of the Kronecker product A is nonsingular, and we have that

dú
t+1 = ht ¢ �Lú

t+1 = (Iqht) ¢ (B�Lt+1) = (Iq ¢ B)(ht ¢ �Lt+1) = Adt+1.(IA.A.13)

Since the null hypothesis implies that the asymptotic variance can be estimated consistently

by the sample variance, it follows that

‚�
ú
T © 1

T

Tÿ

t=1
dú

t+1d
úÕ

t+1 = 1
T

Tÿ

t=1
Adt+1d

Õ
t+1A

Õ = A ‚�T AÕ.
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Due to the nonsingularity of A and ‚�T , it follows that

d
úÕ

t+1( ‚�
ú
T )≠1d

ú
t+1 = dÕ

t+1A
Õ(A ‚�T AÕ)≠1Adt+1

= dÕ
t+1

‚�
≠1
T dt+1,

which shows that the test is invariant to a permutation of the ordering of the forecast

losses.

IA.A.2. Unconditional and multi-step predictive ability tests

In both the unconditional, Gt = {ÿ, �}, and multistep conditional case the loss series are

no longer martingale di�erence sequences under the null hypothesis. Thus, the sequence

{ht ¢ �Lt+· } may be serially autocorrelated.37 In the conditional setting, the null hypothesis

imposes a particular structure on the serial correlation, namely that it can be at most order

· ≠ 1. However, in the unconditional case no such restriction exists. Consequently, we can no

longer rely on the sample variance under the null for estimating the covariance matrix as was

the case in the one-step conditional setting considered in the previous section. Instead, we

consider a HAC-type estimator (see, e.g., Newey and West (1987) and Andrews (1991)) with

a bandwidth choice guided by the implications of the null hypothesis. The estimator is given

by

Â�T = 1
T

5 Tÿ

t=1
dt+· dÕ

t+·

+
bTÿ

j=1
Ÿ(j, bT )

Tÿ

t=1+j

1
dt+· dÕ

t+·≠j + dt+·≠jd
Õ
t+·

2 6
,(IA.A.14)

where {bT } is an integer-valued truncation point sequence satisfying bT æ Œ as T æ Œ and

bT = o(T ) (Newey and West, 1987) in the unconditional case, and bT = · ≠1 in the conditional

case. Furthermore, Ÿ(·, ·) is a real-valued kernel weight function satisfying the condition

37Note that that in the unconditional case ht = 1 for all t.
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that Ÿ(j, bT ) æ 1 as T æ Œ for each j = 1, . . . , bT (Andrews, 1991), and Ÿ(j, bT ) = 0 for

j > bT . We refer to Clark and McCracken (2013) for a recent review of data driven bandwidth

selection methods.

Along the lines of the construction of the conditional test with · = 1, we construct

the following Wald statistic which can be used in testing either unconditional or multi-step

conditional equal predictive ability. The test statistic is given by

Sh,· = Td Â�
≠1
T d,(IA.A.15)

where d = T ≠1 qT
t=1 dt+· . Before turning the properties of the proposed test statistic, we will

need a slight modification of the assumptions from the previous section on one-step ahead

forecasting.

Assumption 1
ú
. {ht} and {wt} are „≠mixing with „(t) = O

1
t≠r/(2r≠2)≠ÿ

2
, r Ø 2, or

–≠mixing with –(t) = O
1
t≠ r

r≠2 ≠ÿ
2
, r > 2, for some ÿ > 0.

Assumption 2
ú
. E[|dt+·,i|r+”] < Œ for some ” > 0, i = 1, . . . , qp, and for all t, where

subscript i indicates the ith element of dt+1.

Assumption 3
ú
. �T © T ≠1 qT

t=1 E[dt+· dÕ
t+· ] + T ≠1 qbT

j=1
qT

t=1+j

3
E[dt+· dÕ

t+·≠j]

+ E[dt+·≠jd
Õ
t+· ]

4
is uniformly positive definite, where bT = · ≠ 1 in the conditional case and

bT = T ≠ 1 in the unconditional case.

Analogues to Theorem 1, Sh,· is asymptotically chi-squared distributed with qp degrees

of freedom under the null hypothesis, has power under the alternative hypothesis, and is

permutation invariant. We summarize these results in Theorem 2 below.

Theorem 2 (Multistep multivariate predictive ability tests). Suppose that Assump-

tions 1*-3* hold.

A. Asymptotic distribution under the null. Suppose that either Gt = {ÿ, �} and · Ø 1
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or Ft ™ Gt and · > 1. For any test function sequence {ht}, m < Œ, and under H0 in (4),

Sh,·
d≠æ ‰2(qp), as T æ Œ.(IA.A.16)

B. Consistency under the alternative. For any c œ R+ and under HA,h in (8),

P[Sh,· > c] æ 1, as T æ Œ.(IA.A.17)

C. Permutation invariance. Let Lú
t+· be an arbitrary permutation of the forecast losses,

and define �Lú
t+· = DLú

t+· , d
ú = T ≠1 qT

t=1 dú
t+· with dú

t+· = ht ¢ �Lú
t+· and Â�

ú
T be the

associated covariance estimator defined in (IA.A.14). Then,

Sú
h,· © Td

úÕ

m( Â�
ú
T )≠1d

ú = Sh,·(IA.A.18)

for all T .

Consequently, a multivariate test for equal conditional multistep predictive ability or (mul-

tistep) unconditional predictive ability can be conducted by rejecting the null hypothesis

whenever Sh,· > z1≠–,qp, noting that the unconditional test has q = 1. The permutation

invariance result in Theorem 2 for the unconditional case is similar to Proposition 2 in

Mariano and Preve (2012), but holds under the milder Assumptions 1*–3*, and hence also

applies in a setting with non-stationary data, inclusion of nested models, and explicit account

of estimation uncertainty.

IA.A.2.1. Proof of Theorem 2

We start by proving part A. We proceed by a similar procedure as in the proof of Theorem 1,

however with modifications due to the dependency in dt+· under the null hypothesis. First, by

Assumptions 2* and 3*, �T is finite and uniformly positive definite. Let ⁄ œ R
qp with ⁄Õ⁄ = 1

and consider ⁄Õ
�

≠1/2
T

Ô
Td = T ≠1/2 qT

t=1 ⁄Õ
�

≠1/2
T dt+· . Furthermore, identical arguments as
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in Theorem 1 imply that {⁄Õ
�

≠1/2
T dt+· } being mixing of the same size as {ht} and {wt}.

Moreover, the asymptotic variance satisfies ‡2
d = Var[⁄Õ

�
≠1/2
T

Ô
Td] = ⁄Õ

�
≠1/2
T �T �

≠1/2
T ⁄ = 1

for all T su�ciently large. By Minkowski’s inequality and computations as in (IA.A.7),

⁄Õ
�

≠1/2
T dt+· has absolute 2+” moment for some ” > 0. Then, by Corollary 3.1 in Wooldridge

and White (1988) we deduce that ⁄Õ
�

≠1/2
T

Ô
Td

d≠æ N(0, 1). Hence, by the Cramér-Wold

device it follows that �
≠1/2
T

Ô
Td

d≠æ N(0, Iqp). It remains to be shown that Â�T ≠ �T
P≠æ 0.

