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When pull turns to shove: A continuous-time model for opinion dynamics
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Accurate modeling of opinion dynamics has the potential to help us understand polarization and what
makes effective political discourse possible or impossible. Here, we use physics-based methods to model the
evolution of political opinions within a continuously distributed population. We utilize a network-free system of
determining political influence and a local-attraction, distal-repulsion dynamic for reaction to perceived content.
Our approach allows for the incorporation of intergroup bias such that messages from trusted in-group sources
enjoy greater leeway than out-group ones. We are able to extrapolate these nonlinear microscopic dynamics
to macroscopic population distributions by using probabilistic functions representing biased environments.
The framework we put forward can reproduce real-world political distributions and experimentally observed
dynamics and is amenable to further refinement as more data becomes available.
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I. INTRODUCTION

The field of opinion dynamics seeks to understand the
evolution of ideas in populations, a complex interdisciplinary
endeavor which has attracted a wide variety of approaches
from different disciplines. After early mathematical ground-
work [1], the growth of network science has led to a boom
in models which utilize neighbor-based update rules to ex-
amine long-term outcomes for opinion distributions, such
as polarization and consensus, e.g., Refs. [2–19]. Other re-
searchers have advanced “sociophysics” approaches, which
apply techniques from statistical physics to analyze analogous
social systems [20–30]. Complementary to these modeling
approaches, theoretical and empirical work from economics
and social science has examined the political bias of media
entities [31,32] and their influence on a population [33–37].
All these approaches contribute valuable insight toward an un-
derstanding of this complex topic, but the disparities between
their perspectives make direct cohesion a challenge.

Our model takes a different approach, which we believe
achieves the key benefits of previous models while expanding
flexibility and retaining the ability to incorporate real-world
data as it becomes available. One key structural choice we
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make is to modularize the process of opinion change by break-
ing it into two parts: perceptions and reactions.

In our model, individuals perceive a probabilistic mix of
politicized experiences which depends on their ideology and
party. This might be thought of as the continuum limit of a net-
work approach, where influences are so numerous and varied
that interactions are best characterized by a probability distri-
bution rather than explicit neighboring agents. This approach
also allows us to encapsulate broader societal influences such
as politicized media environments, since individuals’ percep-
tual mix may be constantly changing to reflect their changing
world view.

We model individuals’ reactions to these perceptions by
having their ideology evolve in continuous time. This is gov-
erned by ordinary and stochastic differential equations which
depend on their current position and their perceptual distribu-
tion. Together, these perception and reaction modules capture
a feedback loop between individuals’ current beliefs, the bi-
ased “slice” of the political world they perceive, and how they
update those beliefs as a result.

A. Political spectrum

Like many prior approaches (e.g.,
Refs. [2,3,10,13,31,34,35,38–40]), we consider a single,
finite ideology axis. This appears to be supported for the U.S.
political environment dominated by two parties: Empirical
results show that the liberal-conservative dimension captures
the great majority of modern U.S. legislative behavior [41].
However, it’s unclear how appropriate this assumption is for
other countries with differing political systems: Multiple di-
mensions may be warranted (see Possible Extensions section).
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FIG. 1. (a) Empirical ideological distributions by U.S. political
party. Average ideological position score from 1 (strongly liberal) to
7 (strongly conservative) on social, economic, and military issues for
1256 U.S. Twitter users. Data from Ref. [38]. (b) Model predictions.
Steady state for our simulated population of 70 900 Democrats and
54 700 Republicans, with party perception curves shown in the inset.
See Results section for details.

Figure 1(a) shows a one-dimensional projection of polit-
ical ideology for the U.S. population based on one study
[38]; though the precise methods of projecting the political
landscape onto one axis differ between sources, other recent
reports like that of Pew Research [40] show good qualitative
agreement. We will use the term belief score b to refer to an
individual’s ideological position between −1 (extreme liberal)
and +1 (extreme conservative). We abstract all politically-
opinionated information an individual is exposed to (hereafter
termed percepts p) onto this same axis, so that a percept of
p = +0.5 is in support of belief score +0.5 (conservative),
a percept with value p = 0 argues for a neutral stance, and
so on. Due to the imprecise nature of any measurement on
this scale (it’s a projection of a highly abstract space that can
be quantified in different ways), qualitative results should be
robust to small changes in these values.

