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Abstract—Sickle cell disease (SCD) is a red blood cell disorder
complicated by lifelong issues with pain. Management of SCD
related pain is particularly challenging due to its subjective
nature. Hence, the development of an objective automatic pain
assessment method is critical to pain management in SCD. In this
work, we developed a continuous pain assessment model using
physiological and body movement sensor signals collected from a
wearable wrist-worn device. Specifically, we implemented ensem-
ble feature selection methods to select robust and stable features
extracted from wearable data for better understanding of pain.
Our experiments showed that the stability of feature selection
methods could be substantially increased by using the ensemble
approach. Since different ensemble feature selection methods
prefer varying feature subsets for pain estimation, we further
utilized stacked generalization to maximize the information usage
contained in the selected features from different methods. Using
this approach, our best performing model obtained the root-
mean-square error of 1.526 and the Pearson correlation of 0.618
for continuous pain assessment. This indicates that subjective
pain scores can be estimated using objective wearable sensor
data with high precision.

Index Terms—pain assessment, ensemble feature selection,
stacked generalization, machine learning

I. INTRODUCTION

Sickle cell disease (SCD) is an inherited red blood cell dis-

order that can cause a multitude of complications throughout

a patient's life. Pain is the most common complication and a

significant cause of morbidity. Although pain experienced by

SCD patients may become chronic, acute unpredictable vaso-

occlusive pain crises lead to frequent visits to the emergency

department or day hospital for management [1]. Therefore, an

improved understanding of pain, as well as an effective pain

management approach is critical. Pain intensity assessment is

essential for effective pain management decisions concerning

intervention. However, pain is a highly subjective experience,

and its assessment is often difficult and relies on self-reports.

In clinical practice, medical providers often also consider

objective indicators, such as vital signs and non-verbal cues

to improve their assessment of pain and create a balance

between pain tolerance and medication dosage. Therefore,

the development of an objective automatic pain estimation

method could lead to improvements in pain assessment and

management in SCD.

In recent years, there has been growing interest in devel-

oping objective pain assessment techniques based on facial

expressions [2]–[4], body movement [5], [6], physiological

signals [7]–[9], as well as the fusion of the above data

[10], [11]. With the increasing availability of wearable smart

devices, it is possible to implement a non-invasive system

for health monitoring. Body movement and physiological

signals can be easily recorded by wearable devices in real

time, which can then be used for automatic pain assessment

and improved pain management. In this work, we adopted a

wearable wristband (Microsoft Band 2) to be worn by SCD

patients in the day hospital settings at Duke University Medical

Center as well as University of Pittsburgh Medical Center to

record multiple physiological and body movement signals for

pain estimation.

The typical steps of the data mining approach for wearable

sensors are preprocessing, feature extraction, feature selection

and modeling (i.e. learning from data and features to perform

tasks such as detection, prediction and decision making) [12].

While numerous features can be extracted from a wearable

signal, increasing the number of features does not necessarily

increase the model performance since features may be re-

dundant or not indicative of the target variable. Thus, feature

selection is used to reduce data dimensionality and eliminate

irrelevant and redundant features before machine learning

modeling. When applying feature selection in the fields of

bioinformatics and biomedicine, both the model performance

and the robustness of selected features are equally important.

Stable feature selection methods would allow domain experts

to have more confidence in the selected features for subsequent

analysis. To better understand pain, we implemented four

ensemble feature selection methods to select the most robust

and stable feature in pain estimation. The ensemble feature

selection help to provide knowledge on the pain phenomenon

and also yield a more compact and generalizable model.

All ensemble feature selection methods used in this work are978-1-7281-1867-3/19/$31.00 ©2019 IEEE
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embedded methods since they have the advantage of perform-

ing feature selection and prediction simultaneously, greatly

reducing the computational complexity in an ensemble setting.

Assuming that each embedded feature selection algorithm

will choose the feature subset that is optimal for itself, the

pain estimation performance of varying feature subsets chosen

by different feature selection methods were evaluated using

corresponding regression models. For example, the feature

subset chosen by ensemble Random Forest was evaluated us-

ing Random Forest regression. The feature subsets selected by

different feature selection algorithms are usually inconsistent.

