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Abstract

In treatment allocation problems the individuals to be treated often arrive sequentially. We
study a problem in which the policy maker is not only interested in the expected cumulative
welfare but is also concerned about the uncertainty/risk of the treatment outcomes. A sequen-
tial treatment policy, which attains near minimax optimal regret, is studied with and without
covariates. We also demonstrate that the expected number of suboptimal treatments only grows
slowly in the number of treatments. Finally, we study a setting where outcomes are observed
only with delay. Simulations illustrate the theoretical results.
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1 Introduction

A policy maker must often assign treatments gradually as the individuals to be treated do not
arrive simultaneously. For example, people become unemployed gradually throughout the year and
assignment to one of several unemployment programs is often made shortly thereafter. Similarly,
patients with too high blood pressure arrive gradually to a medical clinic and the doctor assigns one
of several treatments to each of them. The policy maker or doctor gradually accrues information by
observing the outcome of previous treatments prior to the next assignment. Throughout the paper
we shall use these two examples as illustrations of our results and be particularly concerned with
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how treatments should be assigned in order to maximize welfare. In doing so, one faces a tradeoff
between exploring which treatment works best and exploiting the information gathered so far from
previous assignments in order to assign the best treatment to as many individuals as possible.

The above setup is in stark contrast to typical estimation of treatment effects where one presup-
poses the existence of a data set of a certain size N (perhaps obtained from a randomized control
trial). Thus, in the typical setting, the size and composition of the data set are determined prior
to estimation. Based on this given data set, treatment effects would be estimated and assignments
made. We consider the case where the observed data that the treatment assignments must be based
on is a part of the policy in the sense that it depends on the assignments made by the policy maker.
Thus, the policy maker enters already in the design phase of the treatment program and can adjust
the experiment as data is accumulated. Furthermore, the sample size itself may be a random vari-
able unknown to the policy maker as one may not know a priori how many individuals will become
unemployed in the course of the year that the program is scheduled to run. Thus, the exact amount
of experimentation of a good treatment rule will depend on the expected number of individuals to
be treated.

We consider a setting where the desirability of a treatment cannot be measured only by its
expected outcome. A sensible welfare function must take into account the risk of a treatment. For
example, it may well be that drug A is expected to lower the blood pressure slightly more than
drug B but A might still not be preferred if it is much more risky than B. In this paper we shall
measure the risk of a treatment by its variance and take into account that mean as well as variance
may be relevant in determining the most desirable treatment. We also indicate how one may
incorporate more than two moments into the welfare function thus allowing welfare functions that
allow for policy makers to be, say, skewness averse. We study a treatment policy, which we call the
sequential treatment policy, and show that it achieves near minimax optimal regret compared to the
infeasible policy that knows in advance which treatment is best for each individual and assigns this.
As individuals with different characteristics may react differently to the same treatment, we also
study how covariate information can be incorporated. Thus, we allow for heterogeneous treatment
distributions and optimality of the sequential treatment policy is established. Furthermore, an upper
bound on the expected number of times that the sequential treatment policy assigns any suboptimal
treatment is provided as well. This is an important ethical guarantee since it ensures that the near
minimax optimal regret is not obtained at the cost of wild experimentation or maltreatment of many
individuals in order to achieve a greater cumulative welfare in the long run.

In addition, we contribute by studying the properties of the sequential treatment policy when
the outcomes of previous treatments are observed only with delay. In a medical trial, for example,
one may choose to delay the measurement of the outcome of the treatment in order to obtain more
precise information of the effect of a certain drug as it takes time for the effect of a drug to set
in. The price of this delay is that less information is available when treating other patients prior to
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the measurement being made. Thus, there is a tradeoff between obtaining imprecise information
quickly (by making the measurement shortly after the treatment) and obtaining more precise infor-
mation later (by postponing the measurement). We quantify this tradeoff and indicate the optimal
delay (when this is a choice variable) and establish that our policy is guaranteed to deliver high
welfare even in this setting.

Our approach easily accommodates practical policy concerns restricting the type of treatment
rules that are feasible. For instance, the policy maker may want rules that depend on the individ-
ual’s characteristics in a simple way due to political or ethical reasons.

It should be noted that the goal of this paper is not to test whether one treatment is better than
the other ones at the end of the treatment period. This would amount to a pure exploration problem
where the purpose of the sampling is to maximize the amount of information at the end of the
sample without regard to the welfare of the treated individuals.

1.1 Related literature

Our paper is related to two strands of literature: the literature on statistical treatment rules in
econometrics and the one on multi-armed bandit problems. In the former Manski (2004) proposed
conditional empirical success (CES) rules which take a finite partition of the covariate space and
on each set of this partition dictate to assign the treatment with the highest sample average. When
implementing CES rules, one must decide on how fine to choose the partition of the covariate
space and thus faces a tradeoff between using highly individualized rules and having enough data
to accurately estimate the treatment effects for each group in the partition. Among other things,
Manski (2004) provides sufficient conditions for full individualization to be optimal. The tradeoff
between full individualization of treatments and having sufficient data to estimate the treatment
effects accurately is also found in our sequential treatment setting.

Stoye (2009) showed that if one does not restrict how outcomes vary with covariates then full
individualization is alway minimax optimal. Thus, if age is a covariate, information on treatment
effects for 30 year olds should not be used when making treatment decisions for 31 year olds. This
result relies on the fact that without any restrictions on how the outcome distribution varies with
covariates, this relationship could be arbitrarily non-smooth such that even similar individuals may
carry no information about how treatments affect the other person. Our assumptions rule out such
non-smoothness as no practical policy can be expected to work well in such a setting.

Furthermore, our work is related to the recent paper by Kitagawa and Tetenov (2018) who
consider treatment allocation through an empirical welfare maximization lens. The authors take the
view that realistic policies are often constrained to be simple due to ethical, legislative, or political
reasons. Our approach is related to theirs in that we also allow the policy maker to focus on simple
rules in the sequential framework. Furthermore, Athey and Wager (2017) have used concepts from
semiparametric efficiency theory to establish regret bounds that scale with the semiparametrically
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efficient variance. The importance of considering other characteristics than the mean treatment
outcome has also been emphasized by Qi et al. (2019).

Other papers on statistical treatment rules in econometrics focusing on the case where the sam-
ple is given include Chamberlain (2000), Dehejia (2005), Hirano and Porter (2009), Bhattacharya
and Dupas (2012), Stoye (2012), Tetenov (2012) and Kasy (2014).

The most important distinguishing feature of our work compared to the classic literature on
statistical treatment rules is that we are working in a sequential setting where the individuals to be
treated arrive gradually. Thus, we do not have a data set of size N at our disposal from the outset
based on which the best treatment must be found. Rather the goal of the policy maker is to construct
a way of sampling that strikes the optimal balance between exploration and exploitation. The
sequential setting under study poses new challenges such as not maltreating too many individuals
in the search for the best treatment and how to handle treatment outcomes that are only observed
with delay. Consequently, our paper is also related to the vast literature on bandit problems. In the
classic bandit problems one seeks to maximize the expected cumulative reward from pulling arms
with unknown means one by one. In a seminal paper Robbins (1952) introduced a class of bandit
problems and proposed some initial solutions guaranteeing that the average reward will converge
to the mean of the best arm.

Broadly speaking, bandit problems can be classified into three categories based on the nature
of the reward process: i) stochastic bandits where the arms are iid across time, ii) the markovian
setting where the state of the arms changes according to a Markov process, iii) the adversarial
setting in which nature chooses (an adversarial) sequence of rewards at the same time as the ex-
perimenter pulls an arm. In this work we focus on the stochastic setting as patients to be treated
or unemployed individuals to be assigned to job training programs do not generally coordinate
their effort against the doctor or policy maker in an adversarial manner. In the medical example in
particular, the interests of the doctor and patient are often well-aligned. Furthermore, the marko-
vian setting is concerned with infinite time horizons amounting to infinitely many treatments being
made. In this work we are interested in the case where we have to make a finite, albeit often un-
known, number of treatments. In our context of treatment assignment, the adversarial setting has
the questionable feature that two individuals with similar covariates may have entirely unrelated
treatment outcomes. This is due to the fact that the treatment outcomes are simply chosen by “the
opponent/nature” in a way maximizing losses of the policy maker. That being said, we certainly
believe that also the adversarial setting or the markovian setting can be of interest to study in the
context of sequential treatment allocation problems. In the latter setting, the Gittins index, Gittins
(1979), is the most famous procedure. We refer to Lykouris et al. (2017) for an example of a paper
focusing on the adversarial setting and to Bubeck et al. (2012) as well as Lattimore and Szepesvári
(2018) for general overviews on multi-armed bandits.

While most of the literature on multi-armed bandits has focused on the setting in which one
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only targets the arm with the highest mean, there has been a realization in recent years that also the
variance of assignments is of importance. For example, the papers Sani et al. (2012) and Vakili and
Zhao (2016) studied a setting in which the decision maker targets the arm with the lowest value
of the empirical variance minus a multiple of the mean. However, in addition to only studying
one specific function of the mean and the variance, the notion of regret employed in these papers
allowed for misassignments of some individuals to be offset by gains to others. This may not be
viable in many economic applications or in clinical trials where every individual matters. Thus,
the notion of welfare employed in this paper takes into account the welfare of every individual.

The paper closest in spirit to ours is the one of Zimin et al. (2014). Like us, they also allow
the policy maker to be interested in a function of the mean and the variance. However, there are
several differences to that work. First, they study a different policy build around the UCB-policy.
Second, the paper by Zimin et al. (2014) does not allow the treatment outcome distributions to
depend on covariates. However, it is clear that individuals with different characterisitcs may react
differently to the same treatment. It is thus important to allow for individual-specific treatment out-
comes and we show that our way of incorporating covariates results in minimax optimal expected
regret; cf. Corollary 3.1.1 and Theorem 3.2. Also in the absence of covariates we derive worst-case
performance guarantees of our sequential treatment policy in addition to pointwise upper bounds
established in Zimin et al. (2014) (who do not study uniform upper bounds on the regret of their
procedure). Third, we provide upper bound on the expected number of suboptimal assignments
made by our sequential treatment policy, which ensures that only few individuals are not assigned
to the best treatment. Fourth, we consider the case where the outcome of treatments is only ob-
served with delay. As explained, delay creates a tradeoff between obtaining imprecise information
quickly and obtaining precise information later. This makes the sequential treatment problem more
challenging as the policy maker must now also choose when to make a measurement in addition to
which treatment to assign.

The first paper which considered bandit problems where one observes a covariate prior to
making an allocation decision was Woodroofe (1979) who made a parametric assumption on how
covariates affect outcomes. The first work allowing covariates to affect the distribution of outcomes
in a nonparametric way was Yang et al. (2002). These works considered a setting where the
decision maker is interested solely in the mean outcome. From an algorithmic point of view our
work is related to Perchet and Rigollet (2013) who introduced a successive elimination (SE) policy
of suboptimal arms. Their policy is in turn related to the work of Even-Dar et al. (2003). Finally,
Shin et al. (2019) have studied the estimation error after adaptive allocation.

The term optimal sequential treatment allocation in the bandit framework as discussed in this
paper should not be confused with similar terms in the medical statistics literature. In that litera-
ture adaptive treatment strategies/adaptive interventions and dynamic treatment regimes refer to a
setting where the same individual is observed repeatedly over time and the level as well as the type
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of the treatment is adjusted according to the individual’s needs. References to this setting include
Robins (1997), Lavori et al. (2000), Murphy et al. (2001), Murphy (2003) and Murphy (2005).

The remainder of the paper is organized as follows. Section 2 considers a setting where the
treatment outcomes do not depend on observable individual specific characteristics. Next, Section
3 introduces covariates and establishes regret bounds for the sequential treatment policy. When
grouping individuals in a specific way, these bounds are near minimax optimal. It is also shown
that the expected number of sub-optimal assignments increases slowly and we investigate how
to handle discrete covariates. Section 4 investigates the effect of outcomes being observed with
delay. In Section 5, we evaluate the finite sample performance of the sequential treatment policy
via simulations. Finally, 6 concludes while 7 contains all proofs.

2 The treatment problem without covariates

We begin by considering the sequential treatment problem where the distributions of treatment
outcomes do not depend on observable individual specific characteristics. While this setting may
often be too restrictive, the regret bounds established in this section will be used as ingredients in
establishing the properties of our treatment rules in the setting where covariates are observed on
each individual prior to the treatment assignment.

Consider a setting with K + 1 different treatments and N assignments1. K is fixed throughout
the paper. N is a random variable whose value need not be known to the policy maker at the begin-
ning of the treatment assignment problem. For example, at the beginning of the year, he does not
know how many will become unemployed during the year. Let Y (i)

t ∈ [0, 1] denote the outcome
from assigning treatment i, i = 1, ..., K + 1 to individual t, t = 1, ..., N where the subscript t in-
dicates the order in which individuals are treated. It is merely for technical reasons that we assume
the treatment outcomes to take values in [0, 1] and this interval can be generalized to any interval
[I1, I2] for some I1, I2 ∈ R, I1 ≤ I2 or Y (i)

t being sub-gaussian without qualitatively changing our
results. The framework accommodates treatments with different costs since, whenever it makes
sense, Y (i)

t can be defined net of costs.
We allow for the data to arrive in M batches of sizes mb, b = 1, ...,M , such that the total

number of assignments is N =
∑M

b=1mb. If an unemployment program is run for twelve months
and new programs start every month then M = 12 and the mb indicate how many individuals
become unemployed in the bth month. The mb are allowed to be random variables as the policy
maker does not a priori know how many will become unemployed each month. This is in contrast
to typical treatment allocation problems where the size as well as the composition of the data
set are taken as given. Every individual t belongs to exactly one of the batches. For each batch

1We consider a setting with K + 1 treatments for purely notational reasons since it is the number of suboptimal
treatments, K, which will enter our regret bounds as well as many of the arguments in the appendix.
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the outcomes of the assignments are only observed at the end of the batch. Thus, the treatment
assignments for individuals belonging to batch b̃ can only depend on the outcomes observed from
previous batches b = 1, ..., b̃−1. LetB(b) =

∑b
k=1mk be the total number of assignments made in

the course of the first b batches with the convention B(0) = 0. In the setting studied in this paper,
the policy maker has no control of the number or size of the batches. For works investigating how
to optimally choose the number or size of batches (when this is a choice variable) in the setting
where the welfare function depends on the mean only, we refer to Perchet et al. (2016) as well as
Gao et al. (2019) who generalize that work.