B. Opinion change

Classic “bounded-confidence” models (e.g., Refs. [2,3]),
which allow for individuals to interact only with others who
are relatively like-minded, have been used to capture the
effect of homophily on interaction. But political issues are
contentious and are often brought up between those who
disagree and are easily suffused with negative emotional af-
fect rather than agreement or indifference. Repulsion from
disliked positions seems to be an important determinant in
swing voters: A recent Pew survey [42] found that U.S.
independents supporting one of the political parties did so
mostly due to negative perceptions of the other party. So like
some other extensions to bounded-confidence models (e.g.,
Refs. [10,13]), we supplement local-attraction behavior with
distal repulsion: Individuals who are exposed to ideas which

FIG. 2. Example reaction function. Here we show a cubic reac-
tion function, where an individual’s reaction depends on dissonance
p − b. Vertical scale has arbitrary units: The magnitude of this move-
ment depends on time constant τ and current belief score b. For this
image a repulsion distance of d = 0.8 was chosen.

are too different from their own will not be attracted but rather
be repelled from the espoused position of the source. There is
experimental evidence that this can be a very potent and real
source of ideological movement: In recent work from Bail
et al. [38], it was found that exposure to 24 tweets per day
from prominent members of the opposing party can have a
significant repulsive effect over the course of a month, even
among all other political inputs received by the participants
(self-identified politically active Twitter users).

II. METHODS

The first key component of our model is the reaction
function. This is a continuous function which relates an indi-
vidual’s shift in ideological belief to the difference between a
perceived political opinion (the percept p) and the individual’s
own belief b; we will refer to this difference p − b as the
dissonance. A repulsion effect will be modeled through the
existence of a repulsion distance d such that percepts less
dissonant than d will be attractive and percepts more dissonant
than d will be repulsive. This parameter d can be allowed
to vary depending on the context of the message, which will
allow us to model the important effect of intergroup bias: For
example, a somewhat challenging position can be repulsive
when it comes from a disliked source but attractive when
introduced by a member of one’s in-group (see “Adding In-
tergroup Bias” below).

One simple form for a reaction function that satisfies the
above conditions employs a cubic dependence on dissonance:

R(p − b; d ) = (p − b)

[
1 − (p − b)2

d2

]
, (1)

shown visually in Fig. 2. We utilize this cubic reaction func-
tion for all our models in this paper, but we expect similar
results with any qualitatively similar function used in its place
(ideally one inferred from experimental data).

To organically constrain belief dynamics to a bounded
domain (in our case, [−1, 1]), we temper the above reaction
function with a multiplicative factor (1 − b2). This has the
effect of gradually damping motion near the extremes—thus
we interpret the ±1 boundaries of our finite ideology scale
to be asymptotic extremes that are only approachable, not
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attainable. We also scale the dynamics by a time constant
τ which controls the speed of belief change. Then, for an
individual j with belief score b j and repulsion distance d ,
exposed to percept p (which may depend on many factors),
we arrive at the following differential equation for ideological
dynamics:

τ
db j

dt
= (

1 − b2
j

){
(p − b j )

[
1 − (p − b j )2

d2

]}
. (2)

A. Perceptual diets

An important question remains: Which individuals are ex-
posed to which messages? The vast majority of work on opin-
ion dynamics has been in a network context, wherein agents
update their opinions according to a rule incorporating the po-
sitions of some other agent(s) (e.g., Refs. [1–7,9,10,13,15,21–
23,30]). Our approach sidesteps the need for constructing ex-
plicit influence networks, which are difficult to capture due to
the many modalities of human interaction. Instead we suppose
that an individual’s party affiliation and current political posi-
tion determine their perceived “slice” of the political world—a
probability distribution of political experiences, ρ(p) [43].
This continuum approach allows us to personalize political
environments to account for “media bubbles” and other biased
environments even without a network and is easily scaled to
large populations.

B. Toy models

1. Simplest model

For the simplest concrete implementation of our frame-
work, we might suppose a single-party population is initially
distributed across the belief spectrum but is otherwise homo-
geneous and that every individual perceives the same delta
distribution of political content, the constant percept p = C.
Then upon choosing a repulsion distance d we can exactly de-
termine long-term behavior of the entire group—there will be
a single flow function that affects the whole belief spectrum:

τ
db j

dt
= (

1 − b2
j

){
(C − b j )

[
1 − (C − b j )2

d2

]}
. (3)

This ordinary differential equation (ODE) has fixed points
at b j = C, b j = C ± d , and b j = ±1 (due to the imposed
domain bounds). The fixed point at bj = C is stable, and
stability of the other points alternates.

