Supplement: Description of Supplementary Videos for Basins of Attraction for Chimera States

Erik A. Martens ${ }^{a, b}$, Mark J. Panaggio ${ }^{c, d}$, Daniel M. Abrams ${ }^{d, e, f}$
${ }^{a}$ Dept. of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200
Copenhagen, Denmark
${ }^{b}$ Dept. of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2200 Copenhagen, Denmark
${ }^{c}$ Mathematics Dept., Rose-Hulman Institute of Technology, Terre Haute, IN
${ }^{d}$ Dept. of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL
${ }^{e}$ Dept. of Physics and Astronomy, Northwestern University, Evanston, IL
${ }^{f}$ Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
E-mail: erik.martens@ds.mpg.de

Figure 1. Supplementary Video 1: Destination maps as a function of $0.1 \leq s \leq 1$ $(A=0.2, \beta=0.025)$. Even though $A=0.2$ is fairly large with regards to our perturbative calculus, numerical results match the predicted motion qualitatively well. As s increases from zero, basins merge and pinch-off in an alternating fashion, so that the basin boundaries rotate counter-clockwise about $R_{0}((d, \psi)=(0,0)$. Once s reaches $s_{c} \approx \sqrt{1-A}$, this rotation stops, demonstrating that knowledge of the trajectory position in the $s=s_{c}$ plane is sufficient for determining the final fate of the trajectory. Download link here.

Figure 2. Supplementary Video 2: Twisting motion of trajectories in a double helical structure following the R_{0}-manifold $(A=0.1, \beta=0.025)$. Initial conditions of 31 trajectories are equally spaced with $s=0.1045,-0.0345 \leq d \leq 0.0345, \psi=0$. Download link here.

Figure 3. Supplementary Video 3: Twisting motion of trajectories in a double helical structure following the R_{π} manifold ($A=0.1, \beta=0.025$). Initial conditions of the 3 trajectories are $s=0.4487, d \in\{-0.6,-0.2,0.6\} \times 10^{-3}, \psi=\pi$. Download link here.

Figure 4. Supplementary Video 4: Three dimensional visualization of the separatrices emanating from the chimera saddle points near the R_{0}-manifold ($A=$ $0.1, \beta=0.025)$. Download link here.

