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Modeling the origin of urban-output scaling laws
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Urban outputs often scale superlinearly with city population. A difficulty in understanding the mechanism of
this phenomenon is that different outputs differ considerably in their scaling behaviors. Here, we formulate a
physics-based model for the origin of superlinear scaling in urban outputs by treating human interaction as a
random process. Our model suggests that the increased likelihood of finding required collaborations in a larger
population can explain this superlinear scaling, which our model predicts to be non-power-law. Moreover, the
extent of superlinearity should be greater for activities that require more collaborators. We test this model using
a novel dataset for seven crime types and find strong support.
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I. INTRODUCTION

Physics-based models for human processes have had re-
markable success in recent years, perhaps due to the in-
creasing availability of relevant quantitative data (see, e.g.,
models of pedestrian synchrony, crowd dynamics, migration
patterns, community formation, even changing religious af-
filiation [1–8]). Here, we explore the sociophysics of human
productivity, focusing in particular on the origin of superlinear
scaling laws that have been observed for a wide range of urban
outputs (see Fig. 1(a) for several examples). Increases in these
outputs can be mostly beneficial, as with GDP and patents, or
mostly harmful, as with crime or contagious disease [9–13].

The scaling of serious crime was previously reported to
be superlinear [10,14] with a power law exponent of approx-
imately 1.16. When we break down the data and compare
across the seven FBI crime report categories,1 however, the
scaling behavior varies significantly: some categories show
approximately linear scaling, while others are strongly super-
linear. These differences persist for all years since 1999, the
earliest year for which data are available (see Fig. 2). One
illustrative example is the comparison between robbery and
rape, as shown in Fig. 1(b). Robbery scales superlinearly with
city size, while rape scales close to linearly.2

It has remained unclear why some quantities are affected
by city population more than others: previous efforts at un-
derstanding superlinear scaling in urban outputs have largely

*vcy@u.northwestern.edu
1FBI crime categories are murder, rape, robbery, aggravated as-

sault, burglary, larceny-theft, and motor vehicle theft.
2Note that, for convenience, we frequently use the simpler but more

ambiguous term “city” to refer to a Metropolitan Statistical Area
(MSA) throughout this manuscript.

focused on the similarities rather than differences [14–18].
In addition, many models [14,16–19] rely on a power-law
assumption for the scaling behaviors, which was recently
challenged [20].

Explaining the variations in the scaling behavior and for-
mulating a non-power-law framework are now two significant
challenges in developing a scientific understanding of urban
scaling. Here, we propose a novel model that explains and
predicts the variation in scaling among different urban out-
puts, without relying on a power law hypothesis.

II. MATHEMATICAL MODEL

A. Overview of the mathematical model

Since most urban outputs, such as AIDS infection, patent-
ing, and many types of crime have social components [21–26],
we are motivated to incorporate existing knowledge about
social processes into our model. Mark Granovetter’s landmark
work “The Strength of Weak Ties” [27] argued that weak ties
play an important role in providing information novel to one’s
social network that fosters outputs such as finding a job or
starting a business. Motivated by this and direct empirical evi-
dence for the importance of weak ties in innovation and crime
[28,29], we base our model on the assumption that finding
the right collaboration is key to human productivity: one must
meet all the necessary collaborators for an output in order to
produce. Mathematically, this key concept is expressed as

y(N ) ∼ NPn[u(N )], (1)

where y(N ) denotes the volume of an urban output (such as
the total number of robbery cases or the number of patents)
for a city with population N . The parameter n is the number
of partners needed for the output, u(N ) is the average number
of unique contacts for a person living in the city, and Pn[u(N )]
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FIG. 1. Urban outputs versus city size. (a) Number of new
patents, murder cases, and AIDS cases in U.S. Metropolitan Sta-
tistical Areas (MSA’s) vs population. These three urban outputs
exhibit superlinear scaling—as MSA population doubles, the amount
of output more than doubles. (b) Number of robbery cases and
rape cases vs MSA population. Robbery scales superlinearly, while
rape scales close to linearly. All data are scaled to have maximum
value 1.

is the probability of finding all required n collaborators among
u(N ) contacts.

Here, we give an overview of the model’s general con-
clusions, without functional form assumptions. In the next
subsection, we will first show that Pn’s dependency on u is
in the form of

Pn ∼ un(N ). (2)

Combining Eqs. (1) and (2), we have

y(N ) ∼ Nun(N ).

Taking the logarithm of both sides and differentiating with
respect to ln(N ), we have

β ≡ d ln(y)

d ln(N )
∼ 1 + n

d ln(u)

d ln(N )
. (3)

Equation (3) leads to three predictions:
Superlinear scaling. β ≡ d ln(y)/d ln(N ) is often inter-

preted as the scaling exponent of y. Equation (3) predicts that
if d ln(u)/d ln(N ) > 0, meaning residents of more populated
cities have more contacts (supported by empirical findings in
[30]), and n > 0, meaning the activity typically requires more

FIG. 2. Superlinear scaling over time. Best-fit exponents (mea-
suring degree of superlinear scaling) for scaling laws, i.e., slopes of
curves such as those in Fig. 1, for all seven FBI crime categories. The
shaded regions show 95% confidence intervals. Exponents can differ
considerably among crime categories, and are consistent over time.

than one participant, then β > 1, giving rise to superlinear
scaling.

Variation in scaling exponents. Equation (3) shows that β

increases with n. For fixed N , β grows linearly with n. Thus
Eq. (3) predicts that urban outputs requiring more participants
should exhibit more pronounced superlinear scaling.

Possibility of non-power-law superlinear scaling. Individ-
uals in bigger cities have the chance to meet more people,
but cognitive limits (among other things) restrict them to only
interacting with a small subset in a given period [31]. It is thus
plausible for d ln(u)/d ln(N ) to decrease for large N . Since
the scaling exponent β in Eq. (3) may depend on N , the result
is superlinear scaling behavior that is not a power-law.