For example, if we use the cubic reaction function from
Fig. 2 above and set d = 1, C = 0.25, then that party’s popu-
lation experiences differential movement as shown in Fig. 3.
Fixed points exist at {−1,−0.75, 0.25, 1, 1.25} (though be-
liefs are constrained to the [−1, 1] domain, so the theoretical
fixed point at 1.25 is not meaningful). Given time, all ob-
servers between −0.75 and 1 would congregate at 0.25, and all
observers starting left of −0.75 would converge to −1. This
small segment of the population—the members that are liberal
enough to be repelled by the “party line”—might be likely to
switch parties in favor of one with more comfortable percepts,
though we do not include such party-switching dynamics in
this initial model.

FIG. 3. Flow diagram. Example of differential movement for a
population uniformly exposed to a percept with score +0.25 as-
suming repulsion distance 1 [see Eq. (3)]. Vertical axis scaling is
arbitrary.

2. Adding intergroup bias

We would also like our modeling framework to accom-
modate the tendency for individuals to be more receptive to
information from those whom they perceive as allies, i.e., part
of their “in-group” [44]. For the simplest case, we modify
our previous model by adding an “out-group” with its own
distinct constant “party line” percept po. Now percepts have
a party identity attached to them, and we allow individuals to
consume a mixed diet of in-group and out-group information,
at belief scores of pi and po, respectively. We set repulsion
distances di and do for in-group (e.g., U.S. Republican) and
out-group (e.g., U.S. Democrat) messengers, with do � di. We
can set a fixed fraction f for in-party content or allow for a
belief-dependent skew f (b) such that, e.g., liberal Republi-
cans view a higher fraction of Democratic content than their
conservative party mates. The average flow function db/dt is
then a simple weighted average of the flow functions in Eq. (2)
due to each source:

τ
db

dt
= (1 − b2)[ f Ri + (1 − f )Ro] , (4)

where in general f = f (b), Ri = R(pi − b; di ), and Ro =
R(po − b; do).

To understand the flow in this case, it is informative to
consider the purely in-group and purely out-group situations
( f = 1 or 0, respectively), because all fractional perceptual
“diets” are interpolated between them (see Fig. 4). We note
that exposure to some out-group content can in some cases
increase polarization for a small extreme group—for example,
in Fig. 4, individuals starting with b > 0.75 will on average
move rightward when exposed to percepts from a 70%/30%
combination of in-group and out-group sources, respectively
(solid curve), whereas those same individuals would move
leftward if presented with in-group information alone (dotted
curve). This simple example shows how exposure to—and re-
jection of—opposing content can have a polarizing influence
on a population.

Note that we assume that this “tribal” bias only affects the
reaction to content, not its subjectively perceived ideological
score p. However, the inclusion of such an additional bias
effect is reasonable and may be handled with a slight increase
to model complexity (see Possible Extensions section).
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FIG. 4. Flow with different messengers. The flow functions for
in-group (dotted) and out-group (dashed) messages of pi = +0.25
and po = −0.25 with repulsion distances of 1 and 0.75, respectively.
The solid curve is the net flow if individuals are exposed to 70% in-
group and 30% out-group percepts. Vertical axis scaling is arbitrary.

3. Adding personalized perceptions

Putting aside the in-group/out-group balance for a mo-
ment, we might expand our simplest model in a different way:
by linking individuals’ perceptions to their current beliefs via
a “perception curve” p(b), which indicates what content they
see as a function of position. This reflects the differing “slices”
of the political world that individuals see as a result of the
differing environments and personal biases that accompany
their ideologies.

In our simplest model, where p = C, the perception curve
is a horizontal line in b vs p space; individuals at all b values
perceive the same thing. In a hypothetical “perfectly targeted”
world, the perception curve would be the 45◦ line p = b, and
nobody would change belief because each person would per-
ceive content perfectly in line with their current world view.

Luckily, we don’t need to privilege one such curve in
particular—a graphical analysis method lets us combine any
perception curve with the reaction function and read off a
(qualitative) flow for each segment of the population. To do
this, we plot the perception curve p(b) and overlay the 45◦
line for reference—any time the perception curve intersects it,
the individuals at that belief score are stationary, since their
perceptions are in agreement with their current beliefs. If the
perception curve is slightly above the 45◦ line, individuals
with those beliefs are perceiving something slightly more
conservative than their own views, and move right. Similarly,
people move left wherever the perception curve is slightly
below the 45◦ line.

We also overlay the repulsion boundaries at distance d
above and below that p = b line. If the perception curve exits
the resulting “trust band” over some b interval, that segment
of the population is repelled and moves the opposite direction
from what would be expected based on small deviations from
the 45◦ line.