Consider

Â�T ≠ �T = 1
T

Tÿ

t=1

1
dt+· dÕ

t+· ≠ E[dt+· dÕ
t+· ]

2

+ 1
T

bTÿ

j=1
Ÿ(j, bT )

Tÿ

t=1+j

1
dt+· dÕ

t+·≠j ≠ E[dt+· dÕ
t+·≠j]

+ dt+·≠jd
Õ
t+· ≠ E[dt+·≠jd

Õ
t+· ]

2
.(IA.A.19)

By Theorem 3.49 in White (2001), {dt+· dÕ
t+·≠j} is mixing of the same size as {ht} and

{wt} for each j = 0, . . . , bT . Moreover, each of its elements are bounded uniformly in t by

Assumption 2*. Hence, since Ÿ(j, bT ) æ 1 as T æ Œ and Ÿ(0, bT ) = 1 it follows via Corollary

3.48 in White (2001) that

1
T

Ÿ(j, ·)
Tÿ

t=1+j

1
dt+· dÕ

t+·≠j ≠ E[dm,t+· dÕ
t+·≠j]

2
P≠æ 0,

for each j = 0, . . . , bT . Combined with (IA.A.19), this implies that �̃T ≠ �T
P≠æ 0 (see also

Andrews (1991)). Hence, we can deduce via similar steps as in (IA.A.9) that Sh,·
d≠æ ‰2(qp)

as T æ Œ.

We now prove part B. The result follows by arguments similar to those in the proof of

Theorem 1. Hence, {dt+· } is mixing with the same size as {ht} and {wt} and each element

in dt+· is bounded uniformly in t by Assumption 2*. Then it follows by Corollary 3.48 in

White (2001) that d̄ ≠ E[d̄] P≠æ 0, and consequently similar computations as in (IA.A.11)
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applies. By arguments identical to those in the proof of part A., �̃T ≠ �T
P≠æ 0, where �T is

positive definite by Assumption 3*. Theorem 8.13 in White (1994) then implies that under

HA,h in (8) and for any constant c œ R+, P[Sh,· > c] æ 1 as T æ Œ.

Last, we prove part C. Due the arguments in the proof of Theorem 1, it su�ces to show that
Â�T ú = A Â�T AÕ, where A = Iq ¢ B. Thus, let

Â�T (b) © 1
T

Tÿ

t=1+b

dt+· dÕ
t+·≠b,

for b = 0, 1, 2 . . .. It then follows that

Â�T (b)ú © 1
T

Tÿ

t=1+b

dú
t+· dúÕ

t+·≠b = 1
T

Tÿ

t=1+b

Adt+· dÕ
t+·≠bA

Õ = A Â�T (b)AÕ.

Consequently, it follows that Â�
ú
T = A Â�T AÕ, which completes the proof.
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IA.B. A check of size and power properties

This section performs a Monte Carlo study to investigate the finite sample properties of

our multivariate test for equal conditional predictive ability. We focus on size and power

properties of the test in a setting that closely resembles the empirical analyses in both a full

out-of-sample analysis and when used in the dynamic ranking rule.38

We examine a situation where the forecasts have equal predictive ability unconditionally,

but conditional on some state variable Âht at least one of the forecasts are more (or less)

accurate than the others. The data-generating process is set to

�Lt+1 = µ
1

Âht ≠ Í
2

+ Át+1,(IA.B.20)

where P

Ë
Âht = 1

È
= Í and P

Ë
Âht = 0

È
= 1 ≠ Í. To allow for the presence of estimation error

(approximately) asymptotically, as delineated by our theoretical setting, we re-sample with

replacement from de-meaned loss di�erentials from our empirical analysis when generating

Át+1. In this way, they retain the influence of the estimation coming the forecasting models

as well as ensuring simulated time series that exhibit realistic empirical behavior. Note also

that E[�Lt+1] = 0, together with E[�Lt+1|Âht = 1] = µ(1 ≠ Í) and E[�Lt+1|Âht = 0] = ≠µÍ.

That is, the unconditional null hypothesis is true, whilst the conditional one is not necessarily

so, depending on the value of (the elements in) µ and Í.

We consider three sample size lengths: short, medium, and long. The medium size equals

the length of our full out-of-sample window, T = 348, the short size equals the sample length

used in the dynamic ranking rule in the application, T1 = 120, and the long size is set to

1,000 observations. Consistent with our empirical analysis, we set p = 5 as the number of

models under comparison less one due to the computation of loss di�erentials. Since our

38We refer to Borup and Thyrsgaard (2017) for extensive Monte Carlo evidence for all test statistics with

remedies for large dimensions and power enhancement techniques.
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ranking rules eliminate a model sequentially until it no longer rejects, we consider the full

range p = 1, . . . , 5. When p < 5, we randomly sample without replacement (in any random

order) among our full set of models and subsequently reconstruct loss di�erentials based on

the selected models. Note that any reshu�ing of the order of models has no influence on

the test statistic due to its permutation invariance, presented in Theorem 1, such that it has

no influence on the performance of the test statistic within a fixed p. To obtain (samples

of) Át+1, we consider the empirical loss di�erentials coming from forecasting the 2-year and

the 5-year bond, respectively, as illustrative cases. We set Í = 0.4, since this links to our

findings below that documents notable superior predictability of at least one model in each

of the high and low economic activity or uncertainty states, and less di�erences in predictive

accuracy within the normal state. We use 10,000 Monte Carlo replications.

IA.B.1. Size properties

To examine the size properties of our test, we set µ = 0 such that both the unconditional

and conditional null hypothesis are true. We consider two implementations of the test. The

first is unconditional and uses ht = 1 for all t, whereas a conditional implementation uses

ht = (1, Âht)Õ. The results are reported in Table IA.1 for a significance level of 5%. Conclusions

are identical using a 1% and 10% significance level, and relevant tables are available upon

request.

[Insert Figure IA.1 About Here]

It is clear that both the conditional and unconditional tests are well-sized, showing

negligible deviations from the nominal significance level. Those minor deviations generally

decrease in sample size and increase in number of models under comparison. It is comforting

to note that the tests maintain good size properties for the short sample size used in the

dynamic ranking rule. There is no notable di�erence when sampling from loss di�erentials

associated with the 2-year or 5-year bonds, except from in the short sample case where the

5-year bond loss di�erentials lead to a slight undersizing.
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IA.B.2. Power properties

To examine the power properties of our test, we let the first element of µ deviate from zero,

and set the remaining elements equal to zero, similarly to Mariano and Preve (2012). Denote

this first element by µ1. The deviation is anchored in the empirical loss di�erentials, making

it realistic in the context of the present paper. Specifically, we compute the average absolute

loss di�erentials across all models within the low and high economic activity states using PMI

defined in the empirical section of the main paper, denoting it by ÷̂. We then set µ1 = c÷̂

where c œ [0, 2.5].39 Given the specification in (IA.B.20) and Í = 0.4, this allows µ1 to deviate

at most 1.5 times the empirical value of average absolute loss di�erentials. We have also

implemented a version that lets all elements of µ deviate from zero with a fraction c of each

respective element’s average absolute loss di�erentials within the low and high activity states.