Therefore, we employed the stacked generalization, a method

that combines multiple learning models by a meta-learner

[13]. In this way, we can maximize the usage of information

contained in all selected features by different algorithms.

In the present study, we collected physiological and body

movement wearable sensor signals from 29 SCD patients

during their visits to the day hospital for acute pain. After

applying preprocessing and feature extraction to the raw sensor

signals, we implemented four ensemble feature selection al-

gorithms to identify the key features of automatic pain assess-

ment. With distinct feature sets selected by different feature

selection methods, the corresponding regression models were

then used to predict pain on a continuous scale. Furthermore,

stacked generalization was applied to combine the four in-

dividual learners and optimize information utilization. Our

experiments on feature stability show that the robustness of

feature selection methods can be significantly improved by

extending them with the ensemble procedure. Additionally, the

performance of the stacked model indicated the feasibility of

using wearable devices to estimate continuous pain intensity.

II. MATERIALS AND METHODS

A. Data Collection

Patients with SCD presenting for acute pain crisis to the

day hospital were approached to participate in the study.

Of all patients involved in the study, 20 patients were from

Duke University Medical Center and nine patients were from

University of Pittsburgh Medical Center. The study included

only a one-time visit of each patient. Patients were provided

with a Microsoft Band 2 wristband to record physiological

and activity measures. Patients were monitored while in the

day hospital until the time of discharge with an average

duration of 3.61 hours (SD: +/- 1.96 hours). The Microsoft

Band 2 has multiple sensors including heart rate monitor,

galvanic skin response sensor, skin temperature sensor, three-

axis accelerometer and three-axis gyroscope. Overall, we

collected ten wearable sensor signals, as shown in Table

I, to analyze pain. These ten signals were chosen partially

based on signals readily available on the Microsoft Band as

well as prior postulated relationships with pain. Patients in

more pain typically experience a higher heart rate and move

less frequently in the setting of pain [14], [15]. Heart rate

variability (HRV) and galvanic skin response (GSR) have

been adapted for pain intensity recognition [7], [16], [17].

Furthermore, previous work by our group has supported the

use of temperature as a significant predictor of pain for SCD

patients [18].

TABLE I
PHYSIOLOGIC AND BODY MOVEMENT MEASUREMENTS FROM MICROSOFT

BAND 2

Sensor Measurements Description
Heart Rate(HR) The number of heartbeats per minute.

RR Interval (RR)

The time interval between successive

heartbeats; the measures of specific

changes in RR intervals is called

heart rate variability (HRV).

Galvanic Skin Response (GSR)

The measure of continuous variation in

the electrical characteristics of the skin,

also known as skin conductance response

(SCR) or electrodermal activity (EDA).

Skin Temperature (SkinTemp) The temperature of the surface of the skin.

Acceleration in X direction (AccX)
The rate of change of velocity of an object

with respect to time in three axis.
Acceleration in Y direction (AccY)

Acceleration in Z direction (AccZ)

Angular velocity in X direction

(GyroX)a The velocity of an object

rotates or revolves in three axis.Angular velocity in Y direction

(GyroY)

Angular velocity in Z direction

(GyroZ)

Steps (Steps) The number of accumulated steps per day.
a GyroX not correctly captured for some patients and was excluded in the dataset.

Patients were also provided with the mobile-based Technol-

ogy Resources to Understand Pain (TRU-Pain) app to record

pain scores and other symptoms in conjunction with nursing-

documented pain scores. Our group has previously reported

the usefulness and validity of the mobile health (mHealth)

app for patients with SCD [19], [20]. It allowed patients to

use a slider bar to rate their pain from 0 (none) to 10 (worst)

using numerical rating scale (NRS), thus the pain scores are

continuous. Nursing pain scores (in NRS) were also used in

the study to enrich the data set and they were assumed to be

similar to patients-reported pain scores in the app. Pain scores

were reported irregularly with an average of 5.14 (SD: +/-

2.15) records per patients.

B. Preprocessing

The raw wearable sensor signals were retrieved typically

every one second in experiments at Duke University Medical

Center and every ten seconds at University of Pittsburgh

Medical Center. For consistency, the high frequency sensor

data (60 data points per minute) were downsampled to the

same frequency of the low frequency data (six data points per

minute).