It is then straightforward to determine the qualitative be-
havior of the whole population given any perception curve
p(b) by visually examining intersections of the perception
curve with the 45◦ lines, as in Fig. 5 (left panels). With a
closed form expression for p(b), we can use Eq. (2) to obtain
an exact flow function (black curves on right panels of Fig. 5)

FIG. 5. Two-take world. Graphical analysis of step-function per-
ception curves. Left panels: perception curves color coded for the
movement induced, along with dashed p = b line and repulsion
boundaries. Right panels: Projection of that flow-velocity color onto
the belief axis, compared with the exact population flow calculated
from Eq. (2) (black curve). Top row: When perception curves lie
within the trust region, we see two attractors at the “party line” belief
values. Bottom row: With more extreme “party lines,” centrists are
repelled by either party position, creating a stable central attractor.

and confirm our qualitative analysis. If multiple parties are
present, this analysis is performed separately for each, and the
resulting reactions are combined as in Eq. (4).

The real benefit of this graphical approach is its generality;
one can draw any perception curve one would like and simply
read off the fixed points and stability. Whenever the perception
curve crosses the diagonal with slope less than one, that cross-
ing becomes a stable fixed point. Whenever it crosses with
a slope greater than one, the crossing becomes an unstable
fixed point instead. If the perception curve crosses a repulsion
boundary, shallow crossings create unstable points and steep
crossings create stable ones.

While the choice of perception curve entails a large de-
gree of modeling freedom, based on our graphical analysis
reasoning we know our model’s qualitative predictions aren’t
particularly sensitive to the choice. Ideally, real-world data
could (and should) be used to construct such a curve (e.g.,
by evaluating the partisan positions of news sources and other
political influences experienced by individuals across the po-
litical spectrum), though we leave this for future work (see
Future Work subsection below).

4. Adding heterogeneity

To move toward a more realistic scenario, we must allow
for heterogeneity of both environments and individuals. We
can introduce random variation in two distinct components
of the model: perceptions (so individuals are exposed to a
range of different inputs rather than a single determined value)
and the reaction function (so otherwise identical individuals
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FIG. 6. Simulated population distribution. The stable population
state induced by flow function Eq. (3) with added Gaussian noise
(τ = 1, dt = 0.001, σ = 0.25, N = 50 000). Population was initial-
ized to match Republicans from Bail [38]. Inset: Perception curve,
the constant C = 0.25. All variation is in reaction.

can react differently to the same percept). For the latter, we
add Gaussian noise to the reaction function R, which causes
the stable fixed points from our prior analysis to expand into
finite-width stable distributions; these may be estimated easily
and accurately by Euler-Maruyama numerical integration of
our now-stochastic differential equation (SDE). For example,
with the conditions in Fig. 6, the main body of the party
congregates around the primary attractor at 0.25, and a small
group is repelled to −1 [45].

If we wish to add variability to the percept instead of
the reaction, nonlinear effects become more important, since
p—now properly a probability distribution ρ(p)—must be
fed through reaction function R(p − b) before its effects are
determined. We suppose that percepts occur on a significantly
faster time scale than opinion change itself, so that the net
effect of the perceptual diet is a weighted average over all
possible percepts, which for smooth percept distributions be-
comes an integral of R(p − b) against ρ(p). Regardless of the
shape of perception distribution, we can still use our graphical
analysis technique to solve for net opinion drift, though the
repulsion boundaries may warp, as we show in Appendix A.

5. Full model

Taking all these effects together, the model has the follow-
ing structure:

R(p − b; d ) = (p − b)

[
1 − (p − b)2

d2

]
(5a)

vin =
∫ 1

−1
R(p − b; din ) ρin(p; b, σp)d p (5b)

vout =
∫ 1

−1
R(p − b; dout ) ρout(p; b, σp)d p (5c)

τ db = (1 − b2){[ f vin + (1 − f )vout]dt + σrdW } (5d)

with ρin and ρout as the perceptual distributions for in-group
and out-group content, respectively (with standard deviation
σp), and vin and vout the opinion drift due to those influences.
This framework allows examination of the long-term impact
of a probabilistic content-generating environment—which
differentiates based on party and ideology—on a population

which reacts to what they experience in a nonlinear manner
heavily influenced by identity.