Considering typical patterns of collaboration can resolve
the puzzle of why scaling behaviors vary across different ur-
ban outputs. The three predictions above hold for any general
increasing function of u(N ). In the following sections, we first
provide a derivation for Pn(u) ∼ un. Then, in order to make
quantitative predictions and compare the model with empir-
ical data, we propose one general framework for estimating
u(N ), derived from treating social interactions as a biased
sampling process.

1. Derivation for Pn(u)

Among u(N ) unique contacts, only a small subset of
those should result in partners for outputs such as crime
and inventions. Whether a contact becomes a partner can
depend on many factors, e.g., possession of a certain skill
or establishment of a certain level of trust. We denote this
probability by γ , which differs by the type of activity.

The need to find all required collaborators for an output
to occur can be interpreted in two ways. The first is that
the output requires n partners, each with a unique set of
attributes (e.g., skill, relationship, etc.). The second is that the
output requires n individuals each possessing the same set of
attributes. We present calculations for both interpretations and
show that the scaling relationship for Pn, the probability of
finding all partners needed, is Pn ∼ un (to leading order) for
both interpretations.

Finding n partners with unique attributes. The probability
of finding at least one partner with a desired attribute out of
the u people met is

q(u, γi ) = 1 − (1 − γi )
u,

where γi � 1 is the probability of any given individual having
the attribute.

After finding one partner among the u individuals met
[with probability q(u, γ1)], then, if n > 1, the searcher also
needs to find another compatible partner among the u − 1
remaining contacts [with probability q(u − 1, γ2)], and so on.
The probability of finding all n partners can be expressed as

Pn = q(u, γ1)q(u − 1, γ2) · · · q(u − n + 1, γn). (4)

We expand Eq. (4) assuming γi � 1 for all i. Since the
expansion of q(u, γi ) near γi = 0 is q(u, γi ) ≈ uγi + O(γ 2

i ),
the leading order term for Pn is

Pn ∼ u(u − 1) · · · (u − n + 1)
n∏

i=1

γi.
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With u � n, we have

Pn ∼ un
n∏

i=1

γi.

Because γi are constants and we are only interested in how Pn

scales with u, we express the scaling relationship as

Pn ∼ un .

Finding n partners with the same attributes. The proba-
bility of finding at least n compatible partners with the same
attributes out of the u people met is

Pn(u) =
u∑

r=n

(
u

r

)
γ r (1 − γ )u−r . (5)

where γ is the probability of any person being a suitable part-
ner. This calculation assumes the probability of each person
being a suitable partner is independent.

The leading order term in Eq. (5) is the first term (r = n):

Pn ∼
(

u

n

)
γ n(1 − γ )u−n = u!γ n(1 − γ )u−n

n!(u − n)!
. (6)

We can simplify the ratio of factorials by writing it in terms of
� functions:

u!

(u − n)!
= �(u + 1)

�(u − n + 1)
, (7)

which can then be approximated using Stirling’s approxima-
tion [32]

�(z + a)

�(z + b)
= za−b

[
1 + (a + b)(a + b − 1)

2z

]

for large z and bounded a, b. Setting z = u, a = 1, and b =
1 − n, Eq. (6) can be simplified as

Pn ∼ γ n(1 − γ )u−n(2u − n2 + n)un−1

2n!
. (8)

Assuming u � n, and retaining only leading order terms
(highest power in u and lowest power in γ ), we get

Pn ∼ γ nun.

So the leading order scaling behavior of Pn(u) with u is

Pn(u) ∼ un.

2. Derivation for u(N)

In order to make quantitative predictions, we provide a
framework to estimate the expression u(N ). Since an MSA
is defined based on social and economic integration, we
approximate an MSA of population N as a closed system with
respect to social interactions: all people in the city have some
probability of interacting with one another.

Spatial population distribution in cities is a complex prob-
lem on its own, and we wish to avoid assumptions about the
spatial distribution of social interactions. Instead, we consider
a “social space”—a mathematical convenience to simplify our
analysis—using the following approach. For each individual
under consideration, we map all other individuals in the city
to a one-dimensional space in which they are uniformly dis-
tributed and ordered by social distance to the individual under

2 
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FIG. 3. Mapping to social space. Cartoon for individuals in a city
mapped to a one-dimensional space, ordered by rank of probability
of social interaction. The probability of interaction with a particular
peer decreases with position in one-dimensional space x as ρ(x).

consideration (for an illustration, see Fig. 3). A larger distance
implies a smaller probability of interaction. The position of
an individual in this social space corresponds to his or her
rank based on social distance to (or probability of interaction
with) the individual under consideration. We then treat each
social interaction as a sampling process (independent and
with replacement)—the person under consideration chooses
a person in the social space with whom to interact with
probability density function ρ(x; N ), where x is position in the
social space. By definition, ρ is rank-probability distribution,
and a non-increasing function of x.3

To simplify calculations, we first consider sampling seg-
ments of social space rather than individuals embedded in
it. We discretize the one-dimensional social space of total
length L into M patches of size �x. The ith patch (with center
position xi) is thus chosen with probability ρ(xi )�x. Taking
ns to be the total number of samplings (interactions) that have
occurred, the expected total unique space sampled, Lu is

Lu = �x
M∑

i=1

[1 − (1 − ρ(xi )�x)ns ]. (9)

We denote by Ls = ns�x the length of total space sampled
with repeated samples counted cumulatively. We can then
rewrite Eq. (9) as

Lu = �x
M∑

i=1

[
1 −

(
1 − ρ(xi )Ls

ns

)ns
]
. (10)

The Laurent series expansion for (1 − c/n)n as n → ∞ is

(
1 − c

n

)n
= e−c − c2e−c

2n
+ O

(
1

n2

)
.

Using this expansion, Eq. (10) can be rewritten as

Lu = �x
M∑

i=1

[
1 − e−ρ(xi )Ls + ρ(xi )2L2

s

2ns
e−ρ(xi )Ls + O

(
1

n2
s

)]
.

