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Abstract

Patients with sickle cell disease (SCD) experience lifelong struggles with both chronic

and acute pain, often requiring medical interventMaion. Pain can be managed with medi-

cations, but dosages must balance the goal of pain mitigation against the risks of toler-

ance, addiction and other adverse effects. Setting appropriate dosages requires

knowledge of a patient’s subjective pain, but collecting pain reports from patients can be

difficult for clinicians and disruptive for patients, and is only possible when patients are

awake and communicative. Here we investigate methods for estimating SCD patients’

pain levels indirectly using vital signs that are routinely collected and documented in medi-

cal records. Using machine learning, we develop both sequential and non-sequential

probabilistic models that can be used to infer pain levels or changes in pain from

sequences of these physiological measures. We demonstrate that these models outper-

form null models and that objective physiological data can be used to inform estimates for

subjective pain.

Author summary

Understanding subjective human pain remains a major challenge. If objective data could

be used in place of reported pain levels, it could reduce patient burdens and enable the col-

lection of much larger data sets that could deepen our understanding of causes of pain

and allow for accurate forecasting and more effective pain management. Here we apply

two machine learning approaches to data from patients with sickle cell disease, who often

experience debilitating pain crises. Using vital sign data routinely collected in hospital set-

tings including respiratory rate, heart rate, and blood pressure and amidst the real-world

challenges of irregular timing, missing data, and inter-patient variation, we demonstrate

that these models outperform baseline models in estimating subjective pain, distinguish-

ing between typical and atypical pain levels, and detecting changes in pain. Once trained,
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these types of models could be used to improve pain estimates in real time in the absence

of direct pain reports.

1 Introduction

Sickle cell disease (SCD) is a disorder that affects red blood cells and is associated with chronic

pain as well as acute pain crises that often result in hospitalization [1]. During pain crises,

patients experience severe pain that is managed with both opioid and non-opioid pain medica-

tion. Clinicians must therefore closely monitor their patients’ pain to determine appropriate

dosing regimens and when patients are ready to be discharged. When monitoring pain, clini-

cians typically ask patients to rate their pain using a visual analogue scale (VAS) [2]. However,

VAS pain reports are subjective and can exhibit significant inter-individual variation in pain

scores reported in response to the same stimulus. These reports can also be influenced by a

confluence of factors (e.g., mood, energy level, external emotional cues) that are unrelated to

the patient’s physical condition.

Collecting subjective pain observations can be time-consuming and intrusive to patients.

There are circumstances, such as when a patient is sleeping or heavily medicated, when it is

impossible to collect this data. As such, it would be useful to be able to estimate pain levels

from objective measurements that are easier to collect, cheaper, and more consistent. This

would make it possible to track pain with high temporal resolution yielding richer datasets

describing the evolution of pain over time. These datasets could lead to better understanding

of the causes of pain and ultimately to models for forecasting pain.

Machine learning provides a powerful suite of tools for building predictive models from

data and has led to significant progress on a wide variety of challenging scientific problems. In

medicine, these methods are increasingly being used to develop personalized treatment strate-

gies that have the potential to revolutionize patient care [3, 4]. Recent studies using linear dis-

criminant analysis, support vector machines, neural networks and other machine learning

methods for objective pain assessment with physiological signals such as electrical muscle

activity, skin conductance level, and heart rate [5–7], facial expressions [8–10], activity and

motion tracking [11, 12] and combinations of the above [13, 14] have yielded promising

results. Here we consider the problem of estimating subjective pain scores in patients with

sickle cell disease (SCD) using six objective physiological measures (vital signs) that are rou-

tinely collected.

We examined a dataset compiled from electronic medical records from 46 distinct SCD

patients over a total of 105 hospitalizations at Duke Medical Center between January 1, 2014

and January 31, 2017. We used this data to train two types of probabilistic models, Gaussian

naive Bayes (GNB) classifiers and hidden Markov models (HMMs), for inferring pain from

the observed physiological measures. These models are capable of performing inference with

partial observations and were used to ascertain the sequence of pain scores most likely to give

rise to the observed physiological measures. We then compared these models to naive models

that ignore the physiological measures in order to determine (a) whether the physiological

measures contain useful information about the evolution of pain and (b) the extent to which

that information is contained in the physiological measures themselves as compared to the

sequential order of those observations.
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2 Results

We investigated two types of models for estimating pain levels. HMMs use ordered physiologi-

cal data and GNB models use unordered physiological data. The performance of these models

was then compared to two null models (random and mode) that use no physiological data.

These models are described in detail in Sec. 4.2.

We found that physiological data is indeed useful for estimating subjective pain. In three

different pain classification tasks, described in Sec. 2.1, we found that the models that

accounted for physiological data outperformed the baseline models that only considered the

prevalence of each pain level. We also found that HMMs, which accounted for the sequential

order of observations, outperformed the GNB models, which did not, in all three pain classifi-

cation tasks.

The primary metric we use to assess performance of these models is the volume under the

receiving operating characteristic surface (VUS), which can be interpreted as the probability

that, given one randomly selected example from each class (e.g., one example with low pain,

one with medium pain, and one with high pain), the model will correctly label each example

[15, 16]. Fig 1 compares the performance of HMM and GNB models with the two null models

which are only able to “guess” the correct labels 1/6 of the time. See Sec. 4.3 for further discus-

sion of this evaluation metric.

We found that both the HMM and GNB models outperform this baseline, which indicates

that physiological measures do contain information about the evolution of pain. This suggests

that, with further refinement, these types of models could provide clinicians with information

about patients’ pain levels in the absence of direct pain reports.

Fig 1. Model performance comparison. This figure displays the volume under receiver operating characteristic surface (VUS) for the HMM, GNB and

null models (random, mode) on three classification tasks with three classes each. VUS can take on values between zero and one with zero indicating a

classifier that is always wrong and one indicating a perfect classifier, so larger bars indicate better performance. Superscript �r and �m indicate the

models that showed a statistically significant improvement in performance (at the p = 0.05 level) over the random and mode null models respectively.

https://doi.org/10.1371/journal.pcbi.1008542.g001
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2.1 Classification problem formulation

We approached the problem of inferring pain from physiological measures as a classification

problem, and explored three distinct variants. The definitions of the classes are summarized in

Table 1.