III. RESULTS

The full model, with some reasonable parameter assump-
tions, exhibited equilibrium distributions which agree well
with real-world observations (see Fig. 1). To represent a “me-
dia bubble” effect, we scaled in-group fraction linearly and
symmetrically from 0.5 (for b = +1 Democrats and b = −1
Republicans) to 0.9 (for b = −1 Democrats and b = +1 Re-
publicans):

fD(b) = 0.7 + 0.2b, (6a)

fR(b) = 0.7 − 0.2b . (6b)

Equations (5a), (5b), (5c), and (5d) determined population
movement over time, simulated using Euler-Maruyama nu-
merical integration. Perceptual diets were beta distributions
bounded by [−1,1], with standard deviation σp = 0.2 and
peak (mode) given by sigmoid perception curves pD (for
Democrats) and pR (for Republicans):

pD(b) = 0.7 tanh

[
1.00

0.7
(b + 0.46)

]
− 0.55, (7a)

pR(b) = 0.6 tanh

[
1.05

0.6
(b − 0.35)

]
+ 0.42 . (7b)

For details on these beta distributions and the implemen-
tation of equations (5b) and (5c), see Appendix B. Reaction
parameter values were di = 1.3, do = 0.8, σr = 0.15. For
finding equilibria, the time constant τ = 1 was used, and
populations of both parties were initialized as uniformly dis-
tributed on [−1, 1].

For easy comparison with real data, Fig. 1(b) shows a
simulation of one hundred times Bail et al.’s experimental
population: 70 900 Democrats and 54 700 Republicans. In this
comparison, we must note that our belief scale is not identical
to theirs; ±1 on our scale are asymptotically extreme, whereas
1 and 7 on Bail et al.’s scale are attainable and signify strong
agreement on all surveyed issues.

We also replicated the experiment of Bail et al. in silico:
Starting with a population at equilibrium [shown in Fig. 1(b)],
and artificially inducing counterattitudinal Democratic con-
tent to Republican experimental subjects (a beta distribution
peaked at p = −0.75, weighted as if it consisted of 24 per-
cepts on top of a presumed diet of 100 percepts per day)
over the course of 30 “days,” caused the mean position of
those subjects to shift rightwards by a little less than half its
natural standard deviation (from 0.30 to 0.42, stdev σ ≈ 0.3).
This matches the findings of Bail et al., who found average
rightward movement of 0.6 points on a 1-to-7 scale, which
represented between 0.11 and 0.59 standard deviations (p <

0.01) [38]. Further implementation details can be found in
Appendix B.

IV. POSSIBLE EXTENSIONS

In order to keep the number of tuneable parameters and
functional forms to a minimum in the absence of much con-
straining data, we have made many simplifying assumptions.
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As such, it is easy to imagine extensions which might increase
the realism of this model and which would ideally be imple-
mented when data is available to constrain them.

One simple extension is the addition of more
groups/parties, such as independent/unaligned individuals
and messages. This would require another perception curve
per group, and a three- or more-way fractional content break-
down instead of the single in-group fraction f (b) as our anal-
ysis used. Different levels of out-group trust would be repre-
sented by different repulsion distances for each type of source.

Additional affiliations beyond party, such as religion, race,
regional identity, etc., could also be added to the model. How-
ever, the number of identity combinations rises exponentially
with each additional affiliation type, and each could affect
the perception curve(s)—since affiliations can change the en-
vironment individuals are exposed to—and intergroup trust
levels, so we submit that this option should be approached
with caution.

The repulsion distance d , representing “trust,” “credulity,”
or “benefit of the doubt,” need not be binary or universal
across the population. Especially in the presence of multiple
identity markers, one might let d for each interaction depend
on each group identity of the individual and of the messenger
to allow for more intricate intergroup prejudices. One could
also add noise to d values to model individual variation in
level of credulity towards other groups or let d evolve dynami-
cally over time or as a function of political position. However,
given the difficulty of measuring intergroup trust levels, we
chose to avoid overfitting by using only two d values (in-group
and out-group) in our simulations.

One might also reasonably suggest that the political con-
tent representing each party could depend on an observer’s
own party, not just their ideological position b. For instance,
a liberal Democrat might perceive different Republican con-
tent than a liberal Republican. This would require additional
perception curves, rather than re-using the same curve for
all observers—each observer/messenger identity pair would
require its own curve. This would allow for the possibility that
individuals perceive a more extreme version of the other party
as they become more extreme themselves, in other words a
negatively sloped perception curve for out-group content. We
note that the large dissonance numbers likely in this case
would require a reaction function in which repulsion saturates
(i.e., not our cubic assumption) to avoid dwarfing the effect of
attraction.