By assuming that the pain scores of SCD patients usually

do not change rapidly within a short time period, each pain

score was matched with the five-minute-long wearable data

segment centered on the recording minute of the pain score
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to ensure that there is sufficient data to extract features. For

example, a pain score was reported at 12:05 p.m., then the pain

score was matched with the wearable data segment recorded

from 12:03 p.m. to 12:07 p.m. (both endpoints were included).

Additionally, pain scores without exact time matching were

also matched to the wearable sensor data when the timestamp

difference between the two data sources, pain recording time

and central wearable data segment time, was less than ten

minutes. For example, a pain score was reported at 11:45 a.m.,

and the wearable sensors started recording at 11:52 a.m. Then

the pain score was matched with the wearable data segment

recorded from 11:52 a.m. to 11:56 a.m. (both endpoints were

included). Using this approach, we obtained 149 matched

records containing a five-minute-long wearable data segment

and a pain score from mobile apps or nurse documents logged

during the same (or approximately the same) time period.

C. Feature Extraction

To transform raw sensor signals listed in Table I to a

more suitable data representation format, we applied feature

extraction on all ten raw signals. Nine features were extracted

for each of the ten signals. Table II provides detailed overviews

of all features. The feature extraction yielded up to a total

of 90 (10×9) features. These extracted features represented
the properties of the original raw signals while reducing the

volume of data. To reduce the redundant information, all

features that correlated positively or negatively with other

features at a level of at least 0.95 were eliminated, and 78

features were left in the feature set.

TABLE II
LIST OF FEATURES EXTRACTED FROM WEARABLE SENSOR SIGNALS.

Feature Description
Mean Average value of the signal.

Standard Deviation Amount of variation of the signal.

Mean of Derivative Average rate of change of the signal.

Root Mean Square (RMS)
Square root of the mean of the squares

of a set of values.

Peak to Peak
Difference between the maximum and

minimum peak.

Peak to RMS
The ratio of the largest absolute value

to the RMS value.

Number of Peaks Number of local maximums (peaks).

Shannon Entropy

For a given signal S, an orthonormal basis

and the corresponding coefficients {si} can
be obtained by applying Wavelet Packet

Decomposition. Then the Shannon Entropy

is this condition is defined as [21]:

E(S) = −∑
i s

2
i log(s

2
i )

Log Energy Entropy

Similar to the Shannon Entropy, the Log

Energy Entropy is then defined as:

E(S) =
∑

i log(s
2
i )

D. Feature Selection Techniques

There are three types of feature selection techniques: fil-

ters, wrappers and the embedded methods [22]. Filters select

features regardless of the model, therefore these methods are

particularly effective in computation time and robust to overfit-

ting. However, filters often consider the features independently,

and do not guarantee a feature set with good performance.

Wrappers select the subset of features that yields the best

possible performance of a given learning algorithm. However,

wrapper methods usually need significant computation time

which is not feasible in an ensemble feature selection setting.

Embedded methods perform feature selection in the process of

training and combine the advantages of both previous methods.

Therefore, we adopted four embedded feature selection

methods: Lasso Regression (LASSO), Elastic Net (ENet),

Random Forest (RF) and Support Vector Machine (SVM)

with recursive feature elimination (SVM-RFE). LASSO is a

regression model with an L1 penalty, and ENet is a regression

model that linearly combines L1 and L2 penalties. Regularized

regression with L1 penalty is able to shrink some of the coef-

ficients to zero, thus the feature is removed from the model. In

a RF [23], feature importance of each feature is measured by

the mean decrease in node impurity over all trees. Then top

features can be selected based on feature importances.SVM-

RFE [24] starts with all features and removes k features at

a time. At each step, the features are ranked according to

their weights in the weight vector of a linear SVM, then the

k features with the lowest weights are eliminated. The above

procedure is repeated until the desired number of features is

reached.

E. Ensemble Feature Selection

Given the relatively small sample size in our study, a feature

selection method needs to be applied in order to remove irrel-

evant or redundant features, as well as to prevent overfitting.