3In taking this “social space” approach, we leave for other work
(see, e.g., [33] or [34]) the interesting questions of how geographical
and social network structure may lead to particular scaling laws
ρ(x; N ).

032306-3



YANG, PAPACHRISTOS, AND ABRAMS PHYSICAL REVIEW E 100, 032306 (2019)

We take the continuum limit �x → 0 and ns → ∞, and
neglect the O(1/ns) and higher order terms. Using M�x = L,
we have

Lu = lim
�x→0

�x
M∑

i=1

[1 − e−ρ(xi )Ls ]

= M�x − lim
�x→0

�x
M∑

i=1

e−ρ(xi )Ls . (11)

The second term of Eq. (11) is a Riemann sum. Taking the
continuum limit of Eq. (11) as �x → 0, the sum can be
expressed in terms of an integral. We then have

Lu = L −
∫ L

0
e−ρ(x)Ls dx. (12)

Since the population distribution on the social space is uni-
form, the unique length covered by sampling (Lu) and the
cumulative length sampled (Ls) directly correspond to the
number of unique individuals met u and the cumulative num-
ber of samples s, respectively. The total length of the rank-
space L by construction corresponds to the total population
N . Changing notation in Eq. (12), we find an expression for
the number of unique individuals met u:

u(N ) = N −
∫ N

1
e−ρ(x)sdx, (13)

where s is the amount of sampling made by each individual in
a certain period of time. Here, we assume s (reflecting casual
contact interactions) does not change with city population.4

We will estimate its value (assumed universal for simplicity)
by fitting to all available datasets.

B. Closed-form expression for scaling of urban outputs

The closed-form expression for the total output y is thus

y(N ) ∼ N

(
N −

∫ N

1
e−ρ(x)sdx

)n

. (14)

The parameter s is a measure of social capacity, or the amount
of casual social interaction (including repeated interactions) in
a characteristic time period. For simplicity we make the con-
servative approximation that s is universal for all individuals
(see earlier footnote). The function ρ(x) is a rank-probability
distribution representing the probability of interacting with an
individual at rank x in one’s list of contacts sorted by contact
frequency. Intuitively, ρ(x) can be understood as representing
a social interaction pattern: how often does one interact with
one’s most frequent contact vs one’s second-most-frequent
contact, third-most-frequent contact, etc. Importantly, it ap-
plies not just to close relationships, but also extends to casual

4We note that little evidence exists for this hypothesis: much
work has been done on friendship and acquaintance networks (e.g.,
[31,35]), but little on scaling of casual contact or weak tie numbers.
We expect our hypothesis of constant s to be conservative in the sense
that, if there is some city size dependence, presumably s(N ) is an
increasing function, which would result in even greater superlinearity
than our model currently predicts.

contacts with whom one may not maintain any relationship;
those are taken as seeds of new collaborations.

Secondary correction

Other authors [36–38] have argued that the incentive to
commit crime drops with city size; we incorporate this effect
as a secondary correction to our model:

y(N ) ∼ Nu(N )nN−0.12

∼ N0.88

(
N −

∫ N

1
e−ρ(x;N )sdx

)n

. (15)

Note that this is simply a shifted version of the model in
Eq. (14), and results reported below stay largely the same with
either version (our theoretical predictions for power law fits
are simply shifted globally by 0.12). See Supplemental Mate-
rial [39] section 7 for details on this secondary correction.

III. RESULTS AND EMPIRICAL EVIDENCE

Even without assumption on the functional form of ρ(x),
Eq. (13) gives du/dN � 0 ([39], see section 8). This implies
that individuals with identical social capacities and social
interaction patterns will (on average) meet more unique indi-
viduals in more populated cities. This result is consistent with
empirical findings from phone contact networks in a number
of cities [30].

In order to get quantitative predictions, we need to make
an assumption about the form of ρ(x; N ). Motivated by obser-
vations of Zipf’s law scaling in a variety of rank distributions
(e.g., word frequency, city population, earthquake magnitudes
[40]), and direct evidence supporting the hypothesis that com-
munication networks (such as emails, phone calls, and face-
to-face interactions) have power-law like degree distribution
[41–43], we assume ρ(x) to have the following form:

ρ(x; N ) = m(N )x−α, (16)

where m(N ) is a normalization factor such that
m(N )

∫ N
1 x−αdx = 1. We will fit the parameter α when

validating with urban scaling data, and also use an
independent dataset (the communication patterns in the
Enron email corpus) to check that the parameter found is in a
reasonable range. Note that we also consider other options for
the algebraic form of ρ(x) and find similar results (see [39],
section 3).

The integral in Eq. (13), after plugging in Eq. (16)
can be approximated as an incomplete � function
(sm)1/αα−1�(−α−1, mN−αs) ([39], see section 8).
Combining that with Eq. (15), we reach a closed-form
estimate for the scaling behavior of social output in a city of
population N :

y(N ) ∼ N0.88

[
N − (s m)1/α

α
�

(
− 1

α
, m N−αs

)]n

, (17)

where m = m(N ) = (α − 1)/(1 − N1−α ) if α 	= 1; m =
1/ ln(N ) if α = 1. The parameter n is the typical number of
partners needed for an output. We input this parameter’s value
from data on average co-offending group size in the National
Incident-Based Reporting System (NIBRS).
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FIG. 4. Model predictions with data. (a) Number of robbery cases
versus MSA population. (b) Number of rapes cases versus MSA
population. Both for US in 2012. Red solid curves shows model
predictions (not power-law), blue dots show data points, and the
black dashed curves are reference lines of unit slope. Our model
predicts superlinear scaling for robbery, and approximately linear
scaling for rape. The difference between the model predictions in
(a) and (b) is a result of the differing average co-offending group
sizes. This figure uses co-offending group size calculated from the
NIBRS dataset. The average group sizes are 1.74 for robbery and
1.29 for rape (group size is n + 1). The parameters used in the
model’s prediction are s = 2.63 × 106 and α = 0.93 (global fit to
all types of crimes).