The power is uniformly stronger in this case, and results are available upon request. Note

also that, in both versions, the unconditional null hypothesis remains true. We therefore set

ht = (1, Âht)Õ and examine the power of the conditional version of our equal predictability test.

The power curves for a 5% significance level are depicted in Figure IA.1. Conclusions are

identical using a 1% and 10% significance level, and the results are available upon request.

[Insert Figure IA.1 About Here]

In line with the theoretical power result in Theorem 1, the test is consistent under the

(local) alternative considered, as power increases to unity for stronger deviations from the

null. It correctly exhibits empirical rejections equal to the nominal size at c = 0. Power

is stronger for fewer model comparisons, as expected, but the di�erence is not substantial.

Similar to size properties, it is comforting that the test exhibits good power properties even

for the relatively short sample length. To put this into context, for c = 1/Í = 1.67, we recover

the empirical value of the mean absolute values of loss di�erentials obtained in the empirical

39We also ran the simulation using U as state variable, yielding similar conclusions, yet somewhat stronger

power.
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analysis when using (IA.B.20). In this case, the power exceeds 0.94 for the smallest sample

size and p = 5, showing very desirable power properties. There is no notable di�erence when

sampling from loss di�erentials associated with the 2-year or 5-year bonds.
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IA.C. Bond data

IA.C.1. Bond risk premia

We use the Gürkaynak et al. (2007) dataset from 1962:M1 to 2018:M12. The time t log yield

on a k-period bond is computed using the methods developed in Nelson and Siegel (1987)

and Svensson (1994) as

y(k)
t = —0,t + —1,t

1 ≠ exp
1
≠ n

Ÿ1,t

2

n
Ÿ1,t

+ —2,t

S

U
1 ≠ exp

1
≠ n

Ÿ1,t

2

n
Ÿ1,t

≠ exp
A

≠ n

Ÿ1,t

BT

V

+ —3,t

S

U
1 ≠ exp

1
≠ n

Ÿ2,t

2

n
Ÿ2,t

≠ exp
A

≠ n

Ÿ2,t

BT

V ,(IA.C.21)

where we use parentheses in the superscript to distinguish maturity from exponentiation and

n = k
m and m denotes, respectively, the bond maturity in years and the number of periods

per year.

Let p(k)
t = ≠

1
k
m

2
y(k)

t be the log price of a k-period bond at time t. The log forward rate

at time t for loans between t + k ≠ 1 and t + k is defined as

(IA.C.22) f (k)
t = p(k≠1)

t ≠ p(k)
t = ≠k≠1

m y(k≠1)
t + k

my(k)
t .

The excess return to purchasing a k-period bond today and selling it as a k ≠ 1 period bond

after one month is

(IA.C.23) rx(k)
t+1 = p(k≠1)

t+1 ≠ p(k)
t ≠ p(1)

t = ≠k≠1
m y(k≠1)

t+1 + k
my(k)

t ≠ 1
my(1)

t ,

where y(1)
t denotes the risk-free one-period rate that we proxy using the implied yield on a

one-month Treasury bill obtained from the Center for Research in Security Prices (CRSP) as
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in Gargano et al. (2019).40

IA.C.2. Predictor variables

We consider a set of standard bond predictors from the extant literature. In particular, we

consider yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987),

principal components of yields (Litterman and Scheinkman, 1991), forward rates (Cochrane

and Piazzesi, 2005), the output gap (Cooper and Priestley, 2009), macroeconomic factors

(Ludvigson and Ng, 2009), and interest rate cycles (Cieslak and Povala, 2015). We discuss

the construction of each of the variables below.

The Campbell-Shiller (CS) yield spreads are computed for each bond maturity as

(IA.C.24) ys(k)
t = y(k)

t ≠ y(1)
t ,

where y(k)
t denotes the time t log yield on a bond with k periods to maturity and y(1)

t denotes

the safe one-period return measured using the implied yield on a one-month Treasury bill

obtained from CRSP. The Fama-Bliss (FB) forward spreads are computed similarly as

(IA.C.25) fs(k)
t = f (k)

t ≠ y(1)
t ,

where f (k)
t denotes the forward rate for loans between t + k ≠ 1 and t + k. The principal

component (PC) of yields are computed from bonds with 12, 24, 36, 48, and 60 months

left to maturity and we focus on the first three components often referred to as level, slope,

and curvature. These components account for almost all of the variation in yields. The

Cochrane-Piazzesi (CP) single factor is formed from a linear combination of forward rates

40For k = 1, we have that f (1)
t

= y(1)
t

and that y(k≠1)
t

= y(0)
t

= 0 due to p(0)
t

being zero (log of terminal

payo� of one is zero).
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using the projection

(IA.C.26) rxt+1 = ” + “1f
(12)
t + “2f

(24)
t + “3f

(36)
t + “4f

(48)
t + “5f

(60)
t + Át+1,

where rxt+1 = 1
4

q5
i=2 rx(i◊12)

t+1 can be viewed as the excess return on a portfolio of Treasury

bonds with di�erent maturities. The CP factor is obtained as the fitted values from the regres-

sion, CPt = ‚” + ‚“ft, with ‚“ = (‚“1, ‚“2, ‚“3, ‚“4, ‚“5) and f t = (f (12)
t , f (24)

t , f (36)
t , f (48)

t , f (60)
t )Õ. The

Ludvigson-Ng (LN) macroeconomic factor is based on a large T ◊ M panel of macroeconomic

variables, x, that we assume can be adequately described by a static factor model

(IA.C.27) xi,t = Ÿigt + ‹i,t,,

where gt is an s ◊ 1 vector of common factors with s π M that we estimate using principal

component analysis. We use the comprehensive FRED-MD dataset from McCracken and Ng

(2016). Following Ludvigson and Ng (2009), we build a single factor as a linear combination

of a subset of the principal components. We determine the subset using the BIC and obtain

the factor from a projection of rxt+1 onto the set of selected macroeconomic factors.

[Insert Table IA.2 About Here]

Table IA.2 presents descriptive statistics for the set of predictors (Panel A) along with

contemporaneous correlations (Panel B). All variables are constructed using the full range

of available observations here, but are constructed recursively in the out-of-sample exercise.