In the first variant, we classified the raw pain scores Pt (where t refers to the time step) into

three categories that correspond to low, medium, and high pain. We refer to this as “direct”

pain classification.

In the second variant, we took a more personalized approach. Rather than assuming that

the correspondence between physiological measures and pain was similar for all patients, we

instead compared both the physiological measures and pain to the typical levels observed for

each patient. This is motivated by the hypothesis that atypical levels of pain are characterized

by atypical physiological measures (See S1 and S2 Figs). We therefore normalized the physio-

logical measures by setting the means to zero and standard deviations to one for each patient,

and assigned the pain scores to one of three categories: below the patient’s median pain level

Pmedian, at Pmedian, and above Pmedian. We refer to this second variant as “median-referenced”

pain classification.

In the third variant, we predicted changes in pain, denoted ΔPt = Pt+1 − Pt, rather than the

pain itself. These changes between consecutive observations were assigned to one of three cate-

gories: decrease, no change, and increase. We refer to this third variant as “pain difference”

classification.

The numbers of observations in each class for all three variants are displayed in Fig 2.

Table 1. Class labels for three classification problem variants. Pt refers to the raw pain at time step t, Pmedian refers to

the median pain for each patient during their inpatient stay, and ΔPt = Pt+1 − Pt refers to the change in pain since the

last observation.

Labels

Problem Direct Median-referenced Pain difference

0 Low

(0� Pt� 3.333)

Median

(Pt = Pmedian)
No change

(ΔPt = 0)

1 Medium

(3.333 < Pt� 6.667)

Above Median

(Pt> Pmedian)
Increase

(ΔPt> 0)

2 (or -1) High

(6.667� Pt� 10)

Below Median

(Pt< Pmedian)
Decrease

(ΔPt< 0)

https://doi.org/10.1371/journal.pcbi.1008542.t001

Fig 2. Class sizes for all three classification problem variants. There are more missing values for the difference classification problem due to the fact

that ΔPt = Pt+1 − Pt is unknown when either Pt or Pt+1 are unknown.

https://doi.org/10.1371/journal.pcbi.1008542.g002
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2.2 Experiments

For each of the classification problems described in Section 2.1, we trained two probabilistic

models, a Gaussian naive Bayes (GNB) classifier and a hidden Markov model (HMM). We

trained these models in a semi-supervised fashion using 10-fold cross-validation, with data

sequences randomly assigned to 10 subsets (folds). The models were optimized using nine

folds and the performance was tested on the remaining fold. This was then repeated ten times

for each of the possible divisions into training and testing sets. We chose 10 folds to balance

the need for computational efficiency against the need for sufficiently large training and testing

sets. We expect that similar results, albeit at substantially higher computational cost, could be

obtained using leave-one-out cross-validation.

Rather than randomly distributing individual observations into folds, we assigned entire

sequences of records for each hospital stay to folds to ensure that both the training and testing

sets contained complete sequences. Because some patients had more than one hospital stay,

data from the same patient did occasionally appear in both the training and testing sets, but

the training and testing sets never contained data from the same hospital stay.

During testing, the models were used to infer the correct class labels for each observation

given the physiological measures only. The performance was evaluated using standard classifi-

cation metrics including: (1) VUS; (2) accuracy, the proportion of observations that were

assigned the correct label; (3) precision, the number of true positives divided by the number of

predicted positives averaged over all classes; (4) recall, the number true positives divided by

the number of positive examples averaged over all classes; and (5) F1 score, the harmonic

mean of precision and recall. The performance metrics reported here were computed on the

testing fold. Further details about the data, models and training process, and evaluation met-

rics are provided in sections 4.1, 4.2 and 4.3 respectively.

We also generated two null models that ignore the physiological measures and predict

based on the frequencies of the classes in the training data alone. In the “random” null model,

labels were assigned randomly in proportion to the class frequencies in the training data. In

the “mode” null model, all observations were assigned the label that was most common in the

training data. These null models are of no clinical value. If the physiological measures provide

meaningful information about pain, then one would expect the trained HMM and GNB classi-

fiers to outperform the null models according to the metrics above. We therefore performed

hypothesis tests to see if each of the trained models provided a statistically significant improve-

ment over each null model (see Section 4.2 for details). The results of these experiments are

displayed in Tables 2–4.

In the direct classification problem, both the HMM and GNB classifiers outperformed both

null models in VUS and recall and they outperformed at least one of the null models in

Table 2. Direct classification results for HMM, GNB and null models. The values in each cell represent the metric indicated by the column header. Precision, Recall and

F1 score are computed using a macro average with uniform weights for each class. The values in parenthesis indicate the p-values associated with the random and mode

null models respectively. When p< 0.05, the corresponding model performs better than the null model and that improvement is statistically significant at the 5% level.

Model

Metric VUS Precision Recall F1 score Accuracy

HMM 0.227

(< 0.001,< 0.001)

0.321

(0.955,< 0.001)

0.371

(< 0.001,< 0.001)

0.322

(0.689,< 0.001)

0.547

(< 0.001,1.000)

GNB 0.201

(< 0.001,< 0.001)

0.353

(< 0.001,< 0.001)

0.356

(< 0.001,< 0.001)

0.308

(0.990,< 0.001)

0.370

(1.000,1.000)

null: random 0.167 0.334 0.334 0.325 0.483

null: mode 0.167 0.211 0.333 0.256 0.632

https://doi.org/10.1371/journal.pcbi.1008542.t002
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precision and F1 score. The mode prediction model had the highest accuracy due to the fact

that the majority of pain reports corresponded to the high pain class in both the training and

testing data. As a result, a trivial classifier that always predicts high pain can obtain a high

degree of accuracy despite being of no clinical value. Both the HMM and GNB classifiers were

trained by maximizing the log likelihood of the observed sequences of pain classes in the train-

ing data. As such, they assigned non-zero probability to minority classes. Improving the accu-

racy on the minority classes decreased the accuracy on the majority class resulting in lower

accuracy overall, but better performance according to other metrics. These performance met-

rics are displayed in Table 2.