As some other models have attempted [16,19], one might
also consider multiple ideological dimensions: Instead of a
scalar belief value b, an n-dimensional vector b would repre-
sent an individual’s beliefs with respect to each of n issue axes.
Percepts would engage with one or more of these issues. Lack-
ing relevant data, we do not put forward assumptions on how
reaction dynamics might be coupled; one might assume that
dynamics along each axis would be largely independent of
one another, since position on one issue rarely affects position
on another directly. However, it is possible that the dynamics
along multiple axes would be coupled by tribalism; being
repelled from a message might drive an individual closer to
the opposing camp on more axes than just the one being
engaged with, as the individual identifies more strongly with
the whole opposing party.

Finally, one might add mechanisms by which the percep-
tion curves can change over time. Time dependence could
be introduced to investigate hypotheses about the impact of
changing or time-correlated media environments, or percep-
tion curves might evolve in response to the population state.
The latter option would provide a form of indirect coupling
between modeled individuals, allowing it to be self-contained
over long time scales, but would require conjecture about how
environment-creating entities perceive the population state
and strategize in response.

V. DISCUSSION

We have put forward a modeling framework for individual
political opinion drift which separates perceived content and
the reaction of the viewer to that content, in order to sepa-
rately model perceptual filtering, the shift from attraction to
repulsion for dissonant content, and the effect of intergroup
bias. We have presented toy models to elucidate each effect
on its own in the absence of noise and introduced a graphical
analysis technique for qualitative analysis of behavior under
general belief-dependent perception curves. With the inclu-
sion of additive noise, analytically determined fixed points
widen into stable distributions.

With all these effects included and some simple parameter
assumptions, we showed that population distributions match-
ing recent survey data emerge naturally. Furthermore, we were
able to simulate the experiment of Bail et al. [38] and found
similar dynamics under counterattitudinal perturbation.

Further work

A paucity of available data has forced us to make assump-
tions on functional forms and parameter values. While these
are reasonable placeholders, they can be modified or replaced
as empirical data become available; it isn’t hard to imagine
experiments which might elucidate qualitative and quantita-
tive effects of interest. For example, to refine the reaction
function, further experiments like that of Bail et al. [38] might
investigate the impact of political opinions on individuals and
how the messenger’s apparent identity affects the reception of
dissonant ideas.

The lack of reliance on network structure means that
data collection can focus on averages and distributions rather
than influence-network properties and tie reconstruction. Per-
ceptual diets might be estimated from the top down, by
assigning each media outlet or other notable source of polit-
ical influence an ideology score (as others have done, e.g.,
Refs. [31,32,35,46]), and surveys or viewership data could
determine which content is consumed in what proportion
by each part of the ideological spectrum. Alternatively, self-
report of political influences and their positions could produce
estimates of perceptual diets which also account for interpre-
tation bias—the same content might be interpreted differently
by different observers.

Overall, we believe this model shows considerable promise
in replicating dynamics and distributions from the real world.
We have intentionally chosen a relatively simple structure
which is nonetheless able to capture important psychologi-
cal tendencies for repulsion and tribalism and couple them
to a politicized environment, while preserving mathematical

043001-6



WHEN PULL TURNS TO SHOVE: A CONTINUOUS-TIME … PHYSICAL REVIEW RESEARCH 2, 043001 (2020)

tractability. However, as outlined above, the realism can be
significantly increased with extensions which augment the
framework.

As data are collected to inform the base model and ex-
tensions, the validity and predictive power will grow. In this
way, we hope that this framework will offer a lens with which
to better understand individual and population-level opinion
dynamics and the feedback effects that arise due to the modern
reality of personalized political environments. We hope this
endeavor leads to a new sort of data-driven political modeling
to better understand human behavior, polarization, and strate-
gies for effective political dialogue.

All data and code are available [47].
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APPENDIX A: PERCEPTION DISTRIBUTIONS

As we mention in the “adding heterogeneity” section of
the main paper, if our model is to have any claim at accurately
modeling the political lives of real people, it must allow indi-
viduals to consume not just a single, constant percept p(b) but
rather a whole distribution of content, ρ(p; b, σp). In this case,
instead of using the single p value to determine an individual’s
reaction, we calculate their weighted-average reaction by in-
tegrating the probability distribution of percepts they might
receive multiplied by the reaction those percepts would cause.
We note that our cubic reaction function is asymmetric across
the repulsion boundary (it is steeper outside the boundary than
inside, so repulsion is “stronger” than attraction). Thus, if
individuals receive a distribution of percepts centered at their
“perception curve” value p(b), a symmetric widening of their
experiences has the asymmetric effect of shifting the system’s
fixed points: Since it takes fewer repulsive events than attrac-
tive ones to maintain net-zero movement, the new fixed point
occurs when the center of the perceptual distribution is still in
the trust region. In other words, the repulsion boundary is ef-
fectively narrowed with regard to the peak percept value p(b).