Support from empirical data

Our model agrees well with US FBI data on all seven crime
categories across 14 years; typical comparisons are shown
in Fig. 4 (see ([39], section 5) for all comparisons) and a
summary is shown in Fig. 5. The model explains not only
the observed superlinear scaling for some urban outputs (e.g.,
robbery in Fig. 4(a)), but also close-to-linear scaling in others
(e.g., rape in Fig. 4(b)). In Fig. 5 we show the relationship
between the average co-offending group size and the degree
of superlinearity (quantified for ease of comparison by the

1 1.5 2
Co-offending group size (NIBRS)

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
up

er
lin

ea
rit

y

murder

rape

robbery

assault

burglary
larceny-theft

motor  
vehicle
theft  

1 1.2 1.4 1.6
Co-offending group size (Chicago PD)

-0.1

0

0.1

0.2

0.3

0.4

0.5

murder

rape

robbery

assault

burglarylarceny-theft

motor  
vehicle
theft  

Data
Theory

(a) (b)

FIG. 5. Superlinearity as a function of average group size for
crimes. Superlinearity is quantified as the exponent of the best-fit
power law minus 1; this is for convenience—our model does not
predict power-law scaling. Red solid line shows model prediction.
Vertical error bars in both panels are standard deviation of year-
to-year variation over 1999–2012. In (a), the horizontal error bars
are state-to-state standard deviation in mean group sizes. In (b), the
horizontal error bars are standard deviation of year-to-year variation
over 1999–2012. Sources: [44,45].

best fitting power-law exponent to the scaling relation minus
one—though note that our model does not predict power-law
scaling). The two panels in Fig. 5 use two independent sources
of data for the co-offending group size—NIBRS in Fig. 5(a)
and Chicago Police Department in Fig. 5(b). The Pearson
correlation between average co-offending group size and su-
perlinearity in the data is 0.764 (p-value 0.046) in Fig. 5(a),
and 0.761 (p-value 0.047) in Fig. 5(b). The Spearman’s rank
correlation is 0.821 (p-value 0.034) in Fig. 5(a) and 0.786
(p-value 0.048) Fig. 5(b).

1. Background on empirical data

Average co-offending group sizes for the seven types of
crimes come from crime reports of two independent sources:
the National Incident-Based Reporting System in 2014 and
the Chicago Police Department arrest records in 1999–2012
(see [39], section 1) for more detail on those sources). Both
sources report incident-level records for a variety of crime
types. The co-offending group size of each incident is defined
as the number of unique offenders reported in that incident.
We average over all incidents of each type to reach the average
group size. The parameter n, the number of partners is calcu-
lated by average group size minus 1. Note that average group
sizes vary only over a small range for our crime data. This
is primarily due to inherent limitations in offender reporting:
for many crimes committed by groups, only a subset of the
co-offenders are arrested or listed in crime reports (a single
arrestee is the most common case). Despite this limitation,
the data do show significant and consistent variation in group
sizes, but the average values we use should be interpreted as
correlates of, rather than direct estimates of, true co-offending
group sizes.5 To ensure the robustness of our results, we use
both sources for model validation and find support of our
prediction from both data sources.

2. Parameter fitting, model selection, and robustness

When comparing our model to data, we use a total of 98
crime scaling datasets (7 types × 14 years). Two parameters
are assumed to be the same across all datasets, α and s,
describing a social interaction pattern and “social capacity,”
respectively. Each dataset has another proportionality constant
that is fitted. We find the values of the two global parameters
(s and α) by minimizing the sum of the two-norm error across
all 98 datasets. The parameter n is input from the average
co-offending group size data for each type of crime. The best
fitting global parameter pair was s = 2.6 × 106, α = 0.93
for the NIBRS dataset, and s = 4.0 × 106, α = 0.69 for the
Chicago dataset. Our model performs better than power-law
models (as measured by AIC and BIC [39, see section
6]) and has fewer fitted parameters,6 suggesting that our

5As long as data-derived co-offending group sizes are monoton-
ically increasing functions of the true co-offending group sizes,
we expect correlations between model predictions and data to be
preserved.

6We compare our model with the power law assumption (y = aNb)
for each data set. For k data sets, the power-law model requires fitting
2k parameters, while ours only requires k + 2.
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framework may be valuable for understanding this and
similar phenomena.

We note that our model predictions are generally quite
robust to the choice of ρ(x). Any decreasing function ρ(x) will
imply du/dN � 0, leading to the prediction of superlinearity.
The predictions are not particularly sensitive to the details
of the particular form of that function—in addition to power
laws, we also tested truncated log normals and a piecewise-
constant function (motivated by the “circle of acquaintance-
ship” concept [46]), with nearly equivalent results ([39], see
section 3 for details). To avoid overfitting, we do not attempt
to explore the space of all possible (or all plausible) functions
ρ(x), we choose what we see as the simplest, the power-law.

IV. DISCUSSION

Some prior work has attributed superlinear scaling to the
hypothesis of hierarchy in infrastructure and social networks
[14,16], or differences in population density [15]. Our model
suggests that a simple “finite-size effect,” i.e., limited popula-
tion to sample from in small to midsize cities, could be the key
underlying mechanism. This may at first appear surprising,
since even medium-sized cities in the U.S. include hundreds
of thousands of unique individuals. At a plausible high rate of
100 “sampling events” per day, however, an individual would
have nearly 1.5 × 106 samples after 40 years, more than the
population of all but the largest U.S. cities (though of course
the number of unique individuals met will be far less).

In our model, the finite-size effect reduces as city popula-
tion becomes large: Eq. (1) implies that dy/dN decreases as
N increases, and as N → ∞, dy/dN → 1. Data such as that
shown in Fig. 1 display a reduced slope for the largest cities.
This is consistent with the disappearance of this finite-size
effect at the upper limits of U.S. city size. This suggests that,
with limited resources, populating smaller cities would have
a bigger impact on overall urban productivity than populating
already big ones.