In median-referenced classification, we found that both the HMM and GNB models had

statistically significant higher performance than both null models according to VUS, precision

and recall. This lends support to the hypothesis that atypical pain levels correspond to atypical

physiological data. However, the F1 score for the random guessing model was higher than the

HMM. This is counter-intuitive due to the fact that F1 score is the harmonic mean of precision

and recall and both the precision and recall exceed those of the null models. This observation

can be explained by the fact that this metric is computed by first computing the harmonic

mean of precision and recall on each class and fold before averaging the results with equal

weights for each class. Zero precision or recall on one of the smaller classes will cause the cor-

responding F1 score to be zero which can have a dramatic effect on the averaged result. If

instead the precision and recall were averaged over each class and fold first before computing

the harmonic mean, then the the result would be higher for the HMM and GNB. The HMM

also outperformed the null models in accuracy.

Table 4. Difference classification results for HMM, GNB and null models. The values in each cell represent the metric indicated by the column header. Precision, Recall

and F1 score are computed using a macro average with uniform weights for each class. The values in parenthesis indicate the p-values associated with the random and

mode null models respectively. When p< 0.05, the corresponding model performs better than the null model and that improvement is statistically significant at the 5%

level.

Model

Metric VUS Precision Recall F1 score Accuracy

HMM 0.202

(< 0.001,< 0.001)

0.360

(< 0.001,< 0.001)

0.354

(0.010,< 0.001)

0.347

(0.015,< 0.001)

0.501

(< 0.001,1.000)

GNB 0.192

(< 0.001,< 0.001)

0.359

(< 0.001,< 0.001)

0.361

(< 0.001,< 0.001)

0.344

(0.042,< 0.001)

0.401

(0.994,1.000)

null: random 0.167 0.333 0.333 0.330 0.421

null: mode 0.167 0.191 0.333 0.242 0.572

https://doi.org/10.1371/journal.pcbi.1008542.t004

Table 3. Median-referenced classification results for HMM, GNB and null models. The values in each cell represent the metric indicated by the column header. Preci-

sion, Recall and F1 score are computed using a macro average with uniform weights for each class. The values in parenthesis indicate the p-values associated with the ran-

dom and mode null models respectively. When p< 0.05, the corresponding model performs better than the null model and that improvement is statistically significant at

the 5% level.

Model

Metric VUS Precision Recall F1 score Accuracy

HMM 0.263

(< 0.001,< 0.001)

0.411

(< 0.001,< 0.001)

0.364

(< 0.001,< 0.001)

0.287

(1.000,< 0.001)

0.413

(< 0.001,0.018)

GNB 0.194

(< 0.001,< 0.001)

0.353

(< 0.001,< 0.001)

0.351

(< 0.001,< 0.001)

0.348

(< 0.001,< 0.001)

0.368

(< 0.001,1.000)

null: random 0.167 0.333 0.333 0.329 0.340

null: mode 0.167 0.134 0.333 0.190 0.402

https://doi.org/10.1371/journal.pcbi.1008542.t003
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In difference classification we found that both the HMM and GNB model outperformed

both null models in VUS, precision, recall and F1 score. Again the trivial mode model has

higher accuracy due to the class imbalance. Notice that the F1 score is again lower than both

precision and recall despite being a type of average. This behavior underscores the limitations

of the F1 score when applied to multi-class classification problems with a class imbalance.

In S1 and S2 Tables, we report the confusion matrices for the HMM and GNB models. We

found that these classifiers had the highest accuracy on the majority class and noticeably lower

accuracies for minority classes in each of the three classification problems.

In S3–S5 Tables we also report the model parameters for the HMM and GNB models.

These can be used to identify temporal trends as well as relationships between pain and the

physiological measures. We found that the difference between classes was typically smallest for

the blood pressure (Systol and Diastol) and temperature (Temp) suggesting that these features

are less informative than the pulse (Pulse), respiratory rate (Resp) and oxygen saturation

(SpO2).

3 Discussion

Overall, we found that both classifiers provided statistically significant improvements over null

models according to a majority of metrics. This suggests that physiological measures contain

information that can be used to improve pain classification and detection models. We also

found that the HMM, which considers the sequence of observations, had higher performance

than the GNB classifier, which treats observations as independent, in four out of the five met-

rics considered on all three classification problems. This indicates that the order of observa-

tions can also be used to provide additional performance improvements.

We found that the best performing model, according to VUS, was the median-referenced

model. This can be attributed to the fact that it is more personalized than the other models. By

accounting for how the pain and physiological measures differ from the typical levels experi-

enced by each patient, the model is better able to identify deviations from the norm. In this

paper, the personalization methods considered are relatively simple: they involve standardiza-

tion relative to the mean physiological measures and median pain level for each patient. Alter-

natively, one might imagine training a separate model for each patient. Given a sufficiently

large amount of data for each patient, one would expect such a personalized model to outper-

form the models presented here as long as the physiological response to pain remains consis-

tent over time.

Here we focus on three-class problems, but it would be straightforward to adapt our

approach to classification problems with additional classes in order to obtain more precise

pain estimates. For example, one could assign the difference to five categories instead of three:

no change, slight increase, large increase, slight decrease and large decrease. However, this

would involve training models with additional parameters and such models would be prone to

over-fitting unless larger datasets with more patients and finer temporal resolution were

available.

Our work demonstrates the potential of machine learning methods for inferring pain from

objective measurements, with clear improvement over trivial models. We hypothesize that the

performance of the models could be improved by including additional features. For example,

heart rate variability, galvanic skin response, and activity measurements from accelerometers

can also serve as useful features for pain estimation [17]. These features are not included in

electronic medical records, but can be recorded using commercially available fitness trackers.

Ensemble models that fuse data from these sources with the standard vital signs discussed

above would likely outperform the models presented here.
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The performance of these models could also be improved by training with larger datasets.