In Appendix A we will focus on opinion drift caused by
perceptions from a single group, neglecting reaction noise (i.e.
τ db/dt = (1 − b2)v, a simplification of equation Eq. (5), but
dynamics in a full model are a simple linear combination of
two such sources and a reaction-noise term.

The precise effects of perceptual variety depend on the
shape of the perceptual distribution and the choice of reaction
function. We now consider three options in order of increasing
realism.

1. Gaussian distributed percepts

First we’ll consider Gaussian-distributed percepts centered
on the “perception curve” value p(b), and the cubic reaction

FIG. 7. Effect of perception distribution width on reaction. Net
change in belief db/dt versus expected value of dissonance μ

for varying levels of perception distribution width, from Eq. (A1)
with d = 0.8. The critical standard deviation for d = 0.8 is σc =
0.8/

√
3 ≈ 0.46.

function from Eq. (1) of the main text, (p − b)[1 − (p −
b)2/d2]. These choices are convenient in that the integral for
average belief change is analytically tractable. For clarity,
we change variables to “average dissonance” μ = p(b) − b,
and let x be the dummy variable of integration for possible
dissonance. If we allow percepts outside of [−1, 1] in this
way, the integral is quite clean:

τ
db

dt
= (1 − b2)

∫ +∞

−∞
x

(
1 − x2

d2

)
︸ ︷︷ ︸

R(x;d )

[
1√

2πσp

e
− (x−μ)2

2σ2
p

]
︸ ︷︷ ︸

ρ(x;b,σp)

dx

= (1 − b2) μ

[(
d2 − 3σ 2

p

)
d2

− μ2

d2

]
. (A1)

This is a cubic in μ with zeros representing the three fixed

points: at μ = 0 and at μ = ±
√

d2 − 3σ 2
p . So as the parame-

ter σp grows, we see a pitchfork bifurcation as the nonorigin
zeros disappear: For σp > σc = d/

√
3, the bracketed term in

Eq. (A1) is always negative. This means the net movement of
the individual is away from the average percept they see. See
Fig. 7.

These distribution widths are not unrealistically large; as
seen in Fig. 7, for a repulsion distance of 0.8 the standard
deviation needs only be 0.46 for the overall effect of a content
distribution to be repulsive (i.e., causing movement away from
that distribution’s mean). Thus, especially for out-group con-
tent with a naturally narrower repulsion distance, viewing a
wider distribution of that content can actually cause repulsion,
since the extreme percepts will repel the viewer more than the
moderate percepts will attract them.

To visualize the effects of normally distributed perceptual
distributions ρ(p; b, σp) replacing deterministic percepts p(b),
we can examine density plots for the net movement for all
combinations of b and p (repulsion distance d = 0.8): see
Fig. 8. This is the space that our graphical analysis technique
utilizes: If we establish a perception curve p(b), the values
of this map that the curve crosses are the realized average
movement for each part of the population.
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FIG. 8. Reaction map for normally distributed diets. Net movement caused by normally distributed perceptual diets with peak P = p(b),
for individuals at belief score b, and repulsion distance d = 0.8. Results shown for σp = 0.2 (top left), 0.3 (top right), 0.4 (bottom left), and
0.5 (bottom right).

2. Truncated Gaussian Percepts

In deriving Eq. (A1) we approximated by integrating over
the entire real line for dissonance when it should be con-
strained to the range allowed by percepts in [−1, 1]—that is,
from dissonance x = −1 − b to 1 − b. That makes the result
somewhat more complicated (note: lacking symmetry around
b, we don’t utilize the μ substitution, and x represents percept
value instead of dissonance):

τ
db

dt
= (1 − b2)

∫ 1

−1

[
A√

2πσp

e
− (x−P)2

2σ2
p

]

×
{

(x − b)

[
1 − (x − b)2

d2

]}
dx

= A
(1 − b2)σp

d2
√

2π

{[
1 − d2 + 2σ 2

p + P2 − 3Pb + 2b2
]

× [
e

−(−1+P)2

2σ2
p − e

−(1+P)2

2σ2
p

]
+ [P−3b]

[
e

−(−1+P)2

2σ2
p + e

−(1+P)2

2σ2
p

]}

+ (1 − b2)(P − b)

2d2

{
d2 − 3σ 2

p − [P − b]2
}

×
[

erf

(
1 + P√

2σp

)
+ erf

(−1 + P√
2σp

)]
, (A2)

using shorthand P = p(b) for compactness. We also note that
σp in this case is the standard deviation of the full Gaussian,
not the truncated one. A is a normalization factor depending
on b and σp needed to make the truncated Gaussian integrate
to 1:

A = 1

1√
2πσp

∫ 1
−1 e

−(x−P)2

2σ2
p dx

= 2[
erf

(
1+P√

2σp

) − erf
(−1+P√

2σp

)] .