Some authors have taken alternative approaches to scal-
ing of crime in cities, such as using a Bayesian framework
[47] or looking at empirical connections between crime and
other urban indicators [48]. Others have discussed how urban
outputs such as crime may display long-term memory [49],
how temporal clustering relates to crime scaling [13], or
how crimes cluster geographically in cities [50]. Our model
is not mutually exclusive with these others. However, most
efforts continue to operate under the assumption of power-law
scaling. We hope our work will encourage the study of crime
outside of the power-law framework.

In [51,52], Clauset et al. argue that commonly used sta-
tistical approaches to fitting and testing power-laws can be
problematic. Leitao et al. [53] recently examined a variety
of power-law models in this context, showing that data were

often inconsistent with models, and that many estimated expo-
nents were not statistically distinguishable from 1. Our model
was partially motivated by the (perhaps) over-dependence
on power-law assumptions in the literature. The scaling we
predict could explain poor fits of data to power-laws: inferred
exponents would vary with the range of city size.

Depersin and Barthelemy [54], motivated by a longitudinal
dataset on traffic congestion in cities, argue that scaling laws
depend not only on population but also on growth history.
Our model could also be generalized to incorporate such
dependency—factors such as group size or social interaction
patterns could show memory effects.

Our model, in agreement with previous models [14,15],
implies that the dual aspects of cities are not separable:
both positive and negative urban outputs (e.g., inventions and
crimes) share common driving mechanisms rooted in social
interaction. Future research—especially in the study of crime,
law, deviance, and other sources of urban inequality—would
do well to consider how scaling models such as ours might
be further calibrated to capture differences within cities, espe-
cially across neighborhoods or communities.

This paper relies heavily on crime as an example because
of the abundance and quality of data we were able to compile.
However, the principle of the model can generalize to other
urban outputs driven by forming collaborations, such as in-
ventions and starting new businesses. We applied our model
(with the same α and s parameters found by fitting to the
crime data) to patent scaling laws, while extracting empirical
average group sizes from patent co-authorship. We find good
agreement between our model and patent scaling behavior
(see [39, see section 9] for details). We did not include the
patent group size in the comparison in Fig. 5 because the
rate of under-reporting of group sizes likely differs between
patents and crime.

V. CONCLUSIONS

The good agreement between our simple model and data
indicates that differences in scaling relationships can indeed
result from differences in the typical number of participants
for an urban output: those outputs that are more “social”
in nature are more strongly affected by city population. In
agreement with previous models [14,15,19], we find that a
fundamental driving mechanism of scaling in urban produc-
tivity is social interaction.
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1 Data Sources

US crime statistics by MSA

US crime statistics by MSA are obtained from Table 6 of the Federal Bureau of Investigation
(FBI) publication Crime in the United States for years 1999–2012. The data can be accessed
online at https://ucr.fbi.gov/ucr-publications (as of January 17, 2017). For each
year, population, as well as crime rates for seven types of crimes (murder, forcible rape,
robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft) are reported
for between 260 and 360 MSA’s. We used a total of 98 data sets (14 years × 7 crime types).
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Co-offending data from the Chicago Police Department

We estimate the group size of crime by compiling a new data set of arrest records for 352,705
crime incidents from the city of Chicago, IL from 1999 to 2012. The data were provided
to one of the authors through a memorandum of understanding with the Chicago Police
Department. Data are recorded at the incident level and include detailed information on
each arrest, including the charge (e.g., motor vehicle theft, assault, robbery, etc.) as well as
individual information on the offender(s). Co-offending is defined as two or more individuals
being charged for the same offence as co-perpetrators, such as when two individuals steal a
car together, sell drugs together, or rob someone together. We define “group size” as the
number of offenders participating in a single crime, and without regard to any indication of a
formal criminal group, such as a street gang. For example, if three people were involved in a
motor vehicle theft, the group would have a size of three. Data used in the present analyses
are derived from a cross-tabulation of offence type by group size for all offences from 1999 to
2012. Some summary of the dataset can be found in Table S1. A plot of mean group sizes
by year and bootstrapped estimation of the 95% confidence intervals is shown in Figure S1.

Figure S1: Mean group sizes (with 95% confidence interval as vertical error bars) for seven types
of crimes over time extracted from the Chicago Police Department arrest records.

Co-offending group size from the National Incident-Based Report-
ing System

A dataset we use to extract co-offending group size is the Uniform Crime Reporting Pro-
gram Data: National Incident-Based Reporting System (NIBRS) 2014 through the National
Archive of Criminal Justice (https://www.icpsr.umich.edu/icpsrweb/NACJD/studies/
36398), accessed in March 2017 [1]. We join the “offense” and “offender” tables of the data
on incident number and state code. Based on descriptions in the codebook, we identify crime
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types of each instance by the UCR offence code using the following matching—murder: 09A,
robbery: 120, rape: 11A, aggravated assault: 13A, burglary: 220, larceny-theft: 23A - 23H,
and motor-vehicle theft: 240.

The co-offending group size for an offence is defined by the number of unique offenders
reported in this offence. A total of 968,962 instances were available from this dataset for the
categories of crimes of interest. A comparison of the values extracted from the NIBRS dataset
with the Chicago dataset is shown in Table S1. Please note that the methodology of this
dataset is different from that of the Chicago one: the Chicago dataset reports only arrested
offenders, while the NIBRS includes voluntary instance reports from police departments,
regardless of whether the offenders were arrested. Thus the values of co-offending group size
are expected to have small systematic differences between these two datasets. Additionally,
it is important to note that the Chicago Police Department does not participate in NIBRS,
so the two datasets are mutually exclusive.

Chicago PD arrest record NIBRS
Homicide 1.28 1.58
Rape 1.07 1.29
Robbery 1.41 1.74
Agg. assault 1.12 1.33
Burglary 1.35 1.41
Larceny-theft 1.12 1.29
Motor vehicle theft 1.49 1.36
Year 1999 - 2012 2014
Number of instances 352,705 968,962

Table S1: Average co-offending group size for various types of crime in the Chicago PD arrest
record and the NIBRS dataset.