In Fig 3, we display a learning curve for the HMM classifier in which the model was trained

with only a fraction of the training data. As the fraction of the data increases, the VUS

increases. The slopes of the trendlines y =m log(x) + b are positive and the slope is significantly

greater than zero for the median-referenced model (with p = 0.008). The fact that the perfor-

mance is still improving when the fraction reaches one suggests that performance of these clas-

sifiers would continue to improve with larger datasets. This data could be obtained either by

increasing the size of the patient cohort or by increasing the observation frequency.

The HMM and GNB models discussed in this paper were selected because they are well-

understood probabilistic models that are indistinguishable except for the sequential compo-

nent. This allowed us to rigorously test whether physiological measures contain useful infor-

mation about the evolution of pain and whether the sequence of observations contains useful

trends for pain estimation. We hope that this proof of concept inspires further exploration

with more powerful and flexible models that can be tuned for optimal performance.

The models presented here can be used either to make predictions about the pain class for

each observation or to compute the probabilities for each class. These probabilities could be

useful in a clinical setting by allowing doctors and nurses to determine whether a patient’s con-

dition is likely to have changed. Prior strategies such as dosing and variations in the intervals

of treatment have not been effective for patients with SCD. Prediction models could be valu-

able to inform treatment decisions such as when to adjust a patient’s medication. Importantly,

although this study focused on patients with SCD admitted for pain, modeling to predict pain

may be helpful for other patients admitted with pain. In addition, another clinically useful task

would be pain forecasting: thus far the limited volume of pain data has made this a challenge,

but using pain inferred from physiological data could make forecasting a realistic possibility.

4 Materials and methods

4.1 Data

Our results come from a dataset containing electronic medical records from both pediatric

and adult patients with sickle cell disease that were admitted for vaso-occlusive crises at Duke

Medical Center between January 1, 2014 and January 31, 2017. The dataset was limited to

patients who were inpatient for at least 48 hours and required intravenous narcotics for

Fig 3. Learning curves. These plots display the volume under the receiver operating characteristic surface for the

HMM classifier as the percentage of training data used to train the model varies. The full training set contained a

randomly selected subset of up to 85% of the 4456 data points with known pain scores and the testing data contained

the remaining 15%. The black (solid) curves correspond to the mean VUS averaged over 20 train-test splits. The red

(dashed) curves correspond to the mean VUS ± one standard deviation to provide a measure of the variability in the

performance. Panel A corresponds to the direct classification problem; panel B corresponds to the median-referenced

classification problem; and panel C corresponds to the difference classification problem. The spacing on the horizontal

axis is logarithmic.

https://doi.org/10.1371/journal.pcbi.1008542.g003
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treatment, such as via patient-controlled analgesia system. This included data from 46 unique

patients over a total of 105 hospital visits. The demographics of this cohort of patients are typi-

cal of patients admitted with SCD pain in the US, however the conclusions we draw may not

be applicable to outpatients or patients with SCD outside the US. We note that reference [18]

also studied a subset of this data, using a different approach based on multiple imputation

[19]. In this paper, in contrast, we use semi-supervised learning to develop models that can be

used with incomplete data. As a result, our models could be used for real-time pain inference

without a need for imputation of missing values.

We extracted records containing pain scores (PainScore) on an 11 point visual analogue

scale along with six physiological measures: (i) peripheral capillary oxygen saturation (SpO2),

(ii) systolic blood pressure (Systol), (iii) diastolic blood pressure (Diastol), (iv) heart rate

(Pulse), (v) respiratory rate (Resp), and (vi) temperature (Temp). Each observation includes a

unique patient identifier along with a timestamp indicating when the data was recorded. As

such, the data for each patient can be viewed as a time series.

Time series models have been studied extensively [20]. Unfortunately, most time series

models are designed for uniformly sampled observations that are completely observed and are

therefore not directly applicable to these datasets which contain irregularly sampled pain

scores and physiological measures and many missing features.

There are various ways to address the challenges of missing features and irregular sampling.

We addressed the irregular sampling problem by aggregating the data into two-hour windows.

When multiple observations were available during a given window, the observed features were

averaged. This aggregation process decreases the total number of data points, but no data is

lost and it results in uniformly spaced observations. Averaging has the added benefit of

smoothing the fluctuations in the physiological measures and pain, and is justified as long as

the changes in those features occur over sufficiently long time-scales. The percent of data pres-

ent (non-missing) for each feature after this procedure is displayed in Table 5.

Although aggregation into two-hour windows decreases the fraction of missing features in

the data, it does not eliminate them entirely. We considered using imputation methods like

fully conditioned specification (FCS) to fill in the remaining missing observations. However,

these approaches rely on independent observations and therefore ignore sequential informa-

tion during imputation. This means that trends in the physiological measures may not be cap-

tured during the imputation process. The imputation process is also computationally intensive

and may not be suitable for real-time pain estimation. We therefore opted not to impute miss-

ing features and instead pursued probabilistic models that would allow us to perform inference

conditioned on the available data.

After removing outliers that satisfied Diastol < 10 (severe hypotension), Systol > 180

(severe hypertension), and SpO2< 80 (severe hypoxia) and were more than 5 standard devia-

tions from the mean, we divided the data into 10 subsets, each with an approximately equal

number of records (because there were 105 records total, subsets each contained either 10 or

11). Models were trained and tested using 10-fold cross-validation. In other words, the models

were trained (i.e., parameters were estimated) using 9 subsets, and then tested (i.e.,

Table 5. Percentage of data present. Here values indicate the percentage of observations in the data that contain the indicated features.

Dataset

Measure Resp Temp Pulse SpO2 Systol Diastol PainScore

Raw 54.6% 33.1% 43.6% 72.9% 33.4% 33.4% 52.7%

Aggregated 71.9% 51.5% 58.5% 82.3% 51.1% 51.1% 73.1%

https://doi.org/10.1371/journal.pcbi.1008542.t005
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performance metrics were computed) on the remaining subset. This training and testing pro-

cess was repeated 10 times, once for each possible subset arrangement, and the evaluation met-

rics on the testing folds were then averaged to provide an estimate of the generalization

performance of the algorithm [21].