For each t = 1, ..., N the treatment outcomes can be arbitrarily correlated in the sense that we
put no restrictions on the dependence structure of the entries of the vector Yt = (Y

(1)
t , ..., Y

(K+1)
t ),

i.e. the joint distribution of the entries of Yt is left unspecified. This in accordance with real
applications where an unemployed individual’s response to two types of job training programs
may be highly correlated. As individuals arrive independently, we assume the Yt are i.i.d, which is
a standard assumption also in the literature on statistical treatment rules.

The setting described above bears similarity to the one of the classic bandit problem reviewed
in Bubeck et al. (2012). However, we consider general welfare functions f : R2 → R of the
mean µ(i) = EY (i)

t and variance (σ2)(i) = E(Y
(i)
t − µ(i))2 of the treatment outcome Y (i)

t
2. Except

for Zimin et al. (2014) this is in contrast to most other work which only considers the expected
effect of a treatment which amounts to only considering welfare functions depending on the mean.
However, it is often very important to also take into account the risk of a decision.

Defining f (i) = f(µ(i), (σ2)(i)), the welfare maximizing (best) treatment is denoted by ∗ and
satisfies f (∗) = max1≤i≤K+1 f

(i) 3. The welfare maximizing treatment strikes the optimal balance
between expected treatment outcome and the riskiness of the treatment. Let ∆i = f (∗)−f (i) ≥ 0 be
the difference between the best and the ith treatment and assume that ∆1 ≥ ... ≥ ∆K > ∆∗ = 0.
The ranking of the ∆i is without loss of generality .

A treatment allocation rule is a sequence of functions π = {πt} assigning a treatment from the
set {1, ..., K + 1} to every individual t = 1, ..., N . πt can take as argument only the treatment
outcomes from previous batches. If individual t belongs to batch b, we therefore have that πt is a
mapping from [0, 1]B(b−1) into the set of treatments {1, ..., K + 1}. With a slight abuse of notation,
we shall often let πt denote the actual assignment rather than a function of previous treatment
outcomes.

Our goal is to provide a rule π that maximizes expected cumulated welfare over the N treat-
ments. This is equivalent to minimizing the expected difference to the infeasible welfare that would
have been obtained by always assigning the best treatment ∗, i.e. minimizing the expected value

2Since µ and σ2 both take their values in [0, 1], it actually suffices that f is well-defined on [0, 1]2.
3We assume without loss of generality that the best treatment is unique. If several best treatments are available, the

problem would only become easier in the sense that more treatments would yield a zero contribution to regret in (2.1).
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of the regret

RN(π) =
N∑
t=1

(
f (∗) − f (πt)

)
=

M∑
b=1

mb∑
i=1

(
f (∗) − f (πb,i)

)
. (2.1)

where the second equality is due to the fact that each individual t can be uniquely identified with
an assignment imade in a batch b; the assignment rule can also be written as πb,i for b ∈ {1, ...,M}
and i ∈ {1, ...,mb}. Note that the definition of regret takes into account the welfare of all treated
individuals. If one is only interested in using theN treated individuals to gain as much information
as possible such that one can treat individuals N + 1 an onwards as well as possible, then the
treatment problem would be of a different nature. In that case the treatment problem would be
purely exploratory and other policies than the ones studied in this paper may be optimal. We refer
to Bubeck et al. (2009) for a discussion of pure exploration problems in the setting where the policy
maker targets the mean only.

2.1 Examples

Throughout this paper we assume that f is Lipschitz continuous from [0, 1]2, equipped with the
`1-norm, to R with Lipschitz constant K > 0, i.e.

|f(u1, u2)− f(v1, v2)| ≤ K
(
|u1 − v1|+ |u2 − v2|

)
,

for (u1, u2) and (v1, v2) in [0, 1]2. By making concrete choices for f our framework contains the
following instances as special cases.

1. f(µ, σ2) = µ (implying K = 1) amounts to the classic bandit problem where one only
targets the mean.

2. f(µ, σ2) = µ
σ

amounts to Sharpe ratios which are frequently used in financial applications to
measure risk-return tradeoffs. If (σ2)(i) ≥ c for some c > 0 for all i = 1, ..., K + 1 then one
has by the mean value theorem that K = max( 1√

c
, 1

2c3/2
) is a Lipschitz constant for f . Note

that f is nonlinear in σ2 for all µ.

3. f(µ, σ2) = −σ/µ is the negative of the coefficient of variation in the literature on the mea-
surement of inequality, see Atkinson (1970). The coefficient of variation is a measure of
inequality. Minimizing this is encompassed by our framework. Here K = max( 1

c2
, 1

2c3/2
) is

a Lipschitz constant for f if µ, σ2 ≥ c for some c > 0.

4. f(µ, σ2) = µ − ασ2 for a risk aversion parameter α > 0 is another typical way of measur-
ing the tradeoff between expected outcomes and their variance. Here K = max(1, α) is a
Lipschitz constant for f .
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5. f(µ, σ2) = µ − 2α
√
σ2 for a risk aversion parameter α > 0. Here K = max(1, α

c0.5
) is a

Lipschitz constant for f if σ2 ≥ c for some c > 0.

6. f(µ, σ2) = −σ2 (implying K = 1) amounts to the case where one is interested only in
minimizing the variance.

7. The theory developed in this paper can be extended to the case where one is interested in
maximizing cumulative welfare with a welfare functions depending on any finite number of
moments, i.e. f(µ

(i)
1 , ..., µ

(i)
d ) for some d ≥ 1, where µ(i)

k = E
[
(Y

(i)
t )k

]
is the k′th moment

of Y (i)
t . Higher moments than the second one may be relevant if the policy maker has, say,

skewness aversion. This is relevant in dynamic portfolio allocation problems and finance as
in Harvey and Siddique (2000).

2.2 The sequential treatment policy

Heuristically, the sequential treatment policy works by eliminating treatments that are deemed to
be inferior based on the outcomes observed so far. One then take turns assigning each of the
remaining treatments in the next batch. This is the exploration step. After this step, elimination
can take place again. The policy is inspired by the successive elimination policy which was also
studied in Perchet and Rigollet (2013) in a setting where only the expected treatment outcome is
targeted.

To describe the policy more precisely, let mi,b =
∑B(b)

t=B(b−1)+1 1{πt=i} be the number of times
treatment i is assigned in batch b. Thus, mb =

∑K+1
i=1 mi,b and we define Bi(b) =

∑b
k=1 mi,k

as the number of times treatment i has been assigned up to and including batch b, b = 1, ...,M .
Whenever ιs := inf {t ∈ N :

∑t
r=1 1{πr=i} = s} is finite (meaning that treatment i is eventually

assigned at least s times), it is the s-th time treatment i is been assigned by π. We then define
µ̂

(i)
s = 1

s

∑s
r=1 Y

(i)
ιr and (σ̂2

s)
(i) = 1

s

∑s
r=1(Y

(i)
ιr − µ̂

(i)
s )2.

Sequential treatment policy: Denote by π̂ the sequential treatment policy. Let Ib ⊆ {1, ..., K + 1}
be the set of remaining treatments before batch b and let B(b) = mini∈Ib Bi(b) be the number of
times that each remaining treatment at least has been assigned up to and including batch b.

1. In each batch b = 1, ...,M we take turns assigning each remaining treatment. We first
assign any treatments that have been assigned fewer times than any of the other remaining
treatment(s). Thus, the difference between the number of times that any pair of remaining
treatments has been assigned at the end of a batch is at most one.

2. At the end of batch b eliminate treatment ĩ ∈ Ib if

max
i∈Ib

f(µ̂
(i)
B(b), (σ̂

2
B(b))

(i))− f(µ̂
(̃i)
B(b), (σ̂

2
B(b))

(̃i)) ≥ 8γ

√
2

B(b)
log

(
T

B(b)

)
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where γ > 0, T ∈ N and log(x) = log(x) ∨ 1.

The sequential treatment policy uses the sample counterparts of µ(i) and (σ2)(i) to evaluate
whether treatment i is inferior to the best of the remaining treatments. Concrete choices of γ and T
guaranteeing a low rate of regret are given in Theorem 2.1 and we provide some intuition here. The
parameter γ controls how aggressively treatments are eliminated. Small values of γ make it easier
to eliminate inferior treatments but also induce a risk of potentially eliminating the best treatment.
The exact form of the elimination threshold comes from the fact the sample moments concentrate
at rate 1/

√
B(b) around their population counterparts. In the case of two available treatments,

the sequential treatment policy is thus reminiscent of A/B-testing with a data-dependent stopping
rule. When two treatments are easy to distinguish, the exploration is stopped early while one
explores for longer if the treatments are very similar. The parameter T , which will often be set
equal to the expected sample size n = E(N), is needed exactly to ensure that we are cautious
eliminating treatments after the first couple of batches where µ̂(i)

B(b) and (σ̂2
B(b))

(i) could be based on
few observations and thus need not be precise estimates of µ(i) and (σ2)(i), respectively 4. From a
technical point of view, this ensures that we can uniformly (over treatments) control the probability
of eliminating the best treatment. Note that eliminating the best treatment is very costly as regret
will accumulate linearly after such a mistake5.

Remark 1 We note that the sequential treatment policy is different in spirit from the workhorse
UCB bandit algorithm in that it eliminates a treatments once one is sufficiently certain that this
is not the optimal treatment. The UCB algorithm, on the other hand, does never eliminate any
treatment but gradually assigns less promising treatments less frequently. Lai and Robbins (1985),
Auer et al. (2002) and Bubeck et al. (2012) provide more information on the UCB policy. As
mentioned in the introduction, we refer to Zimin et al. (2014) for a paper that studies a UCB-type
policy in our setup. In the discussion of Theorem 2.1 we highlight how our regret guarantee relates
to that paper and how the conceptual difference between the sequential treatment policy and UCB
manifests itself in different guarantees on maximal expected regret.

2.3 Optimal treatment assignment without covariates

Without an upper bound on the size of the batches it is clear that no non-trivial upper bound on
regret can be established. For example, the data could arrive in one batch of size N implying that
feedback is never received prior to any assignment. Thus, we shall assume that no batch is larger

4We are slightly more cautious than 1/
√
B(b). On the other hand, one does not want to be too cautious either

since this results in slow elimination of suboptimal treatments.
5If the best treatment is eliminated then the regret from each subsequent treatment is f (∗) − f (π̂t) ≥ ∆K > 0.
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than m where m is non-random, i.e. mb ≤ m for b = 1, ...,M . Our first result provides an upper
bound on the regret incurred by the sequential treatment policy.

Theorem 2.1 Consider a treatment problem with (K + 1) treatments and an unknown number of
assignments N with expectation n that is independent of the treatment outcomes. By implementing
the sequential treatment policy with parameters γ = K and T = n, one obtains the following
bound on the expected regret

E
[
RN(π̂)

]
≤ C min

mK2

K∑
i=1

1

∆i

log

(
n∆2

i

K2

)
︸ ︷︷ ︸

A: Distribution dependent

,
√
nK2mK log(mK)︸ ︷︷ ︸

B: Uniform

 (2.2)

for a positive universal constant C.

The upper bound in Theorem 2.1 is the minimum of two terms, A and B. The first term, A,
depends on the unknown distributional characterisitcs ∆i and is therefore of a pointwise/adaptive
(non-uniform) nature. Note that A only increases logarithmically in the the expected number of
treatments n. This logarithmic rate is unimprovable in general since it is known to be optimal even
in the case where one only targets the mean (which in our setting corresponds to f(x, y) = x) such
that K = 1) and the treated individuals arrive one-by-one (such that m = 1), see e.g. Theorem 2.2
in Bubeck et al. (2012). In the absence of batches (m = 1), Zimin et al. (2014) also established a
pointwise upper bound on the regret of their UCB-type policy of the same order as the one in A.
Note, however, that A can be made arbitrarily large by letting, e.g., ∆1 → 0. Thus, it is not useful
for “small” ∆i.

The second part (B) of the minimum in (2.2) is uniform over all (K+1)-tuples of distributions
on the Borel sets of [0, 1] as it does not depend on any distributional characteristics. In fact, it yields
the minimax optimal rate of expected regret up to a factor of

√
log(K) even in the case where only

the welfare function f(x, y) = x is considered and m = 1. In this “mean-only” special case,
the factor

√
log(K) would be replaced by

√
log(n) if one uses UCB, see Section 2.4.3 in Bubeck

et al. (2012), rather than the sequential treatment policy (which in this case is akin to the successive
elimination policy studied in Perchet and Rigollet (2013)). Thus, as n is much larger than K in
most treatment problems, the conceptual difference between the sequential treatment policy and
the UCB policy explained in Remark 1 manifests itself in better performance guarantees for the
former than for the latter.