The Enron corpus

We used email communication records from a corpus derived from Enron Corporation to
check the plausibility of the parameter α in our rank-frequency distribution, ρ. The Enron
corpus contains 517,431 emails sent by 151 employees of the Enron Corporation. This dataset
was downloaded from http://www.cs.cmu.edu/~enron/ in November 2014 [2].

2 Differences among scaling relationships

Table S2 summarizes the differences in some examples of urban outputs, including crimes
broken down by category.

3 Parameter fitting and discussions

Our model has three parameters that must be fit from data: s, α, and a multiplicative
prefactor. The first two parameters are assumed universal across all data sets, and the third
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Urban output Exponent 95% CI Year
Larceny theft [3] 0.98 [0.95, 1.02] 2002
Rape [3] 0.98 [0.92, 1.04] 2002
Burglary [3] 1.01 [0.96 , 1.05] 2002
Total wages [4] 1.12 [1.09, 1.13] 2002
Aggravated assault [3] 1.13 [1.06 , 1.20] 2002
Murder [3] 1.22 [1.14, 1.30] 2002
New AIDS cases [4] 1.23 [1.18, 1.29] 2002–2003
New patents [4] 1.27 [1.25, 1.29] 2001
Motor vehicle theft [3] 1.32 [1.27 , 1.38] 2002
Robbery [3] 1.38 [1.31 , 1.45] 2002

Table S2: Best fitting power law exponent for scaling relations for various urban outputs. The
differences among them can be pronounced.

is unique for each. For N sets of data, we thus require N + 2 parameters to be fitted. We
find the values of the two global parameters (s and α) by minimizing the sum of the 2-norm
error across all 98 datasets. The model parameter n is set by the average number of partners
calculated from the average co-offending group sizes in data. Fig. S2 shows the landscape of
2-norm error in the neighbourhood of the optimal parameter pair (using NIBRS as the group
size input). Interestingly, we observe a “valley” in the error landscape, showing that there
may be an effective parameter that is a nonlinear combination of α and s. One potential
explanation is that one can meet more distinct individuals by simply sampling more people
(increasing s), or by change one’s social interaction pattern to interact with more “weak ties”
(decreasing α). We have also checked the robustness of the parameter fit by minimizing the
1-norm, and we found similar best fitting parameter (s = 2.8 × 106, α = 0.93), and we
observe a similar error landscape.

Validating fitted α with Enron data

To check if the fitted parameters are plausible, we compare the power law exponent α for
contact frequency that results from our parameter fit to an empirical estimate using the
Enron email corpus. From the emails in the “sent item” folder of each user, we extract
sender and receivers’ email addresses, as well as the length of each email in characters,
excluding white spaces and quoted text in forwarded messages and replies. Some examples
of the length of communication to contact vs rank of the contact are shown in Fig. S3-left.

We excluded those senders with too few contacts (< 100). The communication length vs
rank relation may be approximated as a power law, with the exception of the low-frequency
contacts at larger ranks. We used the communication length vs. rank relation (up to rank
100) to fit the power law exponent −α for each sender. Some examples of the relations are
shown in Fig. S3-right. The distribution of those α is shown in Fig. S4. The best fitting α
from fitting the model to crime scaling data, while using the Chicago data as input group
size is 0.69. The best fitting α while using the NIBRS group size as input, is 0.93, both are
plausibly consistent with the distribution.
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Figure S2: Error landscape for the global parameter optimization problem. Contours show lines
of constant 2-norm for the difference between theory and data over all datasets. The red triangle
shows optimized parameters giving the best fit.
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Figure S3: Left: Examples of the amount of contact vs. rank for 30 randomly selected individuals
in Enron database. Right: The amount of contact vs. rank of contact distribution for the individuals
in the dataset with more than 100 contacts. The curves for small ranks can be roughly approximated
as power laws, though not perfectly.

Discussion of the functional form of ρ(x)

When comparing our model with data, we assume ρ(x) ∼ x−α. The motivation is to avoid
assumptions about the structure of social networks, since that is a complex question on its
own and is not central to this paper’s discussion. Although some network structures can
result in ρ(x) ∼ x−α, it is not a necessary condition to reach our major conclusions. It
is important to note that relaxing this assumption to general non-increasing ρ(x) (which
is by definition true for a rank-probability distribution) does not affect the fundamental
predictions of this work—people in larger cities meet more unique individuals, and the more
participants an act requires, the greater the superlinearity. Other choices produce similar
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Figure S4: Histogram of fitted α for all individuals with more than 100 contacts in the Enron
email database, compared with α found by fitting our model to crime scaling data while using two
independent datasets as group size input. Both alpha values found are plausibly consistent with
the distribution.

qualitative results. Figure S5 compares predictions using some alternative functional forms of
ρ with data. These alternative functional forms are also able to predict both the superlinear
scaling (left column of Figure S5) and nearly linear scaling (right column of Figure S5).

Figure S5-A and B assume ρ to be a decaying log normal function,

ρ(x) =
1

xσ
√

2π
exp

[
−(ln(x)− µ)2

2σ2

]
.

To ensure that ρ(x) is a non-increasing function, we set ρ(x)’s maximum to be at x = 1,
the starting point of the 1D rank space, which constrains the parameters to be µ = σ2.
Figure S5-A and B shows scaling predictions for parameters µ = σ2 = 10, and s = 2.63×106

(same s as used in the main text).
In Figure S5-C and D, we assume ρ to be a piecewise constant function representing

the “circles of acquaintanceship” as proposed by Dunbar [5], with four discrete jumps in
interaction probability. We use Dunbar’s estimation and set the sizes of the circles to be
5, 15, 50 and 150 people. We assume the interaction frequency decreases by a factor of 10
when moving from one circle to the next:

ρ(x) = m(N)×



104 1 ≤ x ≤ 5

103 5 < x ≤ 15

102 15 < x ≤ 50

101 50 < x ≤ 150

100 150 < x ≤ N

,

where m(N) is a multiplicative normalization factor so that
∫ N
1
ρ(x)dx = 1. Figure S6

visualizes these alternative ρ functions and compares with the power-law assumption in the
main text. Figure S5-C and D also uses the same s parameter as in the main text.