Probabilistic models typically require assumptions about the probability distribution of the

features. For example, many models rely on the Gaussian naive Bayes assumption: that the fea-

tures are independent conditioned on the class and are distributed according to a normal dis-

tribution. Even when these assumptions are not strictly satisfied, the resulting models often

provide useful predictions [22].

In our case, we found that most of the physiological measures were weakly correlated (see

Table 6 and S1 Fig) lending support for the independence assumption. Unfortunately, we

found that they were not normally distributed. However, we circumvented this issue by using

a non-parametric standardization method to transform the distributions to a normal distribu-

tion as follows:

1. Compute the empirical cumulative distribution function (ECDF) for each feature in the

training set.

2. For each observed feature x in either the training or testing set, estimate the corresponding

quantile q in the ECDF using linear interpolation.

3. Map the observed feature to the value z(q) that corresponds to quantile q in a standard nor-

mal distribution.

We applied this method to each of the ten cross-validation splits resulting in ten distinct

standardized versions of the original data. This data was then used to train the models dis-

cussed below.

4.2 Models

We described the relationship between pain and the physiological measures using two proba-

bilistic models: a Gaussian naive Bayes model and a hidden Markov model. Below we outline

the assumptions of those models.

Notation: Let yt denote the true pain class at time t and xt denote the corresponding physio-

logical measures. Following standard conventions, we use capital letters X and Y to denote ran-

dom variables and lower case letters when referring to distributions.

For both classifiers, we were interested in estimating the probability distribution for the

classes conditioned on the physiological measures,

pðytjST; θÞ;

Table 6. Feature correlations. Here the values represent the correlation between the pair of features indicated by the row and column.

Measure Resp Temp Pulse SpO2 Systol Diastol PainScore

Resp 0.248 0.447 -0.054 0.113 0.192 -0.145

Temp 0.374 -0.085 0.048 0.093 -0.104

Pulse -0.198 0.047 0.185 -0.083

SpO2 -0.110 -0.013 -0.033

Systol 0.585 0.017

Diastol 0.001

https://doi.org/10.1371/journal.pcbi.1008542.t006
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where θ denotes the set of parameters, ST denotes the entire sequence of physiological mea-

sures x1, x2, . . .xT and T is the length of the sequence for a given hospital stay. In the context of

HMMs, the observed variables (the physiological measures) are referred to as emissions.

4.2.1 Hidden Markov model. In an HMM, the state variable (the pain class) yt is hidden

and evolves according to a probabilistic process that possesses the Markov property,

pðytjyt� 1; yt� 2; . . . ; y1Þ ¼ pðytjyt� 1Þ;

i.e., the probability of transitioning to state i is independent of the history and depends only on

the last state j. This process can therefore be fully specified by specifying a transition matrix A
with Aij = p(Yt = i|Yt−1 = j).

We chose this type of model, which treats the evolution of pain as a random walk, due to

the absence of consistent long-term trends in the observed pain (see S2 Fig) In the direct and

median-referenced models, we found that the most common transitions were from state i to

state i. In other words, the pain class remains constant most of the time. We also observed that

transitions between adjacent pain classes occurred more frequently than non-adjacent classes.

These frequencies were reflected in the transition matrices learned by the model (see S3

Table). In the difference classification problem, we observed that increases in pain were most

often followed by decreases in pain and vice versa. Again, this was consistent with the learned

transition matrices.

The datasets discussed here contain multiple sequences of states and emission variables,

each of which corresponds to a single hospital stay. Below, we use the superscript (n) for n = 1,

2, . . .N to reference individual sequences when necessary, but suppress this superscript to sim-

plify the notation when there is no ambiguity.

The emission variables are modeled as independent Gaussian random variables when con-

ditioned on the hidden variable. In other words, the probability distribution of the physiologi-

cal measures satisfies

ðxtÞkjYt ¼ i � N ðmik; s2
ikÞ;

where i and k denote the particular class and physiological measure respectively and μik and s2
ik

denote the corresponding mean and variance. The initial state in each sequence is modeled as a

random variable that follows a multinomial distribution with prior probabilities π0, π1, and π2.

A fully specified three-state model with six independent emissions is therefore determined

by a set of 48 parameters: three priors (πi), nine transition probabilities (Aij), 18 emission

means (μik) and 18 emission variances (s2
ik). Training an HMM involves estimating these

parameters from data. Typically this is achieved using maximum likelihood estimation (MLE),

in which one selects the model parameters that are most likely to produce the observed

sequences of emission variables. When the data is incomplete, MLE can be carried out using

an expectation maximization method known as the Baum-Welch algorithm [23]. This algo-

rithm is summarized as follows:

1. Define initial parameter estimates θ = (π, A, μ, σ2).

We initialize these parameters by first assigning state labels to all observations with com-

plete physiological measures using k-means clustering. Then, these estimated labels can be

used to initialize the priors, by computing the proportion of sequences beginning in each

state, and the transition matrix, by computing the proportions of transitions between each

pair of states. The emission mean and variance for each class can be also computed using

the standard statistical formulas.
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2. Compute the posterior probabilities for each state conditioned on the observed sequence of
emissions using the forward-backward algorithm [24].

We compute the posterior probability p(yt|ST, θ), and also compute the joint distribution

for consecutive states p(yt, yt+1|ST, θ). In agreement with standard notation, we define γi(t)
= p(Yt = i|ST, θ) and ξij(t) = p(Yt = i, Yt+1 = j|ST, θ).

3. Update the parameter estimates using the posterior probabilities.
The priors can be estimated as follows:

pi ¼
1

N

XN

n¼1

g
ðnÞ
i ð0Þ

where the sum is over all sequences. When the initial states are fully observed, γi(0) 2 {0, 1},

and this is equivalent to computing the proportion of sequences beginning in each state.

When the initial states are partially observed, γi(0) 2 [0, 1], and this yields the expected pro-

portion of sequences beginning in each state according to the posterior probabilities.