It is reasonable that both parts of the upper bound in (2.2) are increasing in m since as the
maximum batch size increases, the time between potential elimination of suboptimal treatments
increases implying that these are assigned more often. Note also that as part of the proof of Theo-
rem 2.1 we show that the probability that the best treatment is ever eliminated is sufficiently low.

11



This is reminiscent of the work of Howard et al. (2018) who construct certain sequences of con-
fidence sets and show that the probability of the parameter of interest lying outside any of these
sets is low. It should be mentioned that we do not know the optimal multiplicative constants in
(2.2). However, we stress that the rates in n are minimax optimal. Furthermore, it is sensible that
larger K lead to larger upper bounds on expected regret as larger K amount to less smooth f and,
therefore, more difficult treatment problems.

Remark 2 One may argue that demanding the uniform part of the upper bound on expected regret
in Theorem 2.1 to be uniformly valid over all (K + 1)-tuples of distributions on the Borel sets
of [0, 1] is too much to ask. In other words, it may be too pessimistic to consider the worst-case
performance over all (K + 1)-tuples of distributions. Hence, it is useful to also know if and how
the uniform upper bound on expected regret changes if one restricts the class of distributions. In
particular, if it is known that there exists a ∆ > 0 such that ∆i ≥ ∆ for all 1 ≤ i ≤ K then the
expected regret of the sequential treatment policy only increases at a rate of log(n) uniformly over
all (K + 1)-tuples of distributions on the Borel sets of [0, 1] satisfying this constraint. To see this,
note that by the K-Lipschitz continuity of f one has that ∆i ≤ 2K for 1 ≤ i ≤ K. Using this,
together with ∆i ≥ ∆ for 1 ≤ i ≤ K, in the distribution dependent/pointwise part of the upper of
Theorem 2.1 yields that

E
[
RN(π̂)

]
≤ CmK2

K∑
i=1

1

∆
log (4n) =

CmK2K

∆
log (4n) .

It follows from Theorem 2.2 in Bubeck et al. (2012) that this is the minimax optimal rate in n
over this restricted class since even the pointwise expected regret increases at rate log(n) (for
any consistent policy targeting the mean only). Therefore, irrespectively of whether we consider
the maximal expected regret over all (K + 1)-tuples of distributions on the Borel sets of [0, 1]

or whether we restrict attention to those distributions satisfying ∆i ≥ ∆, the dependence of the
sequential treatment policy in n can not generally be improved.

Remark 3 Note that the implementation of the sequential treatment algorithm requires knowledge
of the expected number of individuals that are going to be treated. In medical experiments the total
number of individuals participating is often determined a priori makingN known and deterministic
(and equal to n). On the other hand, when allocating unemployed to treatments, the total number of
individuals becoming unemployed in the course of the year is unknown. However, one often has a
good estimate of the expected value n which is what matters for the treatment policy. For example,
one may use averages of the number of individuals who have become unemployed in previous years
to estimate n. Alternatively, one can use the doubling trick, which resets the treatment policy at
prespecified times, in order to avoid any assumptions on the size of N or n. Usage of the doubling
trick would imply that eliminated treatments reappear and get another chance every time the policy
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is reset thus allowing for the efficiency of treatments to vary over time. For further details on the
doubling trick and its implementation we refer to Shalev-Shwartz et al. (2012).

2.4 Suboptimal treatments

Theorem 2.1 showed that the expected cumulated welfare of the sequential treatment policy will
not be much smaller than the one of the infeasible policy that always assigns the best treatment.
However, for an assignment rule to be ethically and politically viable it is important that it does
not yield high welfare at the cost of maltreating certain individuals by wild experimentation. For
example, it may not be ethically defendable for a doctor to assign a suboptimal treatment to a
patient in order to gain more certainty for future treatments. The following theorem shows that
the sequential treatment policy does not suffer from such a problem in the sense that the expected
number of times any suboptimal treatment is assigned only increases logarithmically in the sample
size.

Theorem 2.2 Suppose that the sequential treatment policy is implemented with parameters T = n

and γ = K. Let Ti(t) denote the number of times treatment i is assigned by the sequential treatment
policy up to and including observation t. Then

E
[
Ti(N)

]
≤ C

(
K2K

log
(
n
K2

)
∆2
i

+Km+K2

)
,

for any suboptimal treatment i ∈ {1, ..., K} and a positive universal constant C.

The important ethical guarantee on the treatment rule is that it only assigns very few persons to a
suboptimal treatment (logarithmic growth rate in the sample size). It is in line with intuition that
the closer any suboptimal treatment is to being optimal (∆i closer to zero) the more difficult it is to
guarantee that this treatment is rarely assigned. The reason is that this treatment must be assigned
more often before it confidently can be concluded that it is suboptimal and thus eliminated. On the
other hand, the regret incurred by assigning such a treatment is low exactly because ∆i is small.

3 Treatment outcomes depending on covariates

So far we have considered the case where the outcome of a treatment does not depend on the char-
acteristics of the individual it is assigned to. In reality, however, different persons react differently
to the same type of treatment: while a certain medicine may work well for one person it may be
outright dangerous to assign it to another person if this person is allergic to some of its substances.
Similarly, the effect of further education on the probability of an unemployed individual finding a
job may also depend on, e.g., the age of the individual: individuals close to the retirement age may
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benefit more from short courses updating their skill set while young individuals may benefit more
from going back to school for an extended period of time.

Prior to assigning individual t to a treatment we observe a vector Xt ∈ [0, 1]d of covariates
with distribution PX . In the case of assigning unemployed persons to various unemployment pro-
grams, Xt could include age, length of education, and years of experience. PX is assumed to be
absolutely continuous with respect to the Lebesgue measure λd on the Borel sets of [0, 1]d with
density bounded from above by c̄ > 0. This rules out discrete covariates which may be relevant
in practice. In Section 3.4 we shall show how policies with low regret in the presence of discrete
covariates can be constructed.

As we now observe covariates on each individual prior to the treatment assignment we condi-
tion on these. Thus, in close analogy to the setting without covariates, we now define the condi-
tional means and variances µ(i)(Xt) = E(Y

(i)
t |Xt) and (σ2)(i)(Xt) = E

[
(Y

(i)
t − µ(i)(Xt))

2|Xt

]
as well as f (i)(Xt) = f(µ(i)(Xt), (σ

2)(i)(Xt)). As µ(i)(·) and (σ2)(i)(·) are unknown to the policy
maker, they must gradually be learned by experimentation. In the presence of covariates a policy
is a sequence of functions taking as arguments only treatment outcomes and covariates from pre-
vious batches as well as the covariates of the current individual to be treated. Thus, if individual
t belongs to batch b, then πt is mapping from [0, 1](d+1)B(b−1) × [0, 1]d to {1, ..., K + 1}. For any
x ∈ [0, 1]d, a social planner (oracle) who knows the conditional mean and variance functions and
wishes to maximize welfare assigns 6

π?(x) := min arg max
i=1,...,K+1

f (i)(x)

and receives f(π?(x))(x) = maxi=1,...,K+1 f
(i)(x) =: f (?)(x). Thus, f (?)(x) is the pointwise maxi-

mum of the f (i)(x), i = 1, ..., K+ 1. The welfare loss (regret) of a policy π compared to the oracle
is7

RN(π) =
N∑
t=1

(
f(π?(Xt))(Xt)− f (πt)(Xt)

)
=

N∑
t=1

(
f (?)(Xt)− f (πt)(Xt)

)
(3.1)

It is important to note the difference between equation (2.1) and (3.1). While (2.1) considers
the difference between unconditional moments, (3.1) considers the difference between conditional
moments. The latter is more ambitious as we consider each individual separately through their
covariates and seek to minimize the distance to the treatment that would have been optimal for this
specific person (with covariates Xt).

In order to prove upper bounds on the regret we restrict the µ(i)(·) and (σ2)(i)(·) to be reasonably
smooth. This is a sensible property to impose since individuals with similar characteristics can

6The minimum is here used as an arbitrary tie-breaker in case there are several treatments maximizing f (i)(x).
7As π∗ only depends on Xt, we keep this explicit while we suppress the arguments of πt as it depends on all

previously observed treatments and the covariates of individual t.

14



x2

x1(0, 0) 1

1

B7

B4

B1

B8

B5

B2

B9

B6

B3

x2

x1(0, 0) 1

1

B7

B4

B1

B8

B5

B2

B9

B6

B3

x2

x1(0, 0) 1

1

B4

B2

B1

B3

x2

x1(0, 0) 1

1

B1

B2

B3B4

B5

Figure 1: Four examples of partitioning [0, 1]d for d = 2. The two leftmost ways of grouping individuals
correspond to simple rules where group membership is detmermined by checking whether x1 and x2 are
above or below certain values. The third rule corresponds to the intersection of two linear eligibility scores
ai + b′ix ≥ ci, i = 1, 2. The fourth grouping, though not very practically applicable, serves to illustrate that
in principle our theory allows for very general ways of grouping individuals.

be expected to react similarly to the same treatment. In particular, we assume that µ(i)(·) and
σ(i)(·) are (β, L)−Hölder continuous. To be precise, letting ‖·‖ denote the Euclidean norm on
[0, 1]d, we assume that µ(i), (σ2)(i) ∈ H(β, L) for all i = 1, ..., K + 1, where H(β, L) are those
g : [0, 1]d → [0, 1] such that there exist β ∈ (0, 1] and L > 0 such that∣∣g(x)− g(y)

∣∣ ≤ L ‖x− y‖β for all x, y ∈ [0, 1]d.

3.1 Grouping individuals

In the presence of covariates the idea of the sequential treatment policy is to group individuals
into groups according to the values of the covariates. Thus, we define a partition of [0, 1]d which
consists of Borel measurable sets B1, ..., BF , called groups/bins, such that PX(Bj) > 0, ∪Fj=1Bj =

[0, 1]d, and Bj ∩ Bk = ∅ for j 6= k. However, the policy maker may be constrained by political or
ethical considerations in his choice of grouping individuals. For example, a realistic unemployment
policy cannot group individuals into overly many groups and the rules determining which group an
individual belongs to cannot be too complicated. Most realistic policies would choose the groups
in such a way that individuals with similar characteristics belong to the same group as it can be
expected that the same policy is best for similar individuals. Figure 1 illustrates various ways of
grouping individuals. Note that grouping/binning was also considered in Rigollet and Zeevi (2010)
as a way to handle continuous covariates in a setting where the policy maker is only interested in
the mean of the treatment outcomes. These authors focused on partitions consisting of hypercubes
such as the ones in the second display in Figure 1, cf. also equation (3.3) below. We allow general
partitions covering also practically relevant eligibility scores such as the ones in the third display
of Figure 1. Finally, we also study how to handle discrete covariates in Section 3.4.
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For any group Bj define

µ̄
(i)
j = E(Y

(i)
t |Xt ∈ Bj) =

1

PX(Bj)

∫
Bj

µ(i)(x)dPX(x)

and

(σ̄2)
(i)
j = V ar(Y

(i)
t |Xt ∈ Bj) = E(Y

(i)
t

2
|Xt ∈ Bj)− [E(Y

(i)
t |Xt ∈ Bj)]

2

as the mean and variance of Y (i)
t given thatXt falls inBj . We apply the sequential treatment policy

without covariates separately to each group. To do so, let f (i)
j = f(µ̄

(i)
j , (σ̄

2)
(i)
j ) be the welfare of

treatment i for the average individual belonging to group j. We use the sequential treatment policy
without covariates of Section 2 to target max1≤i≤K+1 f(µ̄

(i)
j , (σ̄

2)
(i)
j ) for each group j = 1, ..., F .

By the smoothness assumptions on f, µ(i) and (σ2)(i), max1≤i≤K+1 f(µ̄
(i)
j , (σ̄

2)
(i)
j ) will not be far

from the “fully individualized” target f (?)(x) = max1≤i≤K+1 f(µ(i)(x), (σ2)(i)(x)) for any x ∈ Bj

as formalized in the appendix.
Let NBj(t) =

∑t
s=1 1{Xs∈Bj} denote the number of individuals who have been assigned to

group Bj when t individuals have been treated. Furthermore, B̄j = λd(Bj) denotes the Lebesgue
measure of group Bj . Let π̂Bj ,NBj (t) be the assignment made by the sequential treatment policy
without covariates applied only to individuals who belong to groupBj . This policy is implemented
with parameters γ = KL and T = nB̄j . The sequential treatment treatment policy π̄ with covari-
ates is then assigns

π̄t(x) = π̂Bj ,NBj (t), x ∈ Bj.

Thus, when Xt ∈ Bj , individual t is the NBj(t)-th individual falling in group Bj . The sequential
treatment policy with covariates then makes the assignment that the policy without covariates ap-
plied only to those individuals belonging to groupBj would have made to theNBj(t)-th individual.

3.2 Upper and lower bounds on regret

Denote by S = S(β, L,K, d, c̄,m) a treatment problem where f is Lipschitz continuous with
constant K, Xt ∈ [0, 1]d has distribution PX which is absolutely continuous with respect to the
Lebesgue measure λd with density bounded from above by c̄ > 0, maximal batch size m and
µ(i), (σ2)(i) ∈ H(β, L) for all i = 1, ..., K+1. Unless stated otherwise, we will consider problems
in S in the sequel.

The performance of our policy depends critically on the way the policy maker chooses to group
individuals. To characterize this grouping, define Vj = supx,y∈Bj ‖x− y‖ as the maximal possible
difference in the characteristics of any two individuals assigned to group j. The next result provides
an upper bound on the regret compared to the infeasible oracle which knows µ(i)(·) and (σ2)(i)(·)
and thus whose treatment is optimal for an individual with characteristics x ∈ [0, 1]d.
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Theorem 3.1 Consider a treatment problem in S. Then, for a grouping characterized by {V1, ..., VF}
and {B̄1, ..., B̄F}, expected regret is bounded by

E
[
RN(π̄)

]
≤ C

F∑
j=1

[√
mK log(mK)nB̄j + nB̄jV

β
j

]
(3.2)

for a positive universal constant C. In particular, (3.2) is valid uniformly over S.