Yield spreads and forward spreads are fairly persistent with first-order autocorrelations

between 0.82 and 0.92 and are heavily cross-correlated. Unsurprisingly, PC2 — the slope

component of the yield curve — is strongly related to both yield and forward spreads. CP and

LN are similarly positively correlated with the spread variables and also positively correlated

with each other. Last, we note that CP and LN are relatively less persistent compared to the

remaining variables.
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IA.C.3. Additional details on state variables

This section provides additional details on the state variables used in the empirical analyses

to address state-dependencies in bond return predictability.

The Purchasing Managers’ Index (PMI) is a leading economic indicator constructed from

monthly surveys of the manufacturing sector and is released on the first business day of

every month. The survey covers senior purchasing executives (or similar) at around 400

manufacturing companies. The PMI is a weighted average of the following five indices: New

Orders (30%), Output (25%), Employment (20%), Suppliers’ Delivery Times (15%) and

Stocks of Purchases (10%). For the PMI calculation, the Suppliers’ Delivery Times Index is

inverted so that it moves in a comparable direction to the other indices. For more details, we

refer to IHS Markit’s product page (https://ihsmarkit.com/products/pmi.html). The index

ranges from 0 to 100 and is specifically designed to capture the state of the economy with

values above (below) 50 indicating an overall increase (decrease) compared to the previous

month. We have collected the index from Global Financial Data.

The macroconomic uncertainty index (U) of Jurado et al. (2015) measures a common

component in the time-varying volatilities of h-step ahead forecast errors across a large number

of macroeconomic series that include categories such as real activity, prices, and financial assets.

The idea build on the premise that what matters for economic decision making is not whether

particular economic indicators have become more or less variable or disperse per se, but rather

whether the economy has become more or less predictable. The index is therefore associated

with the variance of the unpredictable components of macroeconomic variables. The index is

obtained from Sydney Ludvigson’s website (https://www.sydneyludvigson.com/macro-and-

financial-uncertainty-indexes).

[Insert Table IA.3 About Here]

Table IA.3 presents full sample descriptive statistics for our two state variables that

captures economic activity and uncertainty, respectively: the Purchasing Managers’ Index

xix

https://ihsmarkit.com/products/pmi.html
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes


(PMI) and the macroeconomic uncertainty index of Jurado et al. (2015). The series are

both highly persistent with autocorrelation coe�cients well above 0.9. Most importantly, we

note that the series obtains a negative contemporaneous correlation of ≠0.48 in the data,

suggesting that they capture part of the some features, but are not perfect substitutes.
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IA.D. Additional empirical results

IA.D.1. In-sample predictive regressions

Table IA.4 presents full sample least squares estimation results to facilitate comparison with

the extant literature. Specifically, we estimate predictive regressions of the form presented

in (1) with the risk premium on a Treasury bond with k-periods to maturity rx(k)
t+1 as the

dependent variable. We focus on bonds with 24, 36, 48, and 60 months to maturity and

consider models based on the predictor variables outlined in Section B. We stress that these

results are not available to a real-time investor, but they are useful for gauging the mechanisms

of the predictive models.

[Insert Table IA.4 About Here]

The slope coe�cients for CS and FB are all positive and increasing with maturity and

are all statistically significant at conventional levels.41 We note that these positive slope

coe�cients imply negative slopes for the companion regression of yield or forward spreads on

future yield changes as documented in Campbell and Shiller (1991). Thus, both yield and

forward spreads contain useful information about future bond excess returns over the full

range of available observations. Turning to the principal components, we find that PC1 has a

constant slope coe�cient across maturities, PC2 increases monotonically, and PC3 displays

an inverse U-shape. PC1 and PC3 are mostly insignificant, whereas PC2 is significant for

the longer maturities. This mirrors the results for CS, but shows that maturity-specific

spreads are more informative than the common slope factor. Last, CP and LN both display

monotonically increasing slope coe�cients that are highly significant. Of all the models, LN

41Bauer and Hamilton (2018) show that statistical test of predictive regression in full sample analyses

are subject to serious small sample distortions when using 12-month overlapping returns. However, we use

one-month non-overlapping returns here and are therefore not a�ected by their results. See also the discussion

in Gargano et al. (2019).
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appears to explain the largest fraction of bond risk premia, closely followed by CP and yield

spreads. Overall, in-sample results points to predictive relation between all our candidate

predictors.

IA.D.2. Decision rule and model selection

Figure IA.2 illustrates the models selected for the best set of models using the decision rule

over time using PMI and U as conditioning variables, respectively. Green (yellow) shaded

aras indicate high (low) states identified using the 20% and 80% quantiles of the series. A

“+” indicates inclusion.

[Insert Figure IA.2 About Here]

[Insert Figure IA.3 About Here]

Figures IA.3 illustrates the size of the set of best models selected over time using the

decision rule using PMI and U as conditioning variables, respectively. We note that the best

set of models varies considerably over time and includes situations in which the set include all

models, leading to forecasts equal to EW, and situations with a singleton. That is, at times

there is no need for trimming of the full set of models and at other times we should only use

the forecasts from a single model. Importantly, this tells us why dynamically trimming leads

to improvements over a simple, static forecast combination rule.

IA.D.3. Full out-of-sample period ranking

We here device a rule that uses the full out-of-sample period for ranking all forecasting

methods based on their predictive accuracy conditional on the state variable. We formulate

the rule using a single state variable (and a constant), but note that the rule can be extended

directly to a setting with multiple state variables. Since Âht may be continuous, we assume

that it can be classified into a finite set of A discrete, non-empty, states sa, a = 1, . . . ,A. For
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example, the state variable can be a measure of economic growth, which may be classified

into recessionary or expansionary states, or a measure of macroeconomic uncertainty, which

may be classified into low, medium, and high uncertainty states.

Let M0 denote the set of p + 1 forecasting methods under consideration and Mú
a a set

of best forecasting methods in terms of some loss function within the ath state. We then

consider the following three-step procedure.

Step 0: Set Ma = M0 for a = 1, . . . ,A. For all pairwise combinations of of forecasting

methods, j, i œ Mt, i ”= j, estimate by OLS the regression model

�Li,j
t+1 = Li

t+1 ≠ Lj
t+1 = Ïjht + ÷t+1(IA.D.28)

over the entire out-of-sample period. The conditional expectation of the loss di�er-

entials within each state, E
Ë
�Lj

t+· |s = sa

È
= Ïj

0 + Ïj
1E

Ë
Êht|s = sa

È
, a = 1, . . . ,A, is

approximated by ‚Ïj
0 + ‚Ïj

1 ‚µa
Âh, where ‚µa

Âh is the sample average of the state variable Âht

in state sa. Based on the estimated conditional means, rank all p + 1 methods (using

a normalization of one method) in all states. The forecasting method with lowest

predicted loss across all pairwise combinations is ranked first and the method with

highest predicted loss is ranked last.

Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set Mú
a = Ma. Otherwise, eliminate the lowest

ranked forecasting method from Ma based on the ranking that associates with state a.

Iterate Steps 1–2 until the null is no longer rejected for all A states.

Concluding the algorithm leads to a set Mú
a for each state sa that contains the best forecasting

methods statistically indistinguishable in terms of predictive ability.

To facilitate interpretation and consistent with the empirical analysis in the main paper,

we classify the continuous state variables, PMI and U, into low, normal, and high economic
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activity (uncertainty) states using the 20% and 80% quantiles as discussed in Section C.

[Insert Figure IA.4 About Here]

Figure IA.4 illustrates the full out-of-sample elimination order of the predictive models

determined by the ranking rule discussed in Section III when conditioning on low, normal,

and high PMI and U states, respectively, using a 10% significance level. We uncover a striking

pattern over the full sample. In particular, the EH tends to be eliminated in high (low)

economic activity (uncertainty) states across the entire maturity spectrum. Interpreting the

EH as a no-predictability benchmark implies that bond risk premia are predictable when

economic activity (uncertainty) is high (low). Conversely, the consistent inclusion of EH in

low (high) economic activity (uncertainty) states suggests a lack of predictability. Overall, we

argue that our empirical results are consistent with, and clearly points to, state-dependencies

in bond excess return predictability linked to economic activity and uncertainty. Bond excess

returns are predictable in states with high (low) economic activity (uncertainty), whereas the

EH serves as a reliable anchor in the remaining states of the world.

IA.D.4. Links to uncertainty

Table IA.6 presents contemporaneous correlations among U and the risk premia estimates

from the set of individual models, EW, and the dynamic forecast combinations generated by

PMI, U, and NONE.

[Insert Table IA.6 About Here]

We find that most forecasts are positively correlated with uncertainty, implying that

investors higher risk premia in periods with heightened uncertainty. The exception is CS and

FB for the shorter maturities, where we observe negative correlations. As for our main results

concerning the relation to economic activity (see Table 6), we find that LN displays the highest

correlation with U among the individual predictors and EW. Turning to the dynamic forecast

combination estimates in Panel B, we find that both PMI and U trimming delivers forecasts
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that are tightly linked to uncertainty. That is, not only do they produce countercyclical risk

premia estimates, they only procedure forecasts closely linked to uncertainty.

IA.D.5. Additional results for economic value

Figure IA.5 plots the cumulative CER gains for the individual predictor variables along

with the equal-weighted forecast (EW). The results largely mirrors those in Table 7 in the

main paper and illustrate that most individual predictors fail to deliver economic value on a

consistent basis. The exception being LN.

[Insert Figure IA.5 About Here]

[Insert Table IA.7 About Here]

Table IA.7 reconstructs the results from Table 7 in the main paper using instead a

coe�cient of relative risk aversion of “ = 5 to verify that our results are robust to other, and

lower, values of risk aversion. The table clearly demonstrates that this is the case.

As another test of the improvement in economic value we assess how the predictive content

in our models under consideration maps into Sharpe ratio improvements. We follow the

approach by Gu et al. (2020) and use that the Sharpe ratio (SRú
i,k) earned by an active

investor that utilizes predictive information (summarized by the R2
OS,i,k) for model i and

bond maturity k is given by

SRú
i,k =

ı̂ıÙSR2
k + R2

OS,i,k

1 ≠ R2
OS,i,k

,

where SRk is the Sharpe ratio earned by a buy-and-hold investor on a k-maturity bond. We

then report annualized Sharpe ratio improvements for each method,
Ô

12
1
SRú

i,k ≠ SRk

2
, in

the cases where R2
OS,i,k Ø 0. These are collected in Table IA.8.

[Insert Table IA.8 About Here]
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It is clear that individual predictors almost always lead to Sharpe ratio reductions and

if any gain is achieved it is generally small. On the other hand, EW provides notable

Sharpe ratio improvements, yet our dynamic forecast combination is superior for all bond

maturities. For instance, the buy-and-hold Sharpe ratio of a 2-year bond, which is 0.90 in

our out-of-sample period, can be improved with 0.48 (0.59) using PMI (U) as state variable.

Improvements for NONE are almost identical to EW.

IA.E. Description of the non-linear model and estima-

tion

IA.E.1. The model

We consider a one-factor version of the model in Feldhütter et al. (2018). In the model,

uncertainty is driven by an one-dimensional Brownian motion W (t). There is then an

one-factor gaussian factor X (t) with dynamics

(IA.E.29) dX(t) = Ÿ(◊ ≠ X(t))dt + �dW (t),

where ◊, Ÿ and � are constants. In the absence of arbitrage, there exist a stochastic discount

factor (SDF) given by

(IA.E.30) M(t) = M0(t)
1
1 + “e≠—X(t)

2
,

where “ is a non-negative constant, — is a constant, and M0 (t) is a strictly positive process.

This implies that M(t) is strictly positive. Note that (IA.E.30) is a departure from standard

term structure models in that this model specify the functional form of the SDF directly

rather than pinning it down from short rate and market price of risk specifications.
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The price P (t, T ) of a zero-coupon bond at time t that matures at T is given by

(IA.E.31) P (t, T ) = s(t)P0 (t, T ) + (1 ≠ s(t)) P1 (t, T ) ,

where

s(t) = 1
1 + “e≠—X(t) ,(IA.E.32)

Pi (t, T ) = eAi(T ≠t)+Bi(T ≠t)X(t).(IA.E.33)

The coe�cients Ai (T ≠ t) and Bi (T ≠ t) solve the set of ordinary di�erential equations

dBi (T ≠ t)
d(T ≠ t) = ≠ (Ÿ + �⁄i,X) Bi (T ≠ t) ≠ fli,X ,(IA.E.34)

dAi (T ≠ t)
d(T ≠ t) = 1

2�2Bi (T ≠ t)2 + Bi (T ≠ t) (Ÿ◊ ≠ �⁄i,0) ≠ fli,0,(IA.E.35)

⁄1,0 = ⁄0,0 + �—,(IA.E.36)

⁄1,X = ⁄0,X ,(IA.E.37)

fl1,0 = fl0,0 + —Ÿ◊ ≠ 1
2—2�2,(IA.E.38)

fl1,X = fl0,X ≠ Ÿ— ≠ ⁄0,X�—.(IA.E.39)

For identification, we follow Feldhütter et al. (2018) and set ◊ = 0 and � = 1. If — = 0 or

“ = 0, then the model collapses to a standard Gaussian term structure model. We consider

essentially a�ne market prices of risk.

IA.E.2. Estimation procedure

We estimate the one-factor version of the non-linear term structure model by maximum

likelihood using Kalman filtering, shifting notation for expositional reasons to using subscript

for time indicators. We cast the model into a state space form with a transition equation that
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describes the dynamics of the state factor, Xt, and a measurement equation that describes

the relationship between Xt and both yields and excess returns.