More importantly, feature selection helps to identify a subset

of relevant features which can be used for the knowledge

discovery. However, with small sample size, feature selection

methods tend to produce inconsistent feature subsets after

each run. To increase the stability of the selected features,

we applied the ensemble feature selection methods studied

by many researchers [25]–[27]. There are two steps in the

ensemble feature selection: (1) creating a set of different

feature selectors, each with its own outputs (feature rankings

or selected feature subset), and (2) aggregating the results of

single features selectors to an ensemble output.

Various methods have been exploited for the generation

of different feature selectors, which can mainly be divided

into two categorizes: data perturbation and function pertur-

bation. Data perturbation runs a feature selection algorithm

with different sample subsets, such as bootstrapping [27] and

random subsets [28]. Function perturbation involves applying

different feature selectors on the same dataset [29], [30]. In this

paper, we made use of the data perturbation, more specifically,

the bootstrapping method. It is a well-established statistical

method which can control and check the stability of results
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[31]. Given the training data, 100 bootstrap samples were

drawn (with replacement) from the training data. Then, a

feature selector was applied to each of these bootstrap samples,

and 100 diverse sets of features were obtained.

To aggregate the results generated by different feature

selectors, linear combination is a simple and effective approach

[26]–[28]. For a feature selector that produces a feature rank-

ing (e.g. RF, SVM-RFE), the aggregated ranking is obtained

by summing the ranks over all bootstrap samples. For a

feature selector that produces a feature subset (e.g. LASSO,

ElasticNet), the aggregated feature importance of a feature

is then the number of occurrences of the feature over all

bootstrap samples. Given a predefined number of features k,

the ensemble feature selection algorithm outputs the top k

features based on the aggregated feature importance ranking.

Briefly, given the training data and the predefined number

of features k, our ensemble feature selection methods linearly

combined the feature selection results performed on 100

bootstrapped samples of the training data, and produced the

top k features.

A feature selection algorithm is considered stable if the

selected feature sets are consistent from multiple runs of

the algorithm with variants (such as bootstrapped samples or

random subsets of samples) of the dataset. To assess the stabil-

ity of feature selection techniques, we adopted the Tanimoto

distance [25], also known as Jaccard Index. It measures the

amount of overlap between two sets (s and s′) of arbitrary
cardinality, and is defined as:

S(s, s′) = 1− |s|+ |s′| − 2|s ∩ s′|
|s|+ |s′| − |s ∩ s′|

The Tanimoto distance takes values in [0, 1], where 0 means

there is no overlap between the two sets, and 1 means the two

sets are identical.

F. Regression Methods and Stacked Generalization

While the stability of the feature selection algorithm is

important, we also aimed to find the best performing model

for continuous pain estimation. Thus, the feature selection

needed to be combined with a regression model to predict

the pain score on a continuous scale. An important advantage

of the four chosen embedded feature selection algorithms is

that they integrate model construction with feature selection.

Therefore, the corresponding regression models of the four

embedded feature selection methods were used to evaluate the

pain estimation performance by assuming that the embedded

feature selection algorithm will choose the optimal feature sub-

set for the algorithm itself. More specifically, Lasso regression,

Elastic Net, Random Forest and Support Vector Machine were

used to create regression models based on the chosen feature

sets by ensemble LASSO, ensemble ENet, ensemble RF and

ensemble SVM-RFE, respectively.

Lasso regression and Elastic Net are both regularized linear

regressions modeling the relationship between the target vari-

able and explanatory variables using linear functions. Lasso

regression uses only an L1 penalty while Elastic Net uses both

L1 and L2 penalties. Random Forest [23] constructs a large

number of decision trees at training time and outputs the mean

predictions of individual trees. When applying Support Vector

Machine in regression [32], the goal is to find a function that

deviates from the training output by a value no greater than a

certain distance for each training point, and at the same time,

is as flat as possible.

Each of the four ensemble feature selection algorithms

has its own chosen feature set. To maximize the usage of

information contained in the chosen features from different

methods, we further adopted the stacked generalization to

integrate multiple models. As mentioned above, stacked gen-

eralization (also known as stacking) refers to a method that

combines multiple learning models with a meta-learner [13].