Theorem 3.1 provides an upper bound on the regret of the sequential treatment policy for any type
of grouping of individuals that the policy maker may choose. Allowing for groups with arbitrary
characteristics is useful since the policy maker may be constrained in a way such that choosing the
groups such that the right hand side of (3.2) is minimized over groups is not possible. The size
of the upper bound on expected regret depends on the characteristics B̄j and Vj of the grouping.
Note that the upper bound on the regret is increasing in these two quantities. However, choosing
the groups such that B̄j and Vj are small implies that the number of groups, F , must be large. In
general the upper bound in (3.2) cannot be improved by much in terms of their dependence on n
since by choosing the groups as in Corollary 3.1.1 below one nearly achieves the minimax rate of
regret. We elaborate further on this below.

The first part of the upper bound in (3.2) is the regret accumulated from implementing the se-
quential treatment policy without covariates on each group separately targeting max1≤i≤K+1 f(µ̄

(i)
j , (σ̄

2)
(i)
j )

for group j = 1, ..., F . The second part of the bound in (3.2) is the approximation error resulting
from targeting max1≤i≤K+1 f(µ̄

(i)
j , (σ̄

2)
(i)
j ) instead of max1≤i≤K+1 f(µ(i)(x), (σ2)(i)(x)).

A particular type of grouping, studied already in Rigollet and Zeevi (2010) and Perchet and
Rigollet (2013) in a setting where one targets the mean, is the one consisting of squares constructed
from using hard thresholds for each entry of Xt to create hypercubes that partition [0, 1]d. These
are particularly relevant in practice due to their simplicity and an example of these bins is given in
the second display of Figure 1. More precisely, fix P ∈ N and define

Bk =
{
x ∈ X :

kl − 1

P
≤ xl .

kl
P
, l = 1, ..., d

}
(3.3)

for k = (k1, ..., kd) ∈ {1, ..., P}d where . is to be interpreted as < for l = 1, ..., d − 1 and = for
l = d. Thus, P is the number of splits along each dimension of Xt. This creats a partition of P d

smaller hypercubes B1, ..., BP d with side lengths 1/P .

Corollary 3.1.1 Consider a treatment problem in S. Set P = b
(

n
mK log(mK)

)1/(2β+d)

c. Then,
expected regret is bounded by

E
[
RN(π̄)

]
≤ Cn

(
mK log(mK)

n

) β
2β+d

. (3.4)

for a positive universal constant C. In particular, (3.4) is valid uniformly over S.
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Note that the larger the number of covariates d, the smaller will the number of splits P in each
dimension be as it must be ensured that enough observations fall in each group. The larger the
number of potential treatments K + 1 is, the more experimentation will take place and hence the
regret compared to the infeasible oracle policy increases.

In the case of the policy maker only targeting the mean, such that K = 1, and in the absence
of batches, such that m = 1, the upper bound on expected regret in Corollary 3.1.1 almost reduces
to the one in Theorem 4.1 of Perchet and Rigollet (2013). The only difference is that the exponent
β

2β+d
can be replaced by something slightly smaller due to an extra assumption, the margin con-

dition, made in Perchet and Rigollet (2013). We shall discuss some consequences of the margin
condition in Section 3.3.

Note that the groups B1, ..., BF must be chosen a priori by the policy maker. It would also
be interesting to study a policy that adaptively chooses the groups as a function of the treatment
outcomes observed so far. However, Theorem 3.2 below shows that the current policy is already
nearly minimax optimal in terms of its dependence on n. Thus, under this notion of optimality,
there is little scope for improvement by altering the sequential treatment policy.

The bound in (3.4) is, as a function of n, not generally improvable in a minimax sense. To
see this, it suffices to show that even when the policy maker only targets the mean, no policy
can have a much smaller maximal expected regret than the one of the sequential treatment policy.
Consider the the case of m = 1 and K = 1 (two treatments are available) such that (3.4) reduces
to E

[
RN(π̄)

]
≤ Cn1− β

2β+d .

Theorem 3.2 Let f(µ, σ2) = µ, m = 1 and K = 1. Then for any ε > 0 there exists a constant
C(ε) such that for any policy π

sup
S

E
[
RN(π)

]
≥ C(ε)n1− β

2β+d · n−ε

Theorem 3.2 shows that the upper bound on maximal expected regret of the sequential treatment
policy in Corollary 3.1.1 can not generally be improved by much. In particular, the order of such
an improvement must be o(nε) for any ε > 0, e.g. logarithmic.

3.3 Ethical considerations

We next show that even in the presence of covariates the sequential treatment policy does not
make many suboptimal assignments. Our first result is a consequence of Theorem 2.2. On any bin
1 ≤ j ≤ F the result bounds the number of times that a treatment 1 ≤ i ≤ K + 1 which does not
maximize f(µ̄

(i)
j , (σ̄

2)
(i)
j ) is assigned. Let Ti,j(N) be the number of times treatment i is assigned

on bin j in the course of a total of N assignments. Calling treatment i suboptimal on bin Bj if
∆i,j := f

(∗)
j − f(µ̄

(i)
j , (σ̄

2)
(i)
j ) > 0 we have the following result.
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Theorem 3.3 Consider a treatment problem in S. Then, for group Bj characterized by Vj and B̄j ,

E
[
Ti,j(N)

]
≤ C

(
K2K

log
(
nB̄j
K2

)
∆2
i,j

+Km+K2

)
,

for any treatment i that is suboptimal on bin Bj and a positive universal constant C.

Theorem 3.3 guarantees that any treatment whose combination of mean and variance over Bj

does not maximize f will only rarely be assigned. In fact, the number of times a treatment that is
suboptimal on binBj is assigned only grows logarithmically in the expected number of individuals
belonging to bin Bj . Notice the similarity to Theorem 2.2 where n has now been replaced by nB̄j

which up to the constant c̄ is an upper bound on the expected number of individuals falling in group
j.

A potential shortcoming of Theorem 3.3 is that for each groupBj , the maximizer of f(µ̄
(i)
j , (σ̄

2)
(i)
j )

depends on the way the policy maker has chosen Bj . A different way of assessing the number of
suboptimal treatments assigned is to consider each person individually and check whether the op-
timal treatment was assigned to this person. We say that treatment i is suboptimal for individual t
if f (?)(Xt) > f (i)(Xt). Therefore, another way of declaring the fairness of a policy π is to provide
an upper bound on the number of individuals

SN(π) =
N∑
t=1

1{f (?)(Xt)6=f (πt)(Xt)},

to whom a suboptimal treatment was assigned. It is sensible that a nontrivial upper bound on
E(SN(π)) (a bound less than n) can only be established if the best treatment is sufficiently much
better than the second best — otherwise these cannot be distinguished from each other. To formal-
ize this notion let

f (])(x) =

{
maxi=1,...,K+1{f (i)(x) : f (i)(x) < f (?)(x)} if mini=1,...,K+1 f

(i)(x) < f (?)(x)

f (?)(x) otherwise

denote the value of the second best treatment for an individual with characteristics x ∈ [0, 1]d.

Assumption 1 (Margin condition) We say that the margin condition is satisfied with parameter
α > 0 if there exists a constant C > 0 and a δ0 ∈ (0, 1) such that

P
(
0 < f (?)(Xt)− f (])(Xt) < δ

)
≤ Cδα ∀δ ∈ (0, δ0]

The margin condition limits the probability that the best and the second best treatment are very
close to each other. Larger values of α mean that it is easier to distinguish the best and second
best treatment from each other. The margin condition has been used in the literature on statistical
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treatment rules by Kitagawa and Tetenov (2018) to improve the rates of their empirical welfare
maximization classifier. Before this, similar assumptions had been used in the literature on classi-
fication, Mammen et al. (1999), Tsybakov (2004b). Perchet and Rigollet (2013) and Rigollet and
Zeevi (2010) have used the margin condition in the context of bandits. The margin condition is
satisfied if, for example, f (?)(Xt) − f (])(Xt) has a density with respect to the Lebesgue measure
which is bounded from above by a constant a > 0. In that case we may set C = a and α = 1.

Theorem 3.4 Fix β ∈ (0, 1], K, L > 0, d ≥ 2 and consider a treatment problem in S which also
satisfies the margin condition. Then for any policy π,

E(SN(π)) ≤ Cn
1

1+αE
[
RN(π)

] α
1+α (3.5)

for a positive universal constant C. Using the sequential treatment policy π̄ and grouping individ-
uals as in (3.3) yields

E(SN(π)) ≤ Cn

[
mK log(mK)

n

] αβ
(1+α)(2β+d)

. (3.6)

(3.5) provides an upper bound on the expected number of times a policy π assigns a treatment
which is suboptimal for individual t. This is done in terms of the regret incurred by the policy and
is an extension of Lemma 3.1 in Rigollet and Zeevi (2010) to the setting allowing the policy maker
to target Lipschitz continuous functions of the mean and variance. (3.6) considers the case of the
sequential treatment policy with a particular group structure and follows by using the upper bound
on expected regret from Corollary 3.1.1 in (3.5). Note that E(SN(π)) is guaranteed to grow only
sublinearily in n. It is likely that (3.6) can be slightly improved by also using the margin condition
to sharpen the upper bound of Corollary 3.1.1. However, this is beyond the scope of this paper as
we mostly consider a setting without the margin condition.

3.4 Discrete covariates

Until now we have assumed PX to be absolutely continuous with respect to the Lebesgue measure
λd on the Borel sets of [0, 1]d. However, many covariates that may influence the identity of the
optimal treatment are discrete. For example, gender may affect the outcome of an allocation in an
unemployment program. Furthermore, we may not always observe a continuous variable perfectly
as data might only be informative about which of finitely many wealth groups an individual belongs
to without providing the exact, continuously scaled, wealth. Since a combination of continuous
and discrete covariates has to our knowledge not been studied even in the case where one is only
interested in the mean, we also contribute to that setting.

In order to accommodate discrete covariates, partition Xt = (X ′t,D, X
′
t,C)′ where Xt,D ∈ A =

A1×...×AdD contains the measurements of the dD discrete covariates. EachAl ⊆ N, l = 1, ..., dD
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is finite with cardinality |Al|. For the continuous covariates we assume Xt,C ∈ [0, 1]dC such that
Xt is (dD +dC)-dimensional. As in (3.1) the regret of our treatment policy is measured against the
infeasible target f (?)(Xt) = max1≤i≤K+1 f(µ(i)(Xt), (σ

2)(i)(Xt)). On the other hand, it does not
make sense to assume µ(i)(x) = µ(i)(xD, xC) or (σ2)(i)(x) = (σ2)(i)(xD, xC) to be (β, L)−Hölder
continuous in xD. Thus, discrete covariates must be handled differently from continuous ones.
Instead we shall now assume that for each fixed a ∈ A one has that µ(i)

a (xC) := µ(i)(a, xC) and
(σ2)

(i)
a (xC) := (σ2)(i)(a, xC) belong toH(β, L). Since a can only take FD = |A| = |A1| · ... · |AdD |

possible values it is without loss of generality to assume β and L not to depend on a.
Our treatment policy now works by fully individualizing treatments across the discrete covari-

ates. In other words, for any of the FD possible values of the vector of discrete covariates, we
implement the sequential treatment policy π̄ by constructing groups only based on the continuous
variables just as in Section 3.1. For each value of the discrete covariate we allow for different ways
of grouping based on the continuous covariates. For example, one may want to construct different
wealth groups for men and women in order to obtain, e.g., groups with equally many individuals.
For each a ∈ A let Ba,j, j = 1, ..., Fa be the partition of [0, 1]dC used.

Formally, for each a ∈ A, let π̄t,a be the sequential treatment policy with continuous covariates
applied to the grouping Ba,j, j = 1, ..., Fa. Thus, if individual t belongs to bin b, the sequential
treatment policy in the presence of discrete covariates, π̃, is a mapping π̃t : (A1 × ... × AdD ×
[0, 1](dC+1))B(b−1) × A1 × ...× AdD × [0, 1]dC → {1, ..., K + 1} where

π̃t(x) = π̄t,a(xC) = π̂({a}×Ba,j),Na,j(t), xD = a and xC ∈ Ba,j

with Na,j(t) =
∑t

s=1 1(Xs,D=a,Xs,C∈Ba,j). Denote by S̃ = S̃(β, L,K, dC , c̄,m) a treatment prob-

lem where f is Lipschitz continuous with constant K, Xt,D ∈ A is discrete, XC,t ∈ [0, 1]d has
distribution PX which is absolutely continuous with respect to the Lebesgue measure with density
bounded from above by c̄, maximal batch sizem and µ(i)

a , (σ2)
(i)
a ∈ H(β, L) for all i = 1, ..., K+1

and a ∈ A. Letting Va,j = supx,y∈Ba,j ||x − y|| we have that π̃ enjoys the following upper bound
on regret.

Theorem 3.5 Consider a treatment problem in S̃. Then, if for for each a ∈ A individuals are
grouped as {Ba,1, ..., Ba,Fa}, expected regret is bounded by

E
[
RN(π̃)

]
≤C

∑
a∈A

Fa∑
j=1

(√
mK log(mK)nP(Xt,D = a,Xt,C ∈ Ba,j)

+ nP(Xt,D = a,Xt,C ∈ Ba,j)V
β
a,j

)
. (3.7)

for a positive universal constant C. In particular, (3.7) is valid uniformly over S̃.