Let Yt denote a vector of yields and excess returns, then the measurement equation is

specified as

(IA.E.40) Yt = z (�, Xt) + Át, Át ≥ N (0, �measurement)

where z (·) is the pricing function, � is a vector of model parameters, and Át is vector of

i.i.d. Gaussian pricing errors with covariance matrix �measurement. To reduce the number of

parameters, we assume that pricing errors for all yields have the same variance ‡2
yields and

that all pricing errors for excess returns have the same variance ‡2
excess.

The transition equation for the dynamics of the state variable Xt have the form

(IA.E.41) Xt+· = C + DXt + ÷t+· , ÷t+· ≥ N (0, Q)

where D = e≠Ÿ· , C = (1 ≠ e≠Ÿ· )◊, and Q denotes the conditional variance of Xt+· given

Xt. The latter is constant provided that Xt is Gaussian. We refer to Fackler (2000) for a

closed-form solution. Similarly, the expected variance is given as

(IA.E.42) �x,t+· |t = DÕ�x,t|tD + Q.

In the non-linear model, the pricing function z (·) is nonlinear both for yields and excess

returns. The unscented Kalman filter seems to be the standard approach for gauging such

non-linearities (see, among others, Cieslak and Povala (2016), FilipoviÊ, Larsson, and Trolle

(2017) and Feldhütter et al. (2018)). We follow Christo�ersen, Dorion, Jacobs, and Karoui

(2014) and implement the square-root unscented Kalman filter of Van Der Merwe and Wan

(2001) that is numerically more stable than the standard unscented Kalman filter.

The unscented Kalman filter evaluates the measurement equation in a set of sigma points
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rather than linearizing it as in the standard Kalman filter. These sigma point vectors are

given by

‰0 = Xt+· |t,(IA.E.43)

‰i = Xt+· |t +
3Ò

(N + ⁄)
Ò

�x,t+· |t

4

i
for i = 1, . . . , N,(IA.E.44)

‰i = Xt+· |t ≠
3Ò

(N + ⁄)
Ò

�x,t+· |t

4

i≠N
for i = N + 1, . . . , 2N,(IA.E.45)

where N is the number of state factors in the state-space system. The number of sigma

points is, therefore, equal to 2N + 1. Last, ⁄ is a scaling factor determined by

(IA.E.46) ⁄ = –2 (N ≠ Ÿ) ≠ N.

We follow Van Der Merwe and Wan (2001) and set Ÿ=0 and – = 10≠3, where – is intended to

minimize higher-order e�ects. The first moment of the measurement equation is approximated

by

(IA.E.47) Y t+· |t ¥
2Nÿ

i=0
W µ

i Mi

where Mi = z (�, ‰i). The variance of the measurement equation is

Sy = cholupdate
3

qr
5Ò

W ‡
1 (M1:2N ≠ M0) chol (H)

6
,M0 ≠ Y t+· |t, W ‡

1

4
,(IA.E.48)

Ft+· |t = SyS Õ
y,(IA.E.49)

where qr (·) is the orthogonal-triangular decomposition such that A = qr, where q is a

orthogonal matrix and r is a upper triangular matrix. The function returns the r matrix.

The function “chol” is the cholesky decomposition such that if B = chol (A) then BBÕ =

A. The function “cholupdate (A, B, C)” updates the cholesky decomposition A such that

cholupdate (A, B, C) = chol (AAÕ + CBBÕ). In the case where C is a matrix, then the
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procedure is performed column by column.

The weights W µ
i and W ‡

i are given by

W µ
0 = ⁄

N + ⁄
,(IA.E.50)

W ‡
0 = ⁄

N + ⁄
+ 1 ≠ –2 + —,(IA.E.51)

W µ
i = W ‡

i = ⁄

2 (N + ⁄) , for i = 1, . . . , 2N.(IA.E.52)

When Xt is Gaussian, setting — = 2 is optimal (Van Der Merwe and Wan, 2001). The next

step is to use these to predict the measurement equation using the updating step. The

Kalman gain is

(IA.E.53) Kt+· =
1
Pxy/S Õ

y

2
/Sy.

The update step is then performed by

Xt+· |t+· = Xt|t≠1 + Kt+·

1
Yt+· ≠ Y t+· |t

2
(IA.E.54)

�x,t+· |t+· = �x,t+· |t ≠ �xyF ≠1
t+· |t�xy.(IA.E.55)

To initialize the Kalman filter, we set X0|0 and �x,0|0 equal to, respectively, the unconditional

mean and variance of Xt. We can then construct the loglikelihood function as

(IA.E.56)

l (�) =
Tÿ

t=1
≠N

2 log (2fi) ≠
log

1
| Ft|t≠1 |

2

2 ≠ 0.5
1
Y (t) ≠ Y t|t≠1

2Õ
F ≠1

t|t≠1

1
Y (t) ≠ Y t|t≠1

2

The estimates ‚� can then be obtained by maximizing (IA.E.56) with respect to the parameters,

�. We follow Cieslak and Povala (2016) and maximize the loglikelihood function using the

di�erential evolution algorithm. The optimization is repeated with multiple plausible initial

starting values.
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Table IA.1: Empirical size properties

This table reports the rejection frequency (empirical size) of the multivariate test for equal

predictive ability with a nominal size of 5%, data-generating process given by (IA.B.20)

with µ = 0, and 10,000 Monte Carlo replications. We implement an unconditional test that

sets ht = 1 for all t and a conditional test that sets ht = (1, h̃t)Õ, and use three samples

sizes referred to as short (120 observations), medium (348 observations) and long (1,000

observations). Panel A (B) reports results where Át+1 in (IA.B.20) is sampled from the

empirical loss di�erentials when forecasting the 2-year (5-year) bond. The value of p indicates

the dimension of the test arising from the number of comparing models less one.

Unconditional Conditional

Short Medium Long Short Medium Long

Panel A: 2-year bond

p=1 5.22 5.08 4.84 5.48 4.82 5.08
p=2 4.65 4.99 5.09 4.85 5.27 4.98
p=3 4.82 5.34 4.88 5.33 5.38 5.17
p=4 4.91 5.12 5.03 4.84 5.27 5.14
p=5 5.22 4.61 4.76 4.62 5.10 5.29

Panel B: 5-year bond

p=1 4.73 4.87 5.26 3.96 4.53 4.99
p=2 4.36 4.56 4.99 4.07 4.48 4.92
p=3 4.05 4.47 4.99 3.79 4.56 4.78
p=4 4.38 4.24 4.96 3.69 4.34 5.11
p=5 4.30 4.59 5.02 3.22 4.50 4.89
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Table IA.3: Conditioning variables

This table presents descriptive statistics for the state variables used in the empirical analysis.