Generalizing beyond these numerical simulations, Section 8 demonstrates that u(N) must
be a non-decreasing function of N even without any assumption regarding the functional
form for ρ. Thus the qualitative conclusions of the main text hold for general ρ.
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Figure S5: Example results for an alternative functional forms of ρ, where ρ takes the form of
(A, B) a log normal function, or (C, D) a piecewise constant function denoting circles of acquain-
tanceship with decaying likelihood of interaction in each circle.
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Figure S6: Comparing the power-law function ρ with alternative functional forms that generate
results as shown in Figure S5. Parameter values used here are the same as those used to generate
the scaling predictions.

4 Calculation of best-fitting power law exponent

We quantify the degree of superlinear scaling using the best fitting power-law exponent in the
scaling relationship of MSA total output vs. MSA population, consistent with Bettencourt
et. al [4]. The exponent is the slope of the linear fit log(y) = a1 log(x) + a2, where x and y
are the MSA population (horizontal axis) and amount of output (vertical axis) respectively.

7



AIC BIC
power law model 5.34e+05 5.36e+05

our model 5.16e+05 5.17e+05

Table S3: AIC and BIC of the two types of models with best fitting parameters

The parameters a1 and a2 are to be fitted from the data; a1 is the fitted power law exponent,
and thus a1 − 1 is the superlinearity shown in Fig. 4 of the main text.

The superlinearity for the theory lines in Fig. 4 is calculated as follows. Since the theory
does not predict a power law relationship, we first calculate the theory’s prediction of total
output for each MSA population in the data. We then fit those predictions to a power law
in the same way we fit the data to arrive at the estimate of superlinearity.

The authors are aware of the criticisms for linear fit on the log scale [6], and are motivated
by them to develop the non-power-law model described in the main text. The purpose of
using the linear fit is not to claim a power-law relationship. Instead, we use it to arrive at
an indicator to assist us comparing the steepness of the scaling relationship in the data and
in the theory, and to visualize the relationship between group size and the steepness of the
scaling relationship.

5 Model’s fits to all seven types of crimes

Fig. S7 shows our theory’s comparison with the 7 categories of crime in year 2012, the most
recent year of data available when the research was performed, with the group size input
from the NIBRS dataset. In addition, Fig. S8 shows the fit to patent data (with sources
and group size input described in Sec. 9, showing year 2000, the most recent year available),
suggesting that the model may be generalized to urban outputs beyond crime. Please note
that for all the data displayed, the theoretical curves use the same universal set of parameters
α and s. The only parameter fitted separately to each data set is a multiplicative scaling
factor (see Sec. 3).

6 Comparison with power-law models

A recently published study [7] also hypothesizes that variation may result from the need
for a number of complementary factors to come together, but assumes the scaling take on
a power-law form. Our work relaxes the power-law scaling assumption, and we present
empirical evidence that validates our hypotheses.

We compare our model with the power law assumption (y = aN b) for each data set. The
power law model uses 2N parameters for N data sets. Our model uses N + 2 parameters
for N datasets. We use the Akaike and Bayesian Information Criteria (AIC and BIC) to
measure the goodness of fit. The result is shown in Table S3. Our model has lower AIC
and BIC values than the power law model, thus reaches better fit with data, accounting for
the parameters used (evidence ratio based on AIC is exp(1

2
∆AIC) ≈ exp(9000) ∼ 103900 [8],

strongly supporting our simpler model).
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Figure S7: The fits of the model to all seven types of crimes and to patent data. Fits for other
years are similar. In all panels, the blue dots are data points, red curves are model predictions,
and the black dashed lines show linear scaling. The average number of partners n is indicated on
each panel.
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7 Secondary correction

Previous studies support the idea that higher wages can lead to a lower crime rate [9, 10, 11].
One theory regarding crime incentives suggests that if the gain from committing a crime
exceeds the wage one would otherwise earn with the same time and effort, one would be
inclined to commit a crime. Historical data support that at least some young men’s behaviour
is responsive to this type of crime incentive [10]. Motivated by these findings, we include a
secondary correction in our prediction:

y(N) ∝ N · un(N)f(w(N))

where w(N) is the average wage one would earn in a city of population N . Empirical data
suggest that w(N) ∼ N0.12 [12]. The propensity to commit a crime decreases with increasing
mean wage, so as a simple approximation we take f to be the function f(w) = 1/w. Then

y(N) ∼ N · un(N)N−0.12 (1)

∼ N0.88

(
N −

∫ N

1

e−ρ(x;N)sdx

)n
.

We use this model equation for comparison with the crime data sets.

8 Additional mathematical derivations

Integral Approximation

Here, we find an asymptotic approximation of the integral in the expression of u(N) of the
main text to simplify computation of the model. We use this asymptotic approximation
when validating the model with empirical data.

In main text Eq. (3), we have

u(N) = N −
∫ N

1

e−ρ(x)sdx . (2)

We would like to approximate the integral

I1(N) =

∫ N

1

e−ρ(x)sdx =

∫ N

1

e−mx
−αsdx ,

where m = m(N) is a normalization constant with m = (α − 1)/(1 − N1−α) if α 6= 1;
m = 1/ ln(N) if α = 1.

First, we make a change of variable, t = x−αs. Then we have

I1(N) =
1

α
s1/α

∫ s

N−αs

e−mtt−
α+1
α dt . (3)

Now we focus on the integral in (3),

I2(N) =

∫ s

N−αs

e−mtt−
α+1
α dt . (4)

10



Then we have the relation I1 = s1/αI2/α. Substitute k = (α+ 1)/α, (k > 1) in (4), we have

I2(N) =

∫ s

N−1/(k−1)s

e−mtt−kdt . (5)

Substitute ε = mN−1/(k−1)s and τ = mt, into (5), we have

I2(ε) = mk−1
∫ ms

ε

e−ττ−kdτ .