The upper bound on regret in (3.7) generalizes the upper bounds in Theorems 2.1 (no covariates)
and 3.1 (continuous covariates only). For example, the latter follows from (3.7) by letting |A| = 1
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and using that Xt,C is absolutely continuous with respect to the Lebesgue measure with density
bounded from above by c̄. Also, the case of purely discrete covariates is covered as a special case
of (3.7). In that case the approximation error vanishes as Va,j = 0.

4 Treatment outcomes observed with delay

Oftentimes the outcome of a treatment is only observed with delay. For example, a medical doctor
may choose not to measure the effect of a treatment immediately after it has been assigned as it
takes time for the treatment to work. However, delaying the measurement for an extended period of
time also implies that many new patients will arrive before the outcome of the previous treatment
is known. Thus, the type of treatment assigned to these patients must be decided based on less
information. Put differently, there is a tradeoff between getting imprecise information now and
obtaining precise information later. A similar tradeoff exists when assigning unemployed to job
training programs as it takes time to find a job. Therefore, it may not be advisable to measure the
effect of a job training program very shortly after its termination.

We note that the role of delayed observation has also been studied Joulani et al. (2013). How-
ever, the focus there is solely on the negative effect of delay through postponed information accrual.
The potential for obtaining more precise information through delayed measurements as described
in the previous paragraph is not considered. Thus, no tradeoff in when to make the measurement
is present. In addition, the focus is on the mean-only setting without covariates. For a recent paper
studying adversarial bandits with delay, we refer to Cesa-Bianchi et al. (2019).

In this section we formalize the above intuition by proposing the following model for treatments
being observed with delay. For simplicity, we focus first on the setting without covariates. We can
decompose Y (i)

t as

Y
(i)
t = µ(i) + η

(i)
t

where E(η
(i)
t ) = 0. Since Y (i)

t , µ(i) ∈ [0, 1] it follows that η(i)
t = Y

(i)
t − µ(i) ∈ [−1, 1]. Thus,

without further assumptions, the deviations of Y (i)
t around its mean are in [−1, 1]. We shall model

the idea of measurements becoming more precise if they are delayed by restricting this interval.
To be precise, we assume that

η
(i)
t = Y

(i)
t − µ(i) ∈ [−āl, āu] (4.1)

where āl, āu ∈ [0, 1]. In this section we let ā(D) = āu(D) − āl(D) be a function of the number
of batches D the measurements are delayed by. Thus, if ā(D) is a decreasing function, increasing
the delay results in Y (i)

t being a less noisy measure of µ(i). Restricting the support of η(i)
t is not the

only way of modelling that measurements become more precise if they are delayed. One could also
let the variance of the η(i)

t be a decreasing function of D. In fact, any assumption which implies
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stronger concentration of sample averages around the population means will suffice. As the welfare
function f also depends on the second moment µ(i)

2 = E
[
Y

(i)
t

2]
and since Y (i)

t

2
, µ

(i)
2 ∈ [0, 1] we

will model increased measurement precision of second moments due to delay as8

Y
(i)
t

2
− µ(i)

2 ∈ [−āl, āu] (4.2)

First, we establish an upper bound on expected regret of the sequential treatment policy when
treatment outcomes are observed with delay in the absence of covariates.

Sequential treatment policy Denote by π̂ the sequential treatment policy. Let Ib ⊆ {1, ..., K + 1}
be the set of remaining treatments before batch b and let B(b) = mini∈Ib Bi(b) be the number of
outcomes that have been observed for each of the remaining treatments after batch b.

1. In each batch b = 1, ..., D − 1 we take turns assigning the treatments {1, ..., K + 1}. No
elimination takes place as no outcomes are observed.

2. In each batch b = D, ...,M we take turns assigning each remaining treatment (treatments in
Ib).

3. At the end of batch b = D, ...,M eliminate treatment ĩ ∈ Ib if

max
i∈Ib

f(µ̂
(i)
B(b), (σ̂

2
B(b))

(i))− f(µ̂
(̃i)
B(b), (σ̂

2
B(b))

(̃i)) ≥ 8γ

√
2ā2

B(b)
log

(
T

B(b)

)
where γ > 0, T ∈ N and log(x) = log(x) ∨ 1.

Notice how the sequential treatment policy in the presence of delay differs from the one without
delay. First, no elimination takes place after the first D − 1 batches as no treatment outcomes
are observed after these. Second, the elimination rule has been slightly modified as we can now
eliminate more aggressively if ā is small, i.e. the treatment outcomes are less noisy measurements
of the population parameters.

Theorem 4.1 (No covariates) Consider a treatment problem with (K + 1) treatments and an un-
known number of assignmentsN with expectation n that is independent of the treatment outcomes.
The treatment outcomes are observed with a delay of D batches as outlined above. By implement-
ing the sequential treatment policy with parameters γ = K and T = n one obtains the following
bound on the expected regret

E
[
RN(π̂)

]
≤

8Assuming the same lower and upper bounds in (4.1) and (4.2) is without loss of generality as one can simply take
the smallest of the lower bounds and the largest of the upper bounds as the common lower and upper bound.
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C min

K2ā2

K∑
i=1

1

∆i

log

(
n∆2

i

ā2

)
+m(K +D)︸ ︷︷ ︸

A: Distribution dependent

,

√
K2ā2mKlog (mK)n+m(K +D)︸ ︷︷ ︸

B: Uniform

 ,

(4.3)

for a positive universal constant C.

Assume that ā = ā(D) is a decreasing function of D. Then Theorem 4.1 illustrates the tradeoff
between getting imprecise information now and precise information later. This tradeoff is found
in the distribution dependent part (A) as well as the uniform part (B) of the upper bound on regret
of the sequential treatment policy. Increasing D directly increases the upper bound on regret since
information is obtained later but indirectly decreases the regret via a reduced ā. By making a
concrete choice for ā(D) one can determine the optimal delay by minimizing the upper bound on
regret. It can also be shown that the bound in Theorem 4.1 reduces to the one in Theorem 2.1 when
D = 0 and ā = 1.

Joulani et al. (2013) (Theorem 7) provide adaptive/pointwise upper bounds on the expected
regret of UCB which like our bounds have the property that the downside of delay enters additively.
However, only targeting the mean is considered and there is no potential for obtaining more precise
information by delaying measurements. This corresponds to the special case of au and al, and
hence a, not depending on D in our setting. No uniformly valid upper bound on expected regret is
provided.

We turn next to the setting with continuous covariates and treatment outcomes being observed
with delay. To be precise, we assume that

Y
(i)
t − µ

(i)
1 (Xt), Y

(i)
t

2
− µ(i)

2 (Xt) ∈ [−āl, āu],

where µ(i)
1 (Xt) = E

[
Y

(i)
t |Xt

]
and µ(i)

2 (Xt) = E
[
Y

(i)
t

2
|Xt

]
. As in the setting without delay, we

implement the sequential treatment policy separately for each group B1, ..., BF with parameters
γ = KL and T = nB̄j, j = 1, ..., F .

Theorem 4.2 Fix β ∈ (0, 1], K, L > 0, d ≥ 2 and consider a treatment problem in S where
the outcomes are observed with a delay of D batches. Then, for a grouping characterized by
{V1, ..., VF} and {B̄1, ..., B̄F}, expected regret is bounded by

E
[
RN(π̄)

]
≤ C

 F∑
j=1

[√
mKā2 log(mK)nB̄j + nB̄jV

β
j +Km

]
+mD

 . (4.4)

for a positive universal constant C. In particular, (4.4) is valid uniformly over S.
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The first part of the upper bound on expected regret in (4.4) (the sum over the F groups) is
identical to the upper bound in Theorem 3.1 except for the presence of ā. The smaller ā is the
smaller will this part be as the observed outcomes of the treatments will be very close to the
population counterparts and the treatment that is best for each group is quickly found. As ā is
usually a decreasing function in D, the upper bound in (4.4) clearly illustrates the tradeoff between
postponing the measurement to get precise information later and getting (imprecise) information
quickly. The term under the square root holds the key to the benefit from delaying as it corresponds
to the regret of a treatment problem which starts only after D batches but where measurements are
observed more precisely. The term mD is an upper bound on the regret incurred from assigned
individuals blindly for D batches each of which contains no more than m individuals.

5 Simulations

The theoretical results derived in the previous sections provide strong guarantees regarding the
expected regret incurred by the sequential treatment policy. In this section, we illustrate some of
these results by a simulation study. We compare the performance of the the sequential treatment
policy to that of a traditional two-step policy which i) first explores the available treatments and
for a predetermined period ii) then commits to the one that performed empirically best during the
exploration phase. That is, a policy which uses an empirical success type commitment rule after
the exploration phase.

The data is generated by drawing samples of size n from the beta distribution with parameters
α and β taking values in (0,∞). The beta family of distributions is rather flexible, and by varying
the parameters used it is possible to generate many different shapes of densities. To evaluate the
worst-case (uniform) performance guarantee provided in 2.1, we calculate the expected regret of
over a large class of beta distributions and then consider the maximum of these expected regrets.
To be precise, we consider a setup with K = 2 treatments. The outcome of these treatments are
beta distributed with αi = 1 and βi taking a value in G = {0.5, 0.75, 0.85, 0.95, 0.975, 1, 1.025,

1.05, 1.15, 1.25, 2.5} for i = 1, 2. As the regret is zero when the two treatments have the same
beta distribution, we only consider outcome distributions of the form Beta(1, β1) ⊗ Beta(1, β2)

for distinct β1 and β2 in G. This leaves us with 55 different joint treatment outcome distributions
over which we study the worst case performance. The second ingredient that is required for the
proposed methodology is the welfare function f . We consider two different welfare functions: The
mean, f(µ, σ2) = µ, and a mean-variance utility function, f(µ, σ2) = µ− γ

2
σ2, with risk aversion

parameter γ equal to 1. Note that the mean is already covered by classic bandit theory and we
include it here merely for reference.

Note that intuitively elimination can take place earlier when the two outcome distributions of
the two treatments are far apart while one may want to explore for longer before eliminating if
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the distributions are close to each other. The sequential treatment policy does not require any
prior knowledge regarding the similarity of the outcome distributions but instead monitors one the
difference between the empirical welfare functions becomes significant such that elimination can
take place. This is in contrast to the rule that decides up front on the length of the exploration
period.

We consider 5 sample sizes, n, namely 20, 000, 40, 000, 60, 0000, 80, 000, and 100, 000. To
gauge the impact of batching, we consider three different scenarios, namely one in which indi-
viduals arrive one-by-one, and another two where they arrive in batches of size 1, 000 or 5, 000,
respectively. Note that with a batch size of 5, 000, the first time it is possible to eliminate a treat-
ment is at time t = 5, 000 (no matter how far the outcome distributions are apart). For each joint
outcome distribution Beta(1, β1)⊗Beta(1, β2), sample size and batch size we calculate the regret
100 times in order to approximate the expected regret at time n. We then take the maximum over
all 55 potential joint outcome distributions in order to estimate the maximal expected regret.

In Table 1 we report the maximal (across joint outcome distributions) expected regret for the
two policies. This is done separately for the two welfare functions and batching schemes. For the
traditional two-step policy, we consider length of exploration phases, i.e. decision points equaling,
n/4, n/3 and n/2. This way, the batch size is always no larger than the exploration phase.

f(µ, σ2) = µ f(µ, σ2) = µ− 1
2
σ2

n : 20,000 40,000 60,000 80,000 100,000 20,000 40,000 60,000 80,000 100,000
Sequential elimination policy
No batching 255.53 366.51 437.28 493.59 565.34 1068.43 1560.43 1899.48 2193.92 2455.15
Batch size: 1,000 265.79 370.44 451.81 510.62 564.90 1088.21 1569.10 1898.77 2192.72 2471.34
Batch size: 5,000 952.38 952.38 952.38 952.38 952.38 1319.32 1777.96 1945.63 2223.32 2473.60

Traditional policy
Decision point n/4 952.38 1904.76 2857.14 3809.52 4761.90 897.96 1795.92 2693.88 3591.84 4489.80
Decision point n/3 1269.71 2539.43 3809.52 5079.24 6348.95 1197.16 2394.32 3591.84 4789.00 5986.16
Decision point n/2 1904.76 3809.52 5714.29 7619.05 9523.81 1795.92 3591.84 5387.76 7183.67 8979.59

Table 1: The table reports the maximal average regret of the sequential treatment policy and of a traditional
policy that picks the treatment that maximizes the empirical counterpart of the objective function after an
exploraton period of a predetermined length.

A couple of findings are worth highlighting. First, the sublinear increase in maximal expected
regret as function of the sample size predicted by the uniform part of the upper bound in Theorem
2.1 is confirmed. In fact, for both welfare functions the maximal expected regret only increases by
a factor of a little over 2 even when the sample size is increased five fold from 20,000 to 100,000.

Secondly, batching the observation of outcomes into groups of 1,000 individuals only has a lim-
ited impact on the performance of the policy. This is due to the fact that for those joint distributions
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attaining the maximal expected regret, no treatment had been eliminated after 1,000 assignments
even in the case without batching. Thus, batching constraint is not binding.