PMI is the Purchasing Managers’ Index published by the Institute for Supply Managers

and U is the macroeconomic uncertainty index developed in Jurado et al. (2015). The table

reports mean, standard deviation, skewness, kurtosis, and first-order autocorrelation (AC(1))

of each state variable. We also report the contemporaneous correlation between the variables.

The sample period is January 1962 to December 2018.

PMI U

Mean 52.61 0.66
Std. dev. 6.37 0.09
Skewness -0.61 1.63
Kurtosis 4.37 5.79
AR(1) 0.94 0.99
Correlation -0.48
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Table IA.4: In-sample regressions

This table reports full sample least squares estimates of the slope coe�cients for various

linear predictive models for bond excess return. We consider five di�erent predictors: yield

spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal

components of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005)

forward rate factor computed from a projection of average excess bond returns on two-, three-,

four-, and five-year forward rates, and the Ludvigson and Ng (2009) macroeconomic factor

computed as a projection of average excess bond returns on factors obtained from a large

panel of macroeconomic variables. For each model, we report slope coe�cients, Newey and

West (1987) t-statistics using a bandwidth of twelve lags in parenthesis, and the adjusted R2

in square brackets. The sample period is January 1962 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Campbell-Shiller

CS 2.02 2.36 2.75 3.15
(2.67) (2.64) (2.85) (3.17)
[2.55] [2.32] [2.42] [2.61]

Panel B: Fama-Bliss

FB 1.20 1.41 1.69 1.99
(2.20) (2.30) (2.79) (3.38)
[1.80] [1.68] [1.90] [2.14]

Panel C: Principal components

PC1 0.01 0.01 0.01 0.01
(1.43) (1.04) (0.76) (0.56)

PC2 0.13 0.21 0.29 0.37
(1.72) (2.10) (2.46) (2.77)

PC3 0.23 0.31 0.24 0.09
(0.66) (0.63) (0.39) (0.13)
[1.05] [1.09] [1.19] [1.30]

Panel D: Cochrane-Piazzesi

CP 0.65 0.88 1.11 1.36
(4.60) (4.30) (4.12) (4.08)
[2.37] [2.16] [2.17] [2.30]

Panel E: Ludvigson-Ng

LN 0.65 0.90 1.12 1.33
(3.68) (3.96) (4.25) (4.46)
[6.62] [6.47] [6.33] [6.15]
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Table IA.5: Correlations between forecasts and macroeconomic uncertainty

This table reports correlation coe�cients between out-of-sample generated forecasts from

individual bond predictors (Panel A), the static (equal-weighted) forecast combination strategy

(Panel B), and the dynamic forecast combination strategy (Panel C) and economic uncertainty

as measured by the the macroeconomic uncertainty index (U) from Jurado et al. (2015). We

report p-values for the null of no correlation in parenthesis. The out-of-sample evaluation

period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS -0.09 -0.04 0.01 0.05
(0.10) (0.41) (0.92) (0.39)

FB -0.04 0.07 0.12 0.15
(0.49) (0.21) (0.02) (0.00)

PC 0.03 0.04 0.05 0.06
(0.57) (0.5) (0.34) (0.23)

CP 0.12 0.11 0.10 0.10
(0.02) (0.04) (0.06) (0.07)

LN 0.44 0.46 0.47 0.48
(0.00) (0.00) (0.00) (0.00)

EH 0.43 0.38 0.34 0.32
(0.00) (0.00) (0.00) (0.00)

Panel B: Static forecast combination

EW 0.31 0.34 0.35 0.35
(0.00) (0.00) (0.00) (0.00)

Panel C: Dynamic forecast combination

PMI 0.54 0.53 0.50 0.50
(0.00) (0.00) (0.00) (0.00)

U 0.59 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.54 0.47 0.46 0.47
(0.00) (0.00) (0.00) (0.00)
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Table IA.6: Alternative proxies for economic activity

This table reports correlation coe�cients between forecasts and alternative proxies for

economic activity. We use the Chicago Fed National Activity Index (Panel A), recession

probabilities from Chauvet and Piger (2008) (Panel B), and log growth rates to industrial

production (Panel C). We report p-values for the null of no correlation in parenthesis. The

out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Chicago Fed National Activity Index (CFNAI)

CS 0.10 0.04 -0.01 -0.05
(0.07) (0.40) (0.89) (0.35)

FB 0.04 -0.06 -0.13 -0.16
(0.46) (0.25) (0.02) (0.00)

PC 0.19 0.18 0.15 0.12
(0.00) (0.00) (0.01) (0.03)

CP -0.10 -0.09 -0.08 -0.07
(0.05) (0.10) (0.15) (0.17)

LN -0.48 -0.49 -0.50 -0.51
(0.00) (0.00) (0.00) (0.00)

EH -0.20 -0.17 -0.16 -0.15
(0.00) (0.00) (0.00) (0.01)

EW -0.26 -0.29 -0.30 -0.32
(0.00) (0.00) (0.00) (0.00)

PMI -0.51 -0.55 -0.54 -0.51
(0.00) (0.00) (0.00) (0.00)

U -0.56 -0.54 -0.54 -0.57
(0.00) (0.00) (0.00) (0.00)

NONE -0.53 -0.49 -0.49 -0.50
(0.00) (0.00) (0.00) (0.00)

Panel B: Recession probabilities (Chauvet and Piger, 2008)

CS -0.01 0.02 0.05 0.08
(0.89) (0.72) (0.33) (0.13)

FB 0.03 0.09 0.14 0.16
(0.64) (0.09) (0.01) (0.00)

PC -0.05 -0.05 -0.03 -0.01
(0.37) (0.35) (0.57) (0.86)

CP 0.10 0.08 0.06 0.05
(0.08) (0.16) (0.26) (0.32)

LN 0.56 0.57 0.58 0.59
(0.00) (0.00) (0.00) (0.00)

EH 0.18 0.13 0.11 0.09
(0.00) (0.01) (0.05) (0.09)

EW 0.37 0.38 0.38 0.38
(0.00) (0.00) (0.00) (0.00)

PMI 0.51 0.54 0.53 0.53
(0.00) (0.00) (0.00) (0.00)

U 0.55 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.58 0.53 0.51 0.52
(0.00) (0.00) (0.00) (0.00)

Panel C: Log industrial production growth

CS 0.07 0.06 0.03 0.01
(0.16) (0.28) (0.55) (0.86)

FB 0.07 0.01 -0.03 -0.05
(0.16) (0.79) (0.61) (0.33)

PC 0.16 0.15 0.14 0.13
(0.00) (0.00) (0.01) (0.02)

CP -0.08 -0.07 -0.07 -0.07
(0.16) (0.17) (0.18) (0.18)

LN -0.26 -0.27 -0.28 -0.28
(0.00) (0.00) (0.00) (0.00)

EH -0.09 -0.10 -0.10 -0.10
(0.11) (0.08) (0.07) (0.06)

EW -0.12 -0.14 -0.15 -0.16
(0.03) (0.01) (0.01) (0.00)