The base level models are trained on the training set, then

the meta-learner learns from the outputs of base level models

to increase the learning power beyond the capacity of each

individual base level models. The meta-learner is a linear

regression model with ridge regularization, while the base

level learners are the four ensemble feature selectors (ensemble

LASSO, ensemble ENet, ensemble RF, ensemble SVM-RFE)

combined with the corresponding regression models. Each

base level learner contains an ensemble feature selector and

a corresponding regression model. To avoid overfitting, the

stacked model in this study was trained and evaluated via a

nested 10-fold cross-validation. The procedures of the stacking

process can be described as follows (as illustrated in Fig. 1):

Fig. 1. Illustration of the train and evaluation of the stacked generalization
model.

1) Apply the outer 10-fold cross-validation on the entire

dataset.

2) At each round of the outer cross-validation, nine folds

was the outer training data and a single fold was the

outer test data, then the inner 10-fold cross-validation

was applied on the outer training data.

3) At each round of the inner cross-validation, each of the

four base level model was trained on the inner nine

folds and made predictions on the single fold. Then

these out-of-folds predictions were combined as the four
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new features (LASSO predictions, ENet predictions, RF

predictions and SVM predictions) for the meta-learner

training. Meanwhile, these features were also generated

for the outer test set by retraining base level models on

the entire outer training data.

4) After the meta-learner was trained on the outer training

data, it was evaluated on the outer test set. The final re-

ported performance was averaged among the ten rounds

of the outer cross-validation.

III. RESULTS

In this section, two sets of experiments were conducted.

The first set of experiments tested the improvement in sta-

bility of ensemble feature selection methods by comparing

to their single (i.e. non-ensembled) versions. The second set

of experiments examined the performance of continuous pain

assessment of four base level learners (ensemble feature selec-

tion combined with corresponding regression) and the stacked

model. Furthermore, the feature importance was analyzed

based on the second set of experiments.

A. Stability Results

To estimate the stability of a feature selection algorithm, we

used the 10-fold cross-validation. A feature selection algorithm

outputted a chosen feature set at each training fold, and ten

chosen feature sets were produced in the end. The Tanimoto

distance was then computed for each pair of the chosen

feature sets. The final stability score of the feature selection

algorithm was the average Tanimoto distance over all pairs. A

stability score of one means that the ten chosen feature sets are

identical. On the other hand, a stability score of zero means

that there is no overlap among the ten chosen feature sets.

Fig. 2 displays the stability of four feature selection algorithms

across different numbers of selected features (a parameter

supplied to the ensemble feature selection methods). Each

ensemble feature selection method was compared to its single

(i.e. non-ensembled) version. In general, it can be observed

from Fig. 2 that the ensemble approach, as described in Section

II.E, improved the stability as compared to the baseline in all

four methods.

Additionally, we calculated the averaged stability (Tanimoto

distance) of four feature selection methods over different sizes

(as shown in Fig. 2) of chosen feature subsets, ranging from 5

to 78 features. The results are listed in Table III. From Table

III, we can observe that the two regularized regression methods

(LASSO and ENet) are more stable than RF and SVM-RFE

in both single and ensemble versions. On the other hand, the

ensemble approach produced more improvement in stability of

RF and SVM-RFE than the regularized regression methods.

This indicates that less stable algorithms may benefit more

Fig. 2. Stability (Tanimoto distance) of four ensemble feature selection methods and their single versions over different sizes of chosen feature subsets.
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from the ensemble approach.

TABLE III
AVERAGED STABILITY (TANIMOTO DISTANCE) OF FOUR ENSEMBLE
FEATURE SELECTION METHODS AND THEIR SINGLE VERSIONS OVER

DIFFERENT SIZES OF CHOSEN FEATURE SUBSETS

LASSO ENet RF SVM-RFE Average
Single 0.690 0.771 0.623 0.611 0.674

Ensemble 0.772 0.812 0.748 0.700 0.758

Improvement 0.082 0.041 0.125 0.089 0.084

B. Pain Assessment Results

The pain assessment performance of the four base level

models was evaluated by 10-fold cross-validation. A base level

model consists of an ensemble feature selection method and

the corresponding regression model. At each round of the

10-fold cross-validation, an ensemble feature selection was

applied to select a stable feature subset, then the corresponding

regression model was built on the selected feature subset. The

stacked model combined the four base level models, and was

evaluated using the proposed nested 10-fold cross-validation

as described in Section II.F. Root Mean Square Error (RMSE)

was used as the evaluation metric. RMSE is the square root of

the average squared differences between predictions and actual

observations. The lower the RMSE, the better the performance

of the regression model. Fig. 3 shows the RMSE of the four

base level models (LASSO, ENet, RF, SVM-RFE), as well as

the stacked model with different numbers of chosen features.