Thirdly, since the decision to eliminate a treatment can only be made after the arrival of a new
batch of observed outcomes, the maximal expected regret is increasing in the batch size. The cost
of increased batch sizes becomes more pronounced the larger the difference in expected outcomes
is. The clearest illustration hereof can be found in row 3 of Table 1. Prior to the arrival of the first
batch of information with sufficient evidence to eliminate a treatment, regret increases linearly (as
every second assignment is suboptimal), and while a decision is made when the outcomes become
available, numerous suboptimal treatments with a large associated regret have already been made.
In fact, this initial accumulation of regret outweighs the total regret accumulated by the policy
over any of the other possible distributions of the outcomes even when considering as many as five
times the number of treated individuals. Note, however, that this is not an issue that is unique to the
sequential treatment policy. In fact, the traditional RCT setup involves an initial exploration phase,
and would thus also accumulate a large amount of regret due to not making a decision earlier. This
is captured in rows 4-6 of the table. Maximal expected regret increases linearly in the sample size,
and all of this regret is essentially accumulated during the initial exploration phase.

Relative to the sequential elimination policy, the traditional empirical success type policy re-
sults in more than 3.5 times as much regret when considering the mean as the outcome of interest.
The gap is smaller when the mean-variance framework is considered. In fact, when the sample size
only is 20,000 individuals, the sequential elimination policy accumulates a slightly higher maxi-
mal expected regret. This is because the elimination rule has to be conservative enough to ensure
that the probability of eliminating the optimal treatment is uniformly controlled across all possible
joint distributions of the outcomes.

6 Conclusions

This paper considers a treatment allocation problem where the individuals to be treated arrive
gradually and potentially in batches. The goal of the policy maker is to maximize the welfare over
the treatment assignments made. As the policy maker does not know a priori about the virtues of
the available treatments, he faces an exploration-exploitation tradeoff. Prior to each assignment
she observes covariates on the individual to be treated thus allowing for the optimal treatment to
vary across individuals. Our setup allows the welfare function not only to depend on the expected
treatment outcome but also on the risk of the treatment. We show that the sequential treatment
policy can not generally be improved in the sense that it attains the minimax optimal expected
rate of regret in n in the special case of targeting the mean. This strong welfare guarantee does
not come at the price of overly wild experimentation as we show that the number of suboptimal
treatments only grows quite slowly in the total number of assignments made. We also establish
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upper bounds on the regret of the sequential treatment policy when the outcome of the treatments
are observed with delay.

7 Appendix

Throughout the appendix we let C > 0 be a constant that may change from line to line. However,
it does not depend on any distributional characteristics of the treatment problem.

7.1 Proof of Theorems 2.1 and 2.2

The following lemma will lead to Theorem 2.1. Its proof is structured as the one of Theorem 2.1
in Perchet and Rigollet (2013).

Lemma 7.1 Consider a treatment problem with (K + 1) treatments and unknown number of as-
signments N with expectation n that is independent of the treatment outcomes. Suppose that f is
Lipschitz continuous with known constant K. For any ∆ > 0, T > 0 and γ ≥ K the expected
regret from running the sequential treatment policy can then be bounded as

E
[
RN(π̂)

]
≤ C

γ2K

∆

(
1 +

n

T

)
log

(
T∆2

288γ2

)
+ n∆− +

nmK

T

 , (7.1)

where ∆− is the largest ∆j such that ∆j < ∆ if such a ∆j exists, and ∆− = 0 otherwise.

Proof. Define εs = u(s, T ) = 8
√

2
s
log
(
T
s

)
and ∆̂i(s) = f(µ̂

(∗)
s , (σ̂2

s)
(∗))− f(µ̂

(i)
s , (σ̂2

s)
(i)). Recall

that if the optimal treatment as well as some treatment i have not been eliminated before batch b
(i.e., i, ∗ ∈ Ib), then the optimal treatment will eliminate treatment i if ∆̂i(B(b)) ≥ γεB(b), and
treatment i will eliminate the optimal treatment if ∆̂i(B(b)) ≤ −γεB(b).

To say something about when either of these two events occurs we introduce the quantity τ ∗i
which is defined through the relation

∆i = 12γ

√
2

τ ∗i
log

(
T

τ ∗i

)
, i = 1, ..., K.

Since τ ∗i in general will not be an integer, we also define τi = dτ ∗i e. Next introduce the hypothetical
batch bi = min{l : B(l) ≥ τ ∗i }. It is the first batch after which we have more than τ ∗i observations
on all remaining treatment. Notice that

τ ∗i ≤ B(bi) ≤ τ ∗i +m ≤ C
γ2

∆2
i

log

(
T∆2

i

288γ2

)
+m, (7.2)

τi ≤ B(bi), (7.3)

28



B(bi) ≤ τi +m, (7.4)

Notice that 1 ≤ τ1 ≤ ... ≤ τK and 1 ≤ b1 ≤ ... ≤ bK . Define the following events:

Ai = {The optimal treatment has not been eliminated before batch bi},
Bi = {Every treatment j ∈ {1, ..., i} has been eliminated after batch bj}.

Furthermore, let Ci = Ai ∩ Bi, and observe that C1 ⊇ ... ⊇ CK . For any i = 1, ..., K, the
contribution to regret incurred after batch bi is at most ∆i+1N on Ci. In what follows we fix
a treatment, K0, which we will have more to say about later. Using this we get the following
decomposition of expected regret:

E
[
RN (π̂)

]
= E

RN (π̂)

 K0∑
i=1

1Ci−1\Ci + 1CK0




≤ n

K0∑
i=1

∆iP
(
Ci−1\Ci

)
+

K0∑
i=1

Bi(bi)∆i + n∆K0+1. (7.5)

where C0 denotes the underlying sample space. For every i = 1, ..., K the event Ci−1\Ci can be
decomposed as Ci−1\Ci = (Ci−1 ∩ Aci) ∪ (Bci ∩ Ai ∩ Bi−1). Therefore, the first term on the right-
hand side of (7.5) can be written as

n

K0∑
i=1

∆iP
(
Ci−1\Ci

)
= n

K0∑
i=1

∆iP (Ci−1 ∩ Aci) + n

K0∑
i=1

∆iP (Bci ∩ Ai ∩ Bi−1) . (7.6)

Notice that P (Ci−1 ∩ Aci) = 0 if bi−1 = bi. On the event Bci ∩ Ai ∩ Bi−1 the optimal treatment
has not eliminated treatment i after batch bi. Therefore, for the last term on the right hand side of
equation (7.6), we find that

P (Bci ∩ Ai ∩ Bi−1) ≤ P
(

∆̂i(B(bi)) ≤ γεB(bi)

)
≤ P

(
∆̂i(B(bi))−∆i ≤ γετi −∆i

)
≤ E

[
P
(
|∆̂i(B(bi))−∆i| ≥

1

2
γετi |B(bi)

)]

For any s ≥ τi we have that

P
(
|∆̂i(s)−∆i| ≥

1

2
γετi

)
≤ P

(
|f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ̂(i)
s , (σ̂

2
s)

(i)) + f(µ(i), (σ2)(i))− f(µ(∗), (σ2)(∗))| ≥ 1

2
γετi

)
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≤ P
(
|f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ(∗), (σ2)(∗))| ≥ 1

4
γετi

)
+ P

(
|f(µ̂(i)

s , (σ̂
2
s)

(i))− f(µ(i), (σ2)(i))| ≥ 1

4
γετi

)
.

(7.7)

Furthermore, for any j ∈ {i, ∗}, the mean value theorem yields that

P
(
|f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

4
γετi

)
≤ P

(
|µ̂(j)
s − µ(j)|+ |(σ̂2

s)
(j) − (σ2)(j)| ≥ 1

4K
γετi

)
≤ P

(
3|µ̂(j)

s − µ(j)|+ |µ̂(j)
2,s − µ

(j)
2 | ≥

1

4K
γετi

)
≤ P

(
|µ̂(j)
s − µ(j)| ≥ 1

16K
γετi

)
+ P

(
|(µ̂2,s)

(j) − µ(j)
2 | ≥

1

16K
γετi

)
(7.8)

where µ(j)
2 = E

[
(Y

(j)
1 )2

]
and µ̂(j)

2,s = 1
s

∑s
r=1(Y

(j)
ιr )2 with ιr as defined in Section 2.2. By com-

bining equations (7.7) and (7.8), and applying Hoeffding’s inequality along with Doob’s optional
skipping theorem as well as the fact that γ ≥ K, we arrive at the following bound,

P
(
|∆̂i(s)−∆i| ≥

1

2
γετi

)
≤ C exp

(
− 2

256
ε2τis

)
≤ C exp

(
− 1

128
ε2τiτi

)
= C exp

(
−log

(
T

τi

))
≤ C

τi
T
.

Thus,

P (Bci ∩ Ai ∩ Bi−1) ≤ C
τi
T

(7.9)

On the event Ci−1 ∩Aci the optimal treatment is eliminated between batch bi−1 + 1 and bi. Further-
more, every suboptimal treatment j ≤ i− 1 has also been eliminated. Therefore the probability of
this event can be bounded as follows:

P (Ci−1 ∩ Aci) ≤ P
(
∃(j, s), i ≤ j ≤ K, bi−1 + 1 ≤ s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
≤

K∑
j=i

P
(
∃s, bi−1 + 1 ≤ s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
=

K∑
j=i

[
Φj(bi)− Φj(bi−1)

]
,
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where Φj(b) = P
(
∃s ≤ b; ∆̂j(B(s)) ≤ −γεB(s)

)
. We now proceed to bound terms of the form

Φj(bi) for j ≥ i.

P
(
∃s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
≤ P

(
∃s ≤ bi; ∆̂j(B(s))−∆j ≤ −γεB(s)

)
≤ P

(
∃s ≤ B(bi); ∆̂j(s)−∆j ≤ −γεs

)
≤ P

(
∃s ≤ τi +m; ∆̂j(s)−∆j ≤ −γεs

)
≤ P

(
∃s ≤ τi +m; |f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

2
γεs

)
+ P

(
∃s ≤ τi +m; |f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ(∗), (σ2)(∗))| ≥ 1

2
γεs

)
.

For any j ∈ {i, ...,K, ∗} we find that, by the mean value theorem,

P
(
∃s ≤ τi +m : |f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

2
γεs

)
≤ P

(
∃s ≤ τi +m : |µ̂(j)

s − µ(j)|+ |(σ̂2
s)

(j))− (σ2)(j))| ≥ 1

2K
γεs

)
≤ P

(
∃s ≤ τi +m : 3|µ̂(j)

s − µ(j)|+ |µ̂(j)
2,s − µ

(j)
2 | ≥

1

2K
γεs

)
≤ P

(
∃s ≤ τi +m : |µ̂(j)

s − µ(j)| ≥ 1

8K
γεs

)
+ P

(
∃s ≤ τi +m : |(µ̂2,s)

(j) − µ(j)
2 | ≥

1

8K
γεs

)
≤ C

τi +m

T

where we have used equation (7.4), Doob’s optional skipping theorem and Lemma A.1 in Perchet
and Rigollet (2013). It follows that

K0∑
i=1

∆iP (Ci−1 ∩ Aci) ≤
K0∑
i=1

∆i

K∑
j=i

[
Φj(bi)− Φj(bi−1)

]
≤

K∑
j=1

j∧K0−1∑
i=1

Φj(bi) (∆i −∆i+1) +
K∑

j=K0

∆K0Φj(bK0) +

K0−1∑
j=1

∆jΦj(bj)

≤ C

T

K∑
j=1

j∧K0−1∑
i=1

(τi +m) (∆i −∆i+1) +
C

T

K∑
j=1

∆j∧K0

(
τj∧K0 +m

)
.

(7.10)

Using equation (7.3) we obtain

K∑
j=1

j∧K0−1∑
i=1

τi (∆i −∆i+1) ≤ Cγ2

K∑
j=1

j∧K0−1∑
i=1

(∆i −∆i+1)

∆2
i

log

(
T∆2

i

288γ2

)
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≤ Cγ2

K∑
j=1

∫ ∆1

∆j∧K0

1

x2
log

(
Tx2

288γ2

)
dx

≤ Cγ2

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288γ2

)
.

The part involving m in equation (7.10)can be bounded by

m

K∑
j=1

j∧K0−1∑
i=1

(∆i −∆i+1) +
K∑
j=1

∆j∧K0m ≤ mK.

Bringing things together we have

K0∑
i=1

∆iP (Ci−1 ∩ Aci) ≤ C

γ2

T

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288γ2

)
+
Km

T

 (7.11)

Combining this with equation (7.6) and (7.5) we obtain

E
[
RN (π̂)

]
≤ C

(
γ2n

T

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288γ2

)
+
nγ2

T

K0∑
j=1

1

∆j

log

(
T∆2

j

288γ2

)

+

K0∑
i=1

Bi(bi)∆i + n∆K0+1 +
nmK

T

)

≤ C

((
1 +

n

T

)
γ2

K0∑
j=1

1

∆j

log

(
T∆2

j

288γ2

)
+
γ2n

T

K −K0

∆K0

log

(
T∆2

K0

288γ2

)

+ n∆K0+1 +
nmK

T

)
. (7.12)

Fix ∆ > 0 and let K0 be such that ∆K0+1 = ∆−. Define the function

φ(x) =
1

x
log

(
Tx2

288γ2

)
,

and notice that φ(x) ≤ 2e−1/2φ(x′) for any x ≥ x′ ≥ 0. Using this with x′ = ∆ and x = ∆i for
i ≤ K0 we obtain

E
[
RN(π̂)

]
≤ C

γ2K

∆

(
1 +

n

T

)
log

(
T∆2

288γ2

)
+ n∆− +

nmK

T

 . (7.13)

�
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Proof of Theorem 2.1. Consider the sequential treatment policy with γ = K and T = n. From
equation (7.12) it follows that for any K0 ≤ K

E
[
RN(π̂)

]
≤ C

(
K2

K0∑
j=1

1

∆j

log

(
n∆2

j

288K2

)

+K2K −K0

∆K0

log

(
n∆2

K0

288K2

)
+ n∆K0+1 +

nmK

T

)
. (7.14)

This can be used to show

E
[
RN(π̂)

]
≤ C min

K2

K∑
j=1

1

∆j

log

(
n∆2

j

288K2

)
+mK,

√
nK2mK log(mK/K)

 . (7.15)

where the first part of the upper bound in (7.15) follows by using (7.14) with K = K0. The second
part follows from Lemma 7.1 by choosing ∆ = K

√
Km√
n

.