The transition matrices can be estimated using:

Aij ¼

PN
n¼1

PT� 1

t¼1
x
ðnÞ
ij ðtÞ

PN
n¼1

PT� 1

t¼1
g
ðnÞ
i ðtÞ

:

For fully observed sequences, this involves computing the proportion of transitions from

state j to state i. For partially observed sequences, this yields the expected proportion again

using posterior probabilities.

The means and standard deviations can be estimated using weighted formulas:

mik ¼

PN
n¼1

PT� 1

t¼1
g
ðnÞ
i ðtÞðxtÞk

PN
n¼1

PT� 1

t¼1
g
ðnÞ
i ðtÞ

; ð1Þ

s2
ik ¼

PN
n¼1

PT� 1

t¼1
g
ðnÞ
i ðtÞ½ðxtÞk � mk�

2

PN
n¼1

PT� 1

t¼1
g
ðnÞ
i ðtÞ

: ð2Þ

As discussed above, the weights are posterior probabilities for each state. When the states

are known, these reduce to the standard formulas for mean and variance.

4. Repeat steps 2-3 are until the parameter estimates convergence.
We find that 100 iterations are generally sufficient.

In its original formulation, the Baum-Welch algorithm was designed for the case where the

hidden states are never observed and the emission variables are completely observed. In the

datasets studied here, some of the hidden states are known and many of the emission variables

are missing. In this case, the forward backward procedure must be modified slightly, and the

model is trained in a semi-supervised manner.

The first step of the forward-backward procedure involves computing the posterior proba-

bilities for each state conditioned on the observed emissions using the current parameter esti-

mates. This is given by

pðYt ¼ ijXt ¼ x; θÞ ¼
pðXt ¼ xjYt ¼ i; θÞpðYt ¼ ijθÞ

P2

j¼0
pðXt ¼ xjYt ¼ j; θÞpðYt ¼ jjθÞ

ð3Þ

which is derived from Bayes rule. The terms on the right hand side are straightforward to
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compute using the emission distributions, which are defined by the current parameter esti-

mates θ, and uniform priors p(Yt = i|θ) = 1/3 for i = 0, 1, 2.

This step can be modified as follows. When no emissions are observed, we use uniform

probabilities p(Xt = x|Yt = i) = 1/3. When some but not all emissions are missing, p(Xt = x|Yt =

i, θ) is computed by integrating over all possible values of the missing emissions. Since the

emissions are independent, this distribution is just a product of Gaussians and one therefore

only needs to multiply the densities that correspond to the observed emissions (when present).

Finally, when the state variable is observed, we simply set the posterior probability p(Yt = i|Xt

= x, θ) equal to one for the observed state and zero for all others.

Once the HMM has been trained, one can compute the sequence of hidden states that is

most likely to produce the observed emissions using the Viterbi algorithm [25, 26].

4.2.2 GNB model. The GNB model is a simplified version of the HMM. Rather then

modeling three transitions between states, we treat the observations as if they are independent

and identically distributed (IID). As with the HMM, we assume that the physiological mea-

sures are independent so that the kth emission is Gaussian when conditioned on the pain class.

The parameters of these distributions can be estimated in a semi-supervised fashion using a

simplified version of the expectation maximization process used for HMMs. Rather than using

the forward backward procedure to compute the posterior probabilities, we can instead exploit

the IID assumption to compute them as follows:

giðtÞ ¼ pðYt ¼ ijST; θÞ ¼ pðYt ¼ ijXt; θÞ ð4Þ

where the term on the right hand side is given by Eq (3). Using this result, both the parameters

and predictions of the model can be updated iteratively as follows:

1. Initialize the parameters θ = (μ, σ2) by computing the averages and variances of the labeled
examples from each class.

2. Compute the posterior probabilities for fixed θ using Eq (4).

3. Update the parameters θ using these posterior probabilities and Eqs (1) and (2).

4. Repeat steps 2 and 3 until convergence.

4.2.3 Baseline models. Before training a sophisticated statistical or machine learning

model like an HMM, it is useful to consider an appropriate baseline model in order to put the

model’s performance in context. We consider two such models: a random guessing model and

a mode guessing model. Both types of models can be derived from the proportions of observa-

tions from each class in the training data.

In the random guessing model, we make predictions by randomly sampling from a multi-

nomial distribution with class probabilities determined from those proportions. Note that this

model is “naive” in the sense that it ignores the input features entirely. If a predictive model

fails to outperform this baseline, then one can conclude that either the features contain no use-

ful information about the variable that is being predicted, or the model is misspecified and is

not appropriate for the dataset.

In the mode guessing model, we simply predict the most common class from the training

data. That is analogous to the heuristic that a human might use in the absence of outside infor-

mation. In the context of pain, when asked to estimate pain without additional data, a clinician

might predict that each patient is experiencing the level of pain that is typical among similar

patients or that the pain has not changed since the last time the pain was reported. A predictive

model that fails to outperform such a model would have limited usefulness in a clinical setting.
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Since 10-fold cross-validation involves random assignment of patients to training and test-

ing folds, the predictions of both of these naive models can be viewed as random variables.

One can use bootstrapping to simulate this assignment and prediction process in order to esti-

mate the probability distributions for those predictions as well as any relevant performance

metrics (such as those discussed in Section 4.3). Given these distributions and the performance

of a trained model, it is straightforward to estimate the probability that the naive model out-

performs the trained model according to a given metric. These probabilities are analogous to

the so-called p-values used in hypothesis testing. In other words, we can use these p-values to

test the null hypothesis that a naive model performs as well as or better than the trained model.

The p-values reported in Section 2 were computed using this approach. According to conven-

tion, p-values less than α = 0.05 are deemed statistically significant at the 0.05 level, and consti-

tute evidence that the null hypothesis can be rejected in favor of the alternative. In this context,

p< 0.05 constitutes statistically significant evidence that the trained model outperforms the

naive model.