Note that the integrand e−ττ−k diverges at τ → 0 for all k > 0, and more importantly, it
diverges with a heavy head for all k > 1. So the neighborhood of ε dominates the integral,
and we can replace the upper bound by infinity with error that’s only exponentially small:

I2(ε) ≈ mk−1
∫ ∞
ε

e−ττ−kdτ . (6)

The integral in (6) is the upper incomplete gamma function:

I2(ε) = mk−1Γ(1− k, ε) .

The upper incomplete gamma function, Γ(a, z) is defined as,

if a > 0 : Γ(a, z) =

∫ ∞
z

e−tta−1dt ,

if a < 0 : Γ(a, z) = Γ(a+ 1, z)− za

a
e−x .

The a < 0 recurrence relation is found using integration by parts.
Undoing the variable transformations, we have

I1(N) =
(s m)1/α

α
Γ(− 1

α
,m N−αs) ,

so

u(N) = N − (s m)1/α

α
Γ(− 1

α
,m N−αs) . (7)

Show du/dN ≥ 0

Here we show that du/dN ≥ 0 is implied even without the assumption of power law ρ.
Let ρ take on any separable form, ρ(x;N) = m(N)f(x), where f(x) ≥ 0 represents a
communication pattern that is universal across cities, and m(N) is a normalization factor.
This assumption considers the case where individuals of identical social interaction pattern
reside in cities of different sizes.

Note that the population in the 1-D space is ordered by decreasing probability of inter-
action. Thus, by definition, f ′(x) ≤ 0.

From the main text Eq. (6), we have

u(N) = N −
∫ N

1

e−ρ(x;N)sdx . (8)
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Since the integral is dominated by small ρs values, we approximate (8) with a Taylor expan-
sion near ρs = 0:

u(N) ≈ N −
∫ N

1

(
1− ρ(x;N)s+

1

2
(ρ(x;N)s)2

)
dx

= 1 + s

∫ N

1

ρ(x;N)dx− s2

2

∫ N

1

ρ2(x;N)dx

= 1 + s− s2

2

∫ N

1

ρ2(x;N)dx . (9)

Then
du

dN
= −s

2

2

d

dN

∫ N

1

ρ2(x;N)dx . (10)

Using Leibniz’s rule for differentiation under the integral sign, we have

du

dN
= −s

2

2

[∫ N

1

d

dN
ρ2(x;N)dx+ ρ2(N,N)

]
. (11)

Let ρ = m(N)f(x), denote Q =
∫ N
1

d
dN
ρ2(x;N)dx+ ρ2(N,N). Then

d

dN
ρ2(x;N) = 2f 2(x)m(N)

dm(N)

dN
,

and

Q = 2m
dm

dN

∫ N

1

f 2(x)dx+ f 2(N)m2(N) . (12)

Since the normalization factor m satisfies

m(N) =
1∫ N

1
f(x)dx

,

then
dm

dN
= − f(N)

(
∫ N
1
f(x)dx)2

.

Substituting into (12), we have

Q = −2
f(N)

(
∫ N
1
f(x)dx)3

∫ N

1

f(x)2dx+
f 2(N)

(
∫ N
1
f(x)dx)2

=
f(N)

[
f(N)

∫ N
1
f(x)dx− 2

∫ N
1
f 2(x)dx

]
(
∫ N
1
f(x)dx)3

.

Define S(N) = f(N)
∫ N
1
f(x)dx− 2

∫ N
1
f 2(x)dx (the bracketed expression above). Since

f(x) ≥ 0 and ρ normalizable, the denominator of Q must be positive. In order to show
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du/dN = −s2Q/2 ≥ 0, we need to show S ≤ 0. It’s clear that S(1) = 0. Now it suffices to
show dS/dN ≤ 0:

dS

dN
= f ′(N)

∫ N

1

f(x)dx+ f 2(N)− 2f 2(N)

= f ′(N)

∫ N

1

f(x)dx− f 2(N) . (13)

By definition, f(x) is a non-increasing function, i.e., f ′(N) ≤ 0. Examining (13) with this
in mind, we observe that

dS

dN
≤ 0.

So S(N) ≤ 0 for all N > 1 and therefore Q ≤ 0 for all N > 1. Thus

du

dN
= −s

2

2
Q ≥ 0 .

9 Model’s application to patent scaling

In the main text, we discussed possible extensions of our model to urban outputs beyond
crime. In this section, we show results comparing our model (with parameters found by
fitting to the crime data) to the scaling of patents, and find good agreement.

We first compute the average group size for patents from the National Bureau of Economic
Research (NBER) database [13]. The data were downloaded from http://www.nber.org/patents
in July 2016. The data comprise detailed information on almost 3 million U.S. patents
granted between January 1963 and December 1999. Here the group size is defined as the
number of authors on a patent. Note that this dataset does not aggregate patent informa-
tion by MSA. We also extract the patent scaling data (number of patents by MSA) from
Bettencourt et al. [14] Fig. 1 using the GetData Graph Digitizer software.

We use the average group size found in the NBER database as the input of group size
(n + 1) in our model. We also use the best fitting global parameters found in the crime
data set (s = 2.8 × 106, α = 0.93) when fitting to the patent dataset. The comparison of
our theory with the empirical patent data is shown in Fig. S8. Our model predicts similar
superlinear scaling behavior shown in the data, suggesting that our model can be generalized
to urban outputs beyond crime.

10 Code and data availability

Code used in parameter fitting and generating the scaling laws fit figures, as well as the data
input needed, can be accessed from the repository: https://github.com/vc-yang/urban_
productivity_scaling_laws.
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Figure S8: The fit of the model to patent scaling data in year 2000, using the best fitting α and
s parameters found by fitting to crime scaling and co-offending group sizes in the NIBRS dataset.
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