Proof of Theorem 2.2. The idea of the proof is similar to the one used in the proof of Theorem 1
in Auer et al. (2002). For now we will keep N fixed.9 First, note that for any positive integer l

Ti(N) = 1 +
N∑

t=K+1

1{π̂t=i} ≤ l +
N∑

t=K+1

1{π̂t=i, Ti(t−1)≥l} ≤ l +
N∑

t=K+1

1{Ti(t−1)≥l} ≤ l +N1{Ti(N−1)≥l}

It remains to bound the probability of the event {Ti(N − 1) ≥ l}. This is the probability that
treatment i has not been eliminated before having been assigned at least l times. Define b̃i =

max{b :
∑b

j=1mi,j < l} and note that if treatment i is assigned l times then it cannot have been
eliminated after b̃i batches. In particular, it cannot have been eliminated by the optimal treatment.
Let

Ai = {the optimal treatment has not been eliminated after batch b̃i}

For any twe have that {Ti(N − 1) ≥ l} ⊆ ({Ti(N − 1) ≥ l}∩Ai)∪Aci . Thus, ({Ti(N − 1) ≥ l}∩
Ai) ⊆

{
∆̂i(B(b̃i))−∆i ≤ γεB(b̃i)

−∆i

}
which implies

E
[
Ti(N)

]
≤ l +NP

(
{Ti(N − 1) ≥ l} ∩ Ai

)
+NP (Aci)

≤ l +NP
(

∆̂i(B(b̃i))−∆i ≤ γεB(b̃i)
−∆i

)
+NP (Aci)

From equations (7.2) and (7.3) of Lemma 7.1 we have that (where τi is defined in the said lemma)

τi ≤
CK2

∆2
i

log

(
n

288K2

)
9In other words all calculations are done conditional on N .

33



Thus, by letting l = m̄+ d288K2

∆2
i

log
(

n
288K2

)
e it follows that τi ≤ l − m̄ ≤ B(b̃i) < l. In particular,

we have that γεB(b̃i)
≤ γετi ≤ 2

3
∆i. Hence,

P
(

∆̂i(B(b̃i))−∆i ≤ γεB(b̃i)
−∆i

)
≤ P

(
|∆̂i(B(b̃i))−∆i| ≥

1

3
∆i

)

≤ CE

exp

(
−2B(b̃i)∆

2
i

576

)
≤ C exp

(
−(l − m̄)∆2

i

288

)

≤ C
K2

n
.

Next, we bound the term involving Aci . To this end we start by noting that if the optimal treatment
does not survive until batch b̃i, then it must have been eliminated in one of the batches before b̃i.

P (Aci) ≤
K∑
j=1

P
(
∃s ≤ B(b̃i) : ∆̂j(s) ≤ −γεs

)
(7.16)

≤
K∑
j=1

P
(
∃s ≤ l : ∆̂j(s) ≤ −γεs

)
(7.17)

≤ CK
l

n
, (7.18)

where the last inequality follows from an application of Lemma A.1 in Perchet and Rigollet (2013).
Bringing things together, taken expectations with respect to N and using Jensen’s inequality in
order to replace N with its expectation yields the desired result.

7.2 Proof of Theorems in Section 3

Proof of Theorem 3.1. It is convenient to define the constant c1 = 6LK + 1, which will enter
several of the bounds derived below. Furthermore, we let c denote a positive constant which may
change from line to line. By the construction of the treatment policy it follows that the regret can
be written as RN(π̄) =

∑F
j=1Rj(π̄), where

Rj(π̄) =
N∑
t=1

(
f (?)(Xt)− f (π̂Bj ,NBj (t))(Xt)

)
1(Xt∈Bj).

We start by providing an upper bound on the welfare lost for each group Bj due to the policy
targeting f (∗)

j = max1≤i≤K f(µ̄
(i)
j , (σ̄

2)
(i)
j ) instead of f (?)(x). To this end note that

f (?)(x) = max
1≤i≤K+1

f(µ(i)(x), (σ2)(i)(x))
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≤ max
1≤i≤K+1

f(µ̄
(i)
j , (σ̄

2)
(i)
j ) +K max

1≤i≤K+1
|µ(i)(x)− µ̄(i)

j |+K max
1≤i≤K+1

|(σ2)(i)(x)− (σ̄2)
(i)
j |.

Fix x ∈ Bj and i ∈ {1, ..., K + 1}. Then, for all y ∈ Bj , one has by the (L, β)-Hölder continuity
of µ(i)(x)

µ(i)(x) ≤ µ(i)(y) + |µ(i)(x)− µ(i)(y)| ≤ µ(i)(y) + LV β
j ,

which upon integrating over y yields µ(i)(x) ≤ µ̄
(i)
j + LV β

j . Similarly, it holds that µ(i)(x) ≥
µ̄

(i)
j −LV

β
j such that for all x ∈ Bj we have |µ(i)(x)−µ̄(i)

j | ≤ LV β
j . Next, note that the map [0, 1] 3

z 7→ z2 is Lipschitz continuous with constant 2 which implies that (µ(i)(x))2 is (2L, β)-Hölder.
This, together with the (L, β)-Hölder continuity of (σ2)(i)(x) = E(Y

(i)
t

2
|Xt = x) − (µ(i)(x))2

implies that E(Y
(i)
t

2
|Xt = x) is (3L, β)-Hölder continuous. Thus, by similar arguments as above

|E(Y
(i)
t

2
|Xt = x)− E(Y

(i)
t

2
|Xt ∈ Bj)| ≤ 3LV β for all x ∈ Bj . The mean value theorem also

yields that |(µ(i)(x))2 − µ̄(i)
j

2
| ≤ 2LV β

j for all x ∈ Bj . Therefore,∣∣(σ2)(i)(x)− (σ̄2)
(i)
j

∣∣ =
∣∣E(Y

(i)
t

2
|Xt = x)− (µ(i)(x))2 − [E(Y

(i)
t

2
|Xt ∈ Bj)− µ̄(i)

j

2
]
∣∣

≤ 5LV β
j

Thus, for x ∈ Bj ,

f (?)(x) ≤ f
(∗)
j + c1V

β
j .

A similar argument to the above yields that for all x ∈ Bj

f (π̄t)(x) ≥ f̄
(π̄t)
j − c1V

β
j .

Next we define R̃j(π̄) =
∑NBj (N)

t=1

(
f

(∗)
j − f̄

(π̂Bj,t))

j

)
. This corresponds to the regret associated

with a treatment problem without covariates where treatment i yields reward f̄
(i)
j , and the best

treatment yields f (∗)
j = maxi f̄

(i)
j ≤ f̄ ?j . Therefore, we can write

Rj(π̄) =
N∑
t=1

(
f (?)(Xt)− f

(π̂Bj,NBj (t)
)
(Xt)

)
1(Xt∈Bj) ≤

N∑
t=1

(
f

(∗)
j − f̄

(π̂Bj,NBj (t)
)

j + 2c1V
β
j

)
1(Xt∈Bj)

= R̃j(π̄) + 2c1V
β
j NBj(N),

where NBj(N) is the number of observations falling in bin j given that there are N observations
in total. Taking expectations, and using that the density of Xt is bounded from above implies that
E
[
Nj(N)

]
≤ c̄nB̄j gives

E
[
Rj(π̄)

]
≤ E

[
R̃j(π̄)

]
+ nc̄B̄jc1V

β
j . (7.19)
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Since E
[
R̃j(π̄)

]
is the expected regret of a treatment problem without covariates we can apply

Theorem 7.1 with the following values

∆ =

√
mK log(mK)

nB̄j

, γ = KL, T = nB̄j,

for each bin j = 1, ..., F to obtain the following bound on the regret accumulated across any group
j:

E
[
Rj(π̄)

]
≤ C

[√
mK log(mK)nB̄j + nB̄jV

β
j

]
.

Thus, adding up the expected regret over all F groups yields

E
[
RN(π̄)

]
≤ C

F∑
j=1

[√
mK log(mK)nB̄j + nB̄jV

β
j

]
.

Proof of Corollary 3.1.1. The result follows from Theorem 3.1 upon noting that B̄j = P−d and
Vj =

√
dP−1 for j = 1, ..., P (and ignoring the constant

√
d) with P as in the theorem completes

the proof.

Proof of Theorem 3.2. Define S = S(α, β, L,K, d, c̄,m) to be the subset of S(β, L,K, d, c̄,m) =:

S̄ which also satisfies the margin condition. Set m = 1, K = 2 and fix a policy π. Then, by Theo-
rem 4.1 in Rigollet and Zeevi (2010), there exists a constant C(α) such that for all α > 0

sup
S

E
[
RN(π)

]
≥ C(α)n1−β+βα

2β+d .

Thus, choosing an α = α(ε) such that βα
2β+d

≤ ε, we conclude

sup
S̄

E
[
RN(π)

]
≥ sup

S
E
[
RN(π)

]
≥ C(α)n1−β+βα

2β+d ≥ C(α)n1− β
2β+d · n−ε = C(ε)n1− β

2β+d · n−ε,

where the last inequality used that α is a function of ε.

Proof of Theorem 3.3. The proof is identical to the proof of Theorem 2.2 but with with n = E(N)

replaced by c̄nB̄j ≥ E
(
NBj(N)

)
. Thus, the expected number of assignments is replaced by an

upper bound on the expected number of individuals falling in group j and the result of Theorem
2.2 is applied on each group separately.

Proof of Theorem 3.4. The proof is similar to that found in Tsybakov (2004a) and Rigollet and
Zeevi (2010). Fix δ < δ0. Then, for any policy π

RN(π) ≥ δ

N∑
t=1

1{f (?)(Xt)−f (πt)(Xt)>δ}
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≥ δ

SN(π)−
N∑
t=1

1{0<|f (?)(Xt)−f (πt)(Xt)|≤δ}


≥ δ

SN(π)−
N∑
t=1

1{0<|f (?)(Xt)−f (])(Xt)|≤δ}


Since Sn(π) ≤ N there exists a c > 0 not depending on N such that

(
Sn(π)
cn

) 1
α
< δ0. Thus, we can

set δ =
(
Sn(π)
cn

) 1
α

and use the margin condition upon integration on both sides of the above display
to get (3.5). To obtain (3.6) insert (3.4) into (3.5).

Proof of Theorem 3.5. The proof is similar to the proof of Theorem 3.1 once we fix a value of
the discrete covariates. Let c denote a positive constant which may change from line to line.
By the construction of the treatment policy it follows that the regret can be written as RN(π̃) =∑

a∈A
∑Fa

j=1Ra,j(π̂), where

Ra,j(π̂) =
N∑
t=1

(
f (?)(Xt)− f (π̂({a}×Ba,j),Na,j(t))(Xt)

)
1(Xt,D=a,Xt,C∈Ba,j).

For any bin Ba,j define

µ̄
(i)
a,j = E(Y

(i)
t |Xt,D = a,Xt,C ∈ Ba,j) =

1

PX(Xt,D = a,Xt,C ∈ Ba,j)

∫
a×Ba,j

µ(i)(x)dPX(x)

and

(σ̄2)
(i)
a,j = V ar(Y

(i)
t |Xt,D = a,Xt,C ∈ Ba,j)

= E(Y
(i)
t

2
|Xt,D = a,Xt,C ∈ Ba,j)− [E(Y

(i)
t |Xt,D = a,Xt,C ∈ Ba,j)]

2

Furthermore, let f̄ (i)
a,j = f(µ̄

(i)
a,j, (σ̄

2)
(i)
a,j) with f (∗)

a,j = max1≤i≤K+1 f̄
(i)
a,j . By exactly the same argu-

ments as in the proof of Theorem 3.1 we now get that for x ∈ {a} ×Ba,j ,

f (?)(x) ≤ f
(∗)
a,j + cV β

a,j,

as well as,

f
(π̂(a×Ba,j),Na,j(t))(x) ≥ f̄

(π̂({a}×Ba,j),Na,j(t))

a,j − cV β
a,j.

Next we define R̃a,j(π̃) =
∑Na,j

t=1

(
f

(∗)
a,j − f̄

(π̂({a}×Ba,j),t)

a,j

)
. This corresponds to the regret associated

with a treatment problem without covariates where treatment i yields reward f̄
(i)
a,j , and the best

treatment yields f (∗)
a,j = maxi f̄

(i)
a,j ≤ f̄ ?a,j . Therefore, we can write

Ra,j(π̂) =
N∑
t=1

(
f (?)(Xt)− f (π̂(a×Ba,j),Na,j(t))(Xt)

)
1(Xt,D=a,Xt,C∈Ba,j)
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≤
N∑
t=1

(
f

(∗)
a,j − f̄

(π̂({a}×Ba,j),Na,j(t))

a,j + 2cV β
a,j

)
1(Xt,D=a,Xt,C∈Ba,j)

= R̃a,j(π̂) + 2cV β
a,jNa,j(N),

where Na,j(N) is the number of observations for which x ∈ a × Ba,j given that there are N
observations in total. Taking expectations, and using that N is independent of all other random
variables implies E

[
Na,j(N)

]
≤ nP(Xt,D = a,Xt,C ∈ Ba,j) gives

E
[
Ra,j(π̂)

]
≤ E

[
R̃a,j(π̂)

]
+ nP(Xt,D = a,Xt,C ∈ Ba,j)cV

β
a,j.