4.2.4 Alternative models. One limitation of the classification models presented here is

that the pain scores are binned into unordered classes. As far as the classifier is concerned,

pain scores of 6 and 7 are equally distinct as pain scores of 4 and 7 since both pairs correspond

to the same pair of classes: medium and high. Similarly, there is no requirement that medium

and high pain classes should be more similar than low and high classes in the model. The mod-

els are free to discover this ordinality from the data, but the ordinality is not imposed a priori.

One way to take the ordinality of pain into account is to interpret this as a regression prob-

lem rather than a classification problem. One could attempt to predict the pain, the deviation

from the median pain, or the change in pain directly instead of assigning those continuous

quantities to discrete classes. Standard methods such as linear regression or linear Gaussian

state space models (the continuous analog of the HMMs discussed above) could be used to

uncover the dependencies between the physiological measures and these numerical pain val-

ues. Unfortunately, these methods either operate under the assumption that these dependen-

cies are linear or they require assumptions about the form of any nonlinearities. In

preliminary testing, we found that these linear models underperformed their discrete counter-

parts and therefore we do not discuss them here.

4.3 Evaluation metrics

In Section 4.2, we presented a variety of classification models for the evolution of pain. Given a

sequence of emissions, these models can be used to produce probabilistic predictions for the

corresponding pain categories. We now discuss various metrics used to compare the perfor-

mance of these models.

The most natural tool for describing the performance of a classifier is the confusion matrix.

Given an N-class classification problem, a confusion matrix is an N × N matrix with entry in

row i and column j indicating the number of examples in the test set for which the true class

was i and the predicted class was j. Unfortunately, there is no straightforward way to compare

confusion matrices since they are multi-dimensional. Researchers often attempt to condense

that information into a single metric allowing for direct comparisons. For example, given a

confusion matrix C, the diagonal entries correspond to correctly classified observations, and

one can therefore compute the accuracy by computing the proportion of correct predictions

out of the total number of predictions.

Unfortunately, accuracy is not necessarily a good measure of performance. In classification

problems with imbalanced class-sizes, naive models like the mode-guessing model can pro-

duce a high degree of accuracy despite the fact that their predictions are useless. This is
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analogous to a weatherman who never forecasts rain: although the forecast may be correct

90% of the time, it does not provide any useful information.

Alternatives to accuracy include the precision and recallwhich measure the number of true

positives divided by the total number positive predictions and the number of true positives

divided by the number of positive examples respectively. Precision is therefore the more useful

measure when one is primarily concerned with avoiding false positives and recall is the more use-

ful measure when one is primarily concerned with avoiding false negatives. Both metrics are

bounded between zero and one with zero corresponding to a classifier that is always wrong and

one corresponding to a perfect classifier. ForN-class classification problems, one can compute

each metricN times, once for each “positive” class and then average the results to obtain a single

number. When the classes are weighted equally during the averaging, the metrics are referred to

as themacro averaged precision and recall. When the classes are weighted in proportion to the

number of observations in each class, the metrics are referred to as the weighted average precision

and recall. Both averaged metrics are difficult to interpret without knowing the sizes of the classes.

The F1 score is the harmonic mean of the precision and recall and is a way to combine both

quantities into a single metric. Like precision and recall, it is possible to compute macro aver-

age and weighted average F1 scores by averaging over the number of classes. Unfortunately,

this can lead to counterintuitive results. For example, it is possible to have a macro averaged F1

score that is lower than both the precision and recall. Consider a three class problem with 10

examples from each class and consider a classifier with predictions that are biased toward class

2 due to an overabundance of examples from class 2 in the training data. Suppose that this clas-

sifier produces the confusion matrix shown in Table 7. The single class precisions are given by

1/1, 1/1, and 10/28 and the single class recall values are given by 1/10, 1/10, and 10/10 for clas-

ses 0, 1, and 2 respectively. This means the F1 scores are given by 2/11, 2/11, and 10/19. These

results can be averaged across classes (in this case macro and weighted averaging are equiva-

lent) yielding averaged scores of 11/14� 0.786, 2/5 = 0.4 and 62/209� 0.297 for precision,

recall and F1 score respectively. In other words, F1 score is lower than both the precision and

the recall despite the fact that it is the harmonic mean of those quantities when applied to each

class. On the other hand, if we take the harmonic mean of the averaged precision and recall,

we obtain 0.530 which is in between precision and recall.

Because average F1 scores are popular multi-class classification metrics, we include the

macro-averaged F1 score in Tables 2–4 for the sake of completeness. However, due to these

counter-intuitive properties, we do not consider these metrics to be particularly informative in

the context of pain estimation.

Up to this point, all of the metrics we have discussed are based on the confusion matrix. In

other words, the metric is computed from the predictions rather than the class probabilities.

These predictions are obtained by selecting the class with the highest posterior probability.

Unfortunately, in problems with imbalanced classes that are not well-separated, the priors

(related to class frequencies of the classes) can dominate the likelihoods so that the posterior

probability is always (or almost always) largest for the most common class and the classifier

Table 7. Confusion matrix for a hypothetical classifier. In this table, rows indicate the true class and columns indi-

cate the predicted class. The entries in the table describe the number of observations of each type. When computing the

F1 score for this classifier, one finds that, counterintuitively, the averaged result is smaller than both the precision and

the recall.

0 1 2

0 1 0 9

1 0 1 9

2 0 0 10

https://doi.org/10.1371/journal.pcbi.1008542.t007
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will never (or rarely) predict the minority classes. This does not necessarily mean that the pos-

terior probabilities are uninformative. For example, suppose a patient usually has high pain

with probability 0.8 and low pain with probability 0.1. If at a particular point in time, the poste-

rior probabilities for high and low pain change to 0.55 and 0.3 respectively, then that is a sign

that the patient’s condition may have improved and that the model is detecting evidence for

that change. Metrics that are based on the confusion matrix cannot detect these small changes

since the “High” pain class has the highest posterior probability in both cases.