PMI -0.23 -0.25 -0.27 -0.23
(0.00) (0.00) (0.00) (0.00)

U -0.28 -0.25 -0.25 -0.27
(0.00) (0.00) (0.00) (0.00)

NONE -0.25 -0.22 -0.21 -0.21
(0.00) (0.00) (0.01) (0.01)



Table IA.7: Economic Value: “ = 5

This table reports certainty equivalent return (CER) gains for various linear predictive

models for bond excess return. We consider five di�erent predictors: yield spreads (Campbell

and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields

(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and

the Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gains

relative to the expectations hypothesis (Panels A, B, and C) and a static (equal-weighted)

forecast combination strategy (Panel D). PMI denotes the Purchasing Managers Index

published by the Institute for Supply Management and U is the macroeconomic uncertainty

index from Jurado et al. (2015). CER gains are based on an investor with mean-variance

preferences and a relative risk aversion of “ = 5. The out-of-sample evaluation period runs

from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.91 -0.88 -0.52 -0.25
(0.94) (0.87) (0.74) (0.62)

FB -0.62 -0.68 -0.55 -0.34
(0.88) (0.86) (0.80) (0.67)

PC -2.06 -2.46 -2.41 -2.36
(0.99) (0.96) (0.93) (0.9)

CP -0.80 -1.20 -1.31 -1.36
(0.96) (0.94) (0.91) (0.87)

LN 0.61 1.39 2.41 3.24
(0.01) (0.01) (0.00) (0.00)

Panel B: Static forecast combination against EH

EW 0.03 0.25 0.70 1.08
(0.46) (0.32) (0.13) (0.07)

Panel C: Dynamic forecast combination against EH

PMI 0.28 0.59 1.07 1.47
(0.19) (0.14) (0.05) (0.02)

U 0.19 0.53 1.22 1.60
(0.27) (0.14) (0.02) (0.01)

NONE 0.12 0.30 0.76 1.07
(0.34) (0.28) (0.10) (0.07)

Panel D: Dynamic forecast combination against EW

PMI 0.25 0.34 0.37 0.39
(0.02) (0.04) (0.05) (0.03)

U 0.16 0.28 0.52 0.52
(0.08) (0.02) (0.00) (0.02)

NONE 0.09 0.04 0.06 -0.01
(0.15) (0.35) (0.28) (0.52)
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Table IA.8: Sharpe ratio improvements

This table reports certainty Sharpe ratio improvements for various linear predictive models for

bond excess return. We consider five di�erent predictors: yield spreads (Campbell and Shiller,

1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman

and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the

Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the Sharpe

ratio improvement relative to that earned by a buy-and-hold investor. PMI denotes the

Purchasing Managers Index published by the Institute for Supply Management and U is the

macroeconomic uncertainty index from Jurado et al. (2015). If R2
OS < 0 we do not report a

value. The out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

SR 0.90 0.83 0.78 0.74
Panel A: Individual bond predictors

CS - - 0.05 0.11
FB - 0.10 0.13 0.14
PC - - - -
CP - - - -
LN - - - -

Panel B: Static forecast combination

EW 0.38 0.35 0.34 0.33

Panel C: Dynamic forecast combination

PMI 0.48 0.37 0.35 0.43
U 0.59 0.44 0.41 0.36
NONE 0.41 0.35 0.36 0.35
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Figure IA.1: Empirical power curves

This figure shows the rejection frequency (empirical power) of the multivariate test for equal

predictive ability with a nominal size of 5% and data-generating process given by (IA.B.20)

with the first element in µ deviating and the remaining elements are set to zero. The

first element of µ is set to c÷̂ where ÷̂ is the average absolute loss di�erentials across all

models within the low and high economic activity states defined in the empirical section and

c œ [0, 2.5]. We use 10,000 Monte Carlo replications. We implement a conditional test that

sets ht = (1, h̃t)Õ, and use three samples sizes referred to as short (120 observations), medium

(348 observations) and long (1,000 observations). The left (right) panel depicts results where

Át+1 in (IA.B.20) is sampled from the empirical loss di�erentials when forecasting the 2-year

(5-year) bond. The value of p indicates the dimension of the test arising from the number of

comparing models less one.
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Figure IA.2: Inclusion plots across states

This figure displays the inclusion of each predictive model into the best set of models. Green

(yellow) shaded ares represent periods of high (low) states of the Purchasing Managers’

Index (PMI) (left) and the Jurado et al. (2015) macroeconomic uncertainty index (U) (right)

identified using the 20% and 80% quantiles of the series. White areas are normal times. We

consider five di�erent predictors: yield spreads (Campbell and Shiller, 1991), forward spreads

(Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 1991),

the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng (2009)

macroeconomic factor. EH denotes the benchmark expectations hypothesis model. Inclusion

of a predictive model is marked with +. The out-of-sample evaluation periods runs from

January 2000 to December 2018.
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Figure IA.3: Size of the set of best models

This figure illustrates the size of the set of best predictive models for each of the four bond

maturities and conditioning variables. Green (yellow) shaded ares represent periods of high

(low) activity and uncertainty, respectively, where activity is measured using the Purchasing

Manager’s Index (PMI) published by the Institute for Supply Management and uncertainty

is the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). High (low)

episodes are identified using the 80% (20%) quantiles of their time series. White areas are

normal times. The out-of-sample evaluation periods runs from January 2000 to December

2018.
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Figure IA.4: Full sample elimination order

This figure displays the full sample elimination order of predictive model in high, normal,

and low states separately for the Purchasing Managers’ Index (PMI) (left graphs) and the

macroeconomic uncertainty index (U) of Jurado et al. (2015) (right graphs) using the 20%

and 80% quantiles of their time series. White squares denote models included in the best set

of models and numbered tiles denotes eliminated models and their elimination order. We

consider five di�erent predictors: yield spreads (Campbell and Shiller, 1991), forward spreads

(Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman, 1991),

the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng (2009)

macroeconomic factor. The out-of-sample evaluation periods runs from January 2000 to

December 2018.
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Figure IA.5: Relative certainty equivalent returns

This figure plots the recursively updated cumulative di�erence in realized utility from the

EH benchmark model and the ith predictor model over the out-of-sample evaluation period.

We consider five di�erent predictors: yield spreads (Campbell and Shiller, 1991), forward

spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,

1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng

(2009) macroeconomic factor. We also consider a simple equal-weighted combination of the

individual forecasts. A positive (negative) slope indicates that the predictive model delivers

more (less) utility than the EH benchmark. Green (yellow) shaded ares represent periods

of high (low) activity and uncertainty, respectively, where activity is measured using the

Purchasing Managers’ Index (PMI) (left column) and uncertainty (right column) is the index

developed by Jurado et al. (2015). High (low) episodes are identified using the 80% (20%)

quantiles of their time series. White areas are normal times. The out-of-sample evaluation

period runs from January 2000 to December 2018.
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