Figure 9 shows the reaction map for these truncated-normal
diets, computed analytically at each b and P combination.
Very small values (near zero mean movement) are colored
black, showing areas of relative indifference where reaction
noise will dominate.

3. Beta Distributed Percepts

For our simulations, we bounded perceptual diets in a more
natural way, by utilizing beta distributions stretched to fit
[−1, 1]. These distributions approach zero at the boundaries
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FIG. 9. Reaction map for truncated-normal diets. Net movement caused by truncated-normal perceptual diets with peak P (vertical axis),
for individuals at belief score b (horizontal axis), with repulsion distance d = 0.8. Results shown for σp = 0.2 (top left), 0.3 (top right), 0.4
(bottom left), and 0.5 (bottom right).

of our domain, fitting our asymptotic-extremes interpretation
of this axis. The beta distribution with our endpoints has the
equation

Beta[−1,1](x; α, β ) = 4
(1 + x)α−1(1 − x)β−1

2α+β

�(α + β )

�(α)�(β )
,

(A3)

where α and β are parameters of the distribution and � is the
gamma function.

We can construct a distribution to have any desired mode
(peak) P = p(b) and standard deviation σp by solving the
implicit equations

mode = P = α − β

α + β − 2
(A4)

variance = σ 2
p = 4αβ

(α + β )2(α + β + 1)
(A5)

for α, β > 1 in terms of P and σp. Examples are shown in
Fig. 10. Unfortunately, when using these beta distributions,
the weighting integrals with our cubic reaction function aren’t
possible to evaluate in closed form. However, we may nu-
merically compute these integrals for a finite grid of P and
b values at any chosen standard deviation to visualize the
reaction space. In Fig. 11, we can see the repulsion boundaries
bending and bifurcating as σp increases.

Computing a reaction map like in Figs. 8, 9, or 11 allows
us to use our graphical analysis technique with any perception
curve, to get a sense of average population drift for the whole
political spectrum. For our “realistic” simulation shown in
Fig. 1 of the main text, we used beta-distributed perceptual
diets. To compute in-group and out-group drift values vin and
vout in a computationally feasible way, we discretized the b

FIG. 10. Beta-distributed diets. Examples of beta distributions
with peaks at P = −0.9 (blue), −0.5 (teal), 0 (green), 0.5 (orange),
and 0.9 (red). All have the same standard deviation, σp = 0.2.
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FIG. 11. Reaction map for beta-distributed diets. Average movement caused by beta-distributed perceptual diets with peak P, for
individuals at belief score b, and repulsion distance d = 0.8. Results shown for σp = 0.2 (top left), 0.3 (top right), 0.4 (bottom left), and
0.5 (bottom right).

and P domains to the nearest hundredth and computed the in-
tegrals vin and vout at each possible combination—as was done
for Figs. 9 and 11, which show vout for different σp values.
Then in iteration, we used nearest-neighbor interpolation with
this map rather than computing each individual’s weighting
integral at each time step.

APPENDIX B: BAIL et al. IN SILICO DETAILS

For simulation of Bail’s experiment [38], the population
was initialized at its equilibrium, but in addition to vin and
vout there was a third influence vbot based on an out-group
distribution peaked at value P = −0.75 shown to Republicans
and P = 0.3 shown to Democrats, to roughly match the other

party’s equilibrium distribution. This extra out-group effect
was weighted as if it consisted of 24 additional percepts on top
of a 100-percept daily diet, i.e., with weight fbot = 24/124. So
our full SDE becomes

τ db = (1 − b2){[(1 − fbot)( f vin + (1 − f )vout)

+ fbotvbot]dt + σrdW }. (B1)

Under this assumption, the time constant τ = 30 caused
movement in agreement with Bail et al. [38]: slight leftward
movement of Democrat mean from −0.51 to −0.53 (about
6% of its natural standard deviation), but significant rightward
movement of the Republican mean from 0.30 to 0.42 (about
40% of its natural standard deviation).
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