Since E
[
R̃a,j(π̂)

]
is the expected regret of a treatment problem without covariates we can apply

Theorem 7.1 with the following values

∆ =

√
mK log(mK)

nP(Xt,D = a,Xt,C ∈ Ba,j)
, γ = KL, T = nP(Xt,D = a,Xt,C ∈ Ba,j),

for each a ∈ A and Ba,j, j = 1, ..., Fa to obtain the following bound on the regret accumulated
across any group:

E
[
Ra,j(π̄)

]
≤ c

[√
mK log(mK)nP(Xt,D = a,Xt,C ∈ Ba,j) + nP(Xt,D = a,Xt,C ∈ Ba,j)jV

β
j

]
.

Thus, adding up the expected regret over all groups yields

E
[
RN(π̃)

]
≤ c

∑
a∈A

Fa∑
j=1

[√
mK log(mK)nP(Xt,D = a,Xt,C ∈ Ba,j) + nP(Xt,D = a,Xt,C ∈ Ba,j)V

β
a,j

]
.

7.3 Proof of Theorems in Section 4

Proof of Theorem 4.1. Define εs = u(s, T ) = 8
√

2ā2

s
log
(
T
s

)
. In the following we will distin-

guish between two types of batches, namely batches of individuals that have to be assigned a
treatment, and batches of information on the outcome of previously assigned treatments. The latter
type of batches will be the key object of interest when determining whether or not to eliminate a
given treatment, whereas the former will be relevant when counting the total regret from running
the treatment policy. In this proof we let B(s) denote the minimal number of observed outcomes
per treatment based on s batches of information. Consider a batch b of information. Recall that if
the optimal treatment as well as some treatment i have not been eliminated, then the optimal treat-
ment will eliminate treatment i if ∆̂i(B(b)) ≥ γεB(b), and treatment i will eliminate the optimal
treatment if ∆̂i(B(b)) ≤ −γεB(b).

To be able to say something about when either of these two events occurs we introduce the
(unknown) quantity, τ ∗i , which is defined through the relation

∆i = 12γ

√
2ā2

τ ∗i
log

(
T

τ ∗i

)
, i = 1, ..., K.
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Since τ ∗i in general will not be an integer, we also define τi = dτ ∗i e. Next introduce the hypothetical
batch (of information) bi = min{l : B(l) ≥ τ ∗i }. It is the first batch of information after which we
have more than τ ∗i observations of the outcome of treatment i. Notice that

τ ∗i ≤ B(bi) ≤ C

 ā2γ2

∆2
i

log

(
T∆2

i

288ā2γ2

)
+m

 , (7.20)

τi ≤ B(bi), (7.21)

B(bi) ≤ τi +m, (7.22)

Notice that 1 ≤ τ1 ≤ ... ≤ τK and 1 ≤ b1 ≤ ... ≤ bK . Define the following events:

Ai = {The optimal treatment has not been eliminated after batch bi has been observed},
Bi = {Every treatment j ∈ {1, ..., i} has been eliminated after batch bj has been observed}.

Furthermore, let Ci = Ai ∩ Bi, and observe that C1 ⊇ ... ⊇ CK . For any i = 1, ..., K, the
contribution to regret incurred after batch bi of information is at most ∆i+1N on Ci. In what
follows we fix a treatment, K0, which we will be specific about later. Using this and letting m
denote the expected number of observations in a batch we get the following decomposition of
expected regret:

E
[
RN (π̂)

]
= E

RN (π̂)

 K0∑
i=1

1Ci−1\Ci + 1CK0




≤ n

K0∑
i=1

∆iP
(
Ci−1\Ci

)
+

K0∑
i=1

Bi(bi)∆i + n∆K0+1 +Dm, (7.23)

where the last term is due to the fact that the delay means that the all treatment allocations during
the first D+1 batches have to be made without any information about the treatment outcomes. For
every i = 1, ..., K the event Ci−1\Ci can be decomposed as follows

Ci−1\Ci = (Ci−1 ∩ Aci) ∪ (Bci ∩ Ai ∩ Bi−1) .

Therefore, the first term on the right-hand side of (7.23) can be written as

n

K0∑
i=1

∆iP
(
Ci−1\Ci

)
= n

K0∑
i=1

∆iP (Ci−1 ∩ Aci) + n

K0∑
i=1

∆iP (Bci ∩ Ai ∩ Bi−1) . (7.24)

Notice that the first term on the right-hand side will be zero if bi−1 = bi. On the event Bci∩Ai∩Bi−1

the optimal treatment has not eliminated treatment i at batch bi. Therefore, for the last term on the
right hand side of equation (7.24) we find that

P (Bci ∩ Ai ∩ Bi−1) ≤ P
(

∆̂i(B(bi)) ≤ γεB(bi)

)
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≤ P
(

∆̂i(B(bi))−∆i ≤ γετi −∆i

)
≤ E

[
P
(
|∆̂i(B(bi))−∆i| ≥

1

2
γετi |B(bi)

)]
. (7.25)

For any s ≥ τi we have that

P
(
|∆̂i(s)−∆i| ≥

1

2
γετi

)
≤ P

(
|f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ̂(i)
s , (σ̂

2
s)

(i)) + f(µ(i), (σ2)(i))− f(µ(∗), (σ2)(∗))| ≥ 1

2
γετi

)
≤ P

(
|f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ(∗), (σ2)(∗))| ≥ 1

4
γετi

)
+ P

(
|f(µ̂(i)

s , (σ̂
2
s)

(i))− f(µ(i), (σ2)(i))| ≥ 1

4
γετi

)
.

(7.26)

Furthermore, for any j ∈ {i, ∗}, the mean value theorem yields that

P
(
|f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

4
γετi

)
≤ P

(
|µ̂(j)
s − µ(j)|+ |(σ̂2

s)
(j) − (σ2)(j)| ≥ 1

4K
γετi

)
≤ P

(
3|µ̂(j)

s − µ(j)|+ |µ̂(j)
2,s − µ

(j)
2 | ≥

1

4K
γετi

)
≤ P

(
|µ̂(j)
s − µ(j)| ≥ 1

16K
γετi

)
+ P

(
|(µ̂2,s)

(j) − µ(j)
2 | ≥

1

16K
γετi

)
(7.27)

where µ(j)
2 = E

[
(Y

(j)
1 )2

]
and µ̂(j)

2,s = 1
s

∑s
r=1(Y

(j)
ιr )2 with ιr as defined in Section 2.2. By combin-

ing equations (7.26) and (7.27), and applying Hoeffding’s inequality along with Doob’s optional
skipping theorem as well as the fact that γ ≥ K, we arrive at the following bound,

P
(
|∆̂i(s)−∆i| ≥

1

2
γετi

)
≤ C exp

(
− 2

256ā2
ε2τis

)
≤ C exp

(
− 1

128ā2
ε2τiτi

)
= C exp

(
−log

(
T

τi

))
≤ C

τi
T
.

Thus,

P (Bci ∩ Ai ∩ Bi−1) ≤ C
τi
T
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On the event Ci−1∩Aci the optimal treatment is eliminated between the time batch bi−1 +1 and bi of
information arrives. Furthermore, every suboptimal treatment j ≤ i− 1 has also been eliminated.
Therefore, the probability of this event can be bounded as follows:

P (Ci−1 ∩ Aci) ≤ P
(
∃(j, s), i ≤ j ≤ K, bi−1 + 1 ≤ s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
≤

K∑
j=i

P
(
∃s, bi−1 + 1 ≤ s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
=

K∑
j=i

[
Φj(bi)− Φj(bi−1)

]
,

where Φj(b) = P
(
∃s ≤ b; ∆̂j(B(s)) ≤ −γεB(s)

)
. We proceed to bounding terms of the form

Φj(bi) for j ≥ i.

P
(
∃s ≤ bi; ∆̂j(B(s)) ≤ −γεB(s)

)
≤ P

(
∃s ≤ bi; ∆̂j(B(s))−∆j ≤ −γεB(s)

)
≤ P

(
∃s ≤ Bj(bi); ∆̂j(s)−∆j ≤ −γεs

)
≤ P

(
∃s ≤ τi +m; ∆̂j(s)−∆j ≤ −γεs

)
≤ P

(
∃s ≤ τi +m; |f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

2
γεs

)
+ P

(
∃s ≤ τi +m; |f(µ̂(∗)

s , (σ̂2
s)

(∗))− f(µ(∗), (σ2)(∗))| ≥ 1

2
γεs

)
.

For any j ∈ {i, ...,K, ∗} we find that, by the mean value theorem,

P
(
∃s ≤ τi +m : |f(µ̂(j)

s , (σ̂2
s)

(j))− f(µ(j), (σ2)(j))| ≥ 1

2
γεs

)
≤ P

(
∃s ≤ τi +m : |µ̂(j)

s − µ(j)|+ |(σ̂2
s)

(j))− (σ2)(j))| ≥ 1

2K
γεs

)
≤ P

(
∃s ≤ τi +m : 3|µ̂(j)

s − µ(j)|+ |µ̂(j)
2,s − µ

(j)
2 | ≥

1

2K
γεs

)
≤ P

(
∃s ≤ τi +m : |µ̂(j)

s − µ(j)| ≥ 1

8K
γεs

)
+ P

(
∃s ≤ τi +m : |(µ̂2,s)

(j) − µ(j)
2 | ≥

1

8K
γεs

)
≤ C

τi +m

T

where we once more have used equation (7.22) and Lemma A.1 in Perchet and Rigollet (2013).
Using this we find that

K0∑
i=1

∆iP (Ci−1 ∩ Aci) ≤
K0∑
i=1

∆i

K∑
j=i

[
Φj(bi)− Φj(bi−1)

]
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≤
K∑
j=1

j∧K0−1∑
i=1

Φj(bi) (∆i −∆i+1) +
K∑

j=K0

∆K0Φj(bK0) +

K0−1∑
j=1

∆jΦj(bj)

≤ C

 1

T

K∑
j=1

j∧K0−1∑
i=1

(τi +m) (∆i −∆i+1) +
1

T

K∑
j=1

∆j∧K0

(
τj∧K0 +m

) .

(7.28)

Observe that, by (7.21),

K∑
j=1

j∧K0−1∑
i=1

τi (∆i −∆i+1) ≤ Cγ2ā2

K∑
j=1

j∧K0−1∑
i=1

(∆i −∆i+1)

∆2
i

log

(
T∆2

i

288ā2γ2

)

≤ Cā2γ2

K∑
j=1

∫ ∆1

∆j∧K0

1

x2
log

(
Tx2

288ā2γ2

)
dx

≤ Cā2γ2

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288ā2γ2

)
. (7.29)

The parts involving m in equation (7.28) can be bounded by

m
K∑
j=1

j∧K0−1∑
i=1

(∆i −∆i+1) +
K∑
j=1

∆j∧K0m ≤ mK. (7.30)

Bringing together equations (7.28), (7.29) and (7.30) we see that

K0∑
i=1

∆iP (Ci−1 ∩ Aci) ≤ C

 ā2γ2

T

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288ā2γ2

)
+
Km

T

 . (7.31)

Combining this with equation (7.24) and (7.23) we obtain

E
[
RN (π̂)

]
≤ C

(
ā2γ2n

T

K∑
j=1

1

∆j∧K0

log

(
T∆2

j∧K0

288ā2γ2

)
+
nā2γ2

T

K0∑
j=1

1

∆j

log

(
T∆2

j

288ā2γ2

)

+

K0∑
i=1

Bi(bi)∆i + n∆K0+1 +
nmK

T
+mD

)

≤ C

((
1 +

n

T

)
ā2γ2

K0∑
j=1

1

∆j

log

(
T∆2

j

288ā2γ2

)
+
ā2γ2n

T

K −K0

∆K0

log

(
T∆2

K0

288ā2γ2

)

+ n∆K0+1 +
nmK

T
+mD

)
. (7.32)

Fix ∆ > 0 and let K0 be such that ∆K0+1 = ∆−. Define the function φ(·) by

φ(x) =
1

x
log

(
Tx2

288ā2γ2

)
,
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and notice that φ(x) ≤ 2e−1/2φ(x′) for any x ≥ x′ ≥ 0. Using this with x′ = ∆ and x = ∆i for
i ≤ K0 we obtain the following bound on the expected regret.

E
[
RN(π̂)

]
≤ C

 ā2γ2K

∆

(
1 +

n

T

)
log

(
T∆2

288ā2γ2

)
+ n∆− +

nmK

T
+mD

 . (7.33)

Note that we by definition we have that m ≤ m. The theorem then follows by arguments similar
to those in the proof of theorem 2.1.

�

Proof of Theorem 4.2. Recall equation (7.19). Applying Theorem 4.1 with the following values

∆ =

√
mKā2 log(mK)

nB̄j

, γ = KL, T = nB̄j,

for each bin j = 1, ..., F , we obtain the following bound on the regret accumulated across the any
bin j:

E
[
Rj(π̄)

]
≤ c

[√
mā2K log(mK)nB̄j + nB̄jV

β
j +mK +m(j)D

]
,

where m(j) is the expected batch size associated with bin j. Note that m(j) ≤ c̄mB̄j . Thus,

E
[
RN(π̄)

]
≤ c

 F∑
j=1

[√
mKā2 log(mK)nB̄j + nB̄jV

β
j +mK

]
+mD

 .

References

Susan Athey and Stefan Wager. Efficient policy learning. arXiv preprint arXiv:1702.02896, 2017.

Anthony B Atkinson. On the measurement of inequality. Journal of economic theory, 2(3):244–
263, 1970.
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