The performance of the stacked model is always better than

any of the base level models. From Fig. 3, we can also

observe that the performances of all four base level models

and the stacked model are improved by eliminating irrelevant

or redundant features from the full feature sets of 78 features,

until the optimal sizes of the feature subsets are reached.

Fig. 3. RMSE of four base level models and the stacked model over varying
numbers of chosen features.

The standard deviation of 149 pain scores in the dataset is

1.994, which is equal to the RMSE of a null model that uses

mean pain score as a constant prediction. All the regression

models in Fig. 3 attained RMSEs lower than this mean-

only null model. The best performance of the stacked model

was obtained when the selected number of features for each

base level models was equal to 15 with the RMSE as 1.526.

A Pearson correlation coefficient (linear correlation between

predicted values and the actual values) of 0.618 was computed

for the best performing model. The strong correlation [33]

indicates the feasibility of using wearable sensor signals to

predict subjective pain scores with high precision.

C. Feature Importance Analysis

To better understand pain, we further investigated the feature

importance in pain estimation. To obtain the feature impor-

tance over all four ensemble feature selection methods, we

considered a feature as more important if it was selected by

more methods. Fig. 4 shows the counts of features selected

by the four methods when the predefined number of features

was 15. Clearly, different feature selectors preferred different

features. In choosing the top 15 of each feature selector, a

total of 29 features were selected by all four selectors. These

29 features were used to build the stacked model, which

outperformed each single base level model. The stacked model

complexity was greatly reduced compared to the full feature

sets with 78 features.

According to the source sensor signals, features listed in

Fig. 4 can be categorized into six types: (1) heart related fea-

tures (extracted from HR and RR) (2) galvanic skin response

related features (extracted from GSR) (3) skin temperature

related features (extracted from SkinTemp) (4) steps related

features (extracted from Steps) (5) acceleration related features

(extracted from AccX, AccY, AccZ) (6) angular velocity

related features (extracted from GyroY, GyroZ). The former

three types are physiological measurements while the latter

three types are body movement measurements. The type of

each feature is indicated by colors in Fig. 4. It can be observed

that physiological measurements and body movement mea-

surements are both important in pain assessment. Among the

physiological signals, GSR is the most important one followed

by HR and RR, and skin temperature is the least important.

In heart related features, most of them are related to the vari-

ability in heart rate, such as the mean of the derivative of HR

(HR mean dev) and the standard deviation of RR (RR std).

These results are consistent with many other studies reporting

that GSR and heart rate variability (HRV) are significant in

pain estimation [17], [34]. For body movement measurements,

acceleration and steps are both significant predictors for pain,

while angular velocity seems less important but still have made

contribution to the pain estimation model. Many features show

that body movement is negatively correlated with pain scores.

For example, the correlation between the mean number of

steps (Steps mean) and pain is -0.223, and the correlation

between the root mean square of AccX (AccX rms) and pain

is -0.258. This may reflect the observation that patients in more

pain typically move less frequently [15].
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Fig. 4. Feature importance over four ensemble feature selection methods.

D. Conclusion

In this work, we have presented the use of ensemble

approach in feature selection. We showed that ensemble fea-

ture selection methods considerably increased the robustness

and stability of features selected from wearable sensor data.

Furthermore, we evaluated the continuous pain estimation

performance using each of the four base level learners (ensem-

ble LASSO, ensemble ENet, ensemble RF, ensemble SVM-

RFE combined with the corresponding regression models),

as well as the stacked model that integrated the four base

level learners. The best performance was obtained using the

stacked model with RMSE of 1.526 and Pearson correlation

of 0.618. We also demonstrated that physiological and body

movement measurements were both important in automatic

pain estimation using wearable sensors.
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