The volume under the receiver operating characteristic surface (VUS) and its binary analog,

the area under the receiver operating characteristic curve (AUC), use the posterior probabilities

directly instead of the confusion matrix. For example, in a binary classifier one can use a thresh-

old on the posterior probability for the positive class to determine whether to label the example

as positive or negative. When this threshold is close to zero, the true positive rate (TPR) will be

high, but the false positive rate (FPR) will also be high. One can reduce the false positive rate by

increasing the threshold, but this may decrease the true positive rate as well. As the threshold

varies, the TPR and FPR trace out a parametric curve (FPR,TPR) = (0,0) to (FPR,TPR) = (1,1).

A useful classifier will possess a particular threshold with a low FPR and a high TPR. The area

under this curve therefore provides a useful metric for measuring classifier performance.

The VUS is a generalization of the AUC to multi-class problems [15]. Direct computation

of the VUS for an n-class classification problem involves integrating over a surface in n(n − 1)

dimensions. This can be computationally intensive, so VUS is usually approximated using cer-

tain heuristics. The approach we use is motivated by reference [16], where the authors provide

a concise interpretation of the VUS. They demonstrate that the VUS is equal to the accuracy

obtained in a forced-choice experiment where the classifier is presented with examples from

each class and asked to assign labels to each. This procedure can be implemented as follows:

1. Initialize two counters. Total = 0 and TotalCorrect = 0.

2. Select one example from each class from the testing set.

3. Using the posterior class probabilities, attempt to assign labels to each of these examples. Note

that this essentially a matching problem since we know that there must be an example from

each class. We used decision rule III from [15] for the matching procedure.

4. If all of the labels are correct, then increment TotalCorrect and Total. Otherwise,
increment Total only.

5. Repeat steps 2 through 4 until all combinations of examples from each class have been
exhausted.

6. The accuracy in this task, and therefore the VUS score, of this classifier is given by
TotalCorrect/Total.

Note that a trivial classifier that guesses randomly will have an accuracy of 1/n! where n is

the number of classes. This means that, in binary classification problems, nontrivial models

should exceed a baseline VUS of 0.5, and in three-class classification problems such as those

discussed here, the VUS score should exceed 0.167.

The number of combinations of examples from the classes grows quickly with the size of the

dataset and the number of classes making this procedure impractical for even moderately sized

datasets. Fortunately, one can obtain a satisfactory approximation by using random samples

from each class rather than deterministically exploring every combination of examples from

each class. We found 1000 samples to be sufficient for obtaining satisfactory estimates for the

VUS.
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Out of all the metrics presented here, we believe that the VUS is the most meaningful for

the pain estimation problem due to its robustness to class imbalance and because of its ability

to detect whether the posterior probabilities contain useful information for distinguishing

between classes. According to this metric, both HMMs and GNB classifiers provide a signifi-

cant improvment over null models despite the fact that the trivial mode classifier has higher

accuracy.

Supporting information

S1 Fig. Normalized features and median referenced pain scores. These scatterplots depict

the correspondence between the normalized physiological features and relative pain scores for

all patients. Red curves display a linear fit. Individually, the correlations between these features

and the (median-referenced) pain scores are weak. The correlations are 0.039, 0.022, 0.094,

-0.031, 0.037, 0.028 respectively for Resp, Temp, Pulse SpO2, Systol and Diastol. However, the

evidence that the slope differs from zero is weak and is significant at the p = 0.05 level for only

Resp and Pulse. However, the performance of the classification models suggests that when all

six features are used in tandem, a clearer signal can be extracted.

(EPS)

S2 Fig. Sample time series. These plots display the temporal evolution of the pain scores and

vitals for two representative patients. The absence of simple trends in the pain scores suggests

that a probabilistic temporal model such as a (hidden) Markov model is more appropriate for

describing the dynamics than a deterministic model.

(EPS)

S1 Table. Confusion matrices for the HMM model. Rows correspond to the true class and

columns correspond to the predicted class. The values represent the number of observations

with the corresponding true and predicted classes. The confusion matrices are aggregated over

the ten testing folds. The accuracy is high for the largest class in each classification problem,

but lower for minority classes. The success of the models according to alternative metrics like

VUS suggests that the posterior probabilities are more informative than the predictions them-

selves.

(EPS)

S2 Table. Confusion matrices for the GNB model. Rows correspond to the true class and col-

umns correspond to the predicted class. The values represent the number of observations with

the corresponding true and predicted classes. The confusion matrices are aggregated over the

ten testing folds. The accuracy is high for the largest class in each classification problem, but

lower for minority classes.

(EPS)

S3 Table. Transition matrices for HMM models. Rows correspond to the source class and

columns correspond to the target class. Values indicate the probability of transitioning

between source and target classes at each time step (2 hour window). These values were

obtained by averaging over 10 models resulting from the 10 folds used in cross-validation. The

transition matrices reveal plausible trends in the learned dynamics. Both the direct and

median-referenced models show evidence of auto-correlation, i.e., they indicate that the next

state is correlated with the current state. The difference model shows regression to the mean,

i.e., it indicates that pain increases are more likely to be followed by decreases and vice versa.

(EPS)
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S4 Table. Emission parameters for HMM models. Rows indicate the pain class and columns

indicate the emission type. The values displayed include the mean ± the standard deviation.

The emission parameter tables show that the variance between classes is much smaller than

the variance within classes. This means that, on its own, each emission variable would be insuf-

ficient for classifying the pain. However, when used in tandem, these physiological measures

can provide a meaningful signal as evidenced by the statistically significant improvement in

VUS. For most of the physiological measures, there is no clear trend in the means across clas-

ses. This can be attributed to the confounding variable of medication. In a controlled setting,

as pain goes up, one would expect the physiological measures (with the exception of SpO2) to

increase as well. However, the patients studied here are more likely to receive pain medication

when the pain is high. These medications tend to have the opposite effect, causing the physio-

logical measures to decrease. Because of these opposing effects, it is unclear whether one

should expect high pain to be associated with higher physiological measures or lower.

(EPS)

S5 Table. Emission parameters for GNB models. Rows indicate the pain class and columns

indicate the emission type. The values displayed include the mean ± the standard deviation.

(EPS)
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