Supplement: Description of Supplementary Videos for Basins of Attraction for Chimera States

Erik A. Martens^{*a,b*}, Mark J. Panaggio^{*c,d*}, Daniel M. Abrams^{*d,e,f*}

 $^a\mathrm{Dept.}$ of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark

^bDept. of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2200 Copenhagen, Denmark

 $^c{\rm Mathematics}$ Dept., Rose-Hulman Institute of Technology, Terre Haute, IN $^d{\rm Dept.}$ of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL

 $^e {\rm Dept.}$ of Physics and Astronomy, Northwestern University, Evanston, IL $^f {\rm Northwestern}$ Institute on Complex Systems, Northwestern University, Evanston, IL

E-mail: erik.martens@ds.mpg.de

Figure 1. Supplementary Video 1: Destination maps as a function of $0.1 \le s \le 1$ $(A = 0.2, \beta = 0.025)$. Even though A = 0.2 is fairly large with regards to our perturbative calculus, numerical results match the predicted motion qualitatively well. As s increases from zero, basins merge and pinch-off in an alternating fashion, so that the basin boundaries rotate counter-clockwise about R_0 $((d, \psi) = (0, 0)$. Once s reaches $s_c \approx \sqrt{1-A}$, this rotation stops, demonstrating that knowledge of the trajectory position in the $s = s_c$ plane is sufficient for determining the final fate of the trajectory. Download link here.

Figure 2. Supplementary Video 2: Twisting motion of trajectories in a double helical structure following the R_0 -manifold ($A = 0.1, \beta = 0.025$). Initial conditions of 31 trajectories are equally spaced with $s = 0.1045, -0.0345 \le d \le 0.0345, \psi = 0$. Download link here.

Figure 3. Supplementary Video 3: Twisting motion of trajectories in a double helical structure following the R_{π} manifold ($A = 0.1, \beta = 0.025$). Initial conditions of the 3 trajectories are $s = 0.4487, d \in \{-0.6, -0.2, 0.6\} \times 10^{-3}, \psi = \pi$. Download link here.

Figure 4. Supplementary Video 4: Three dimensional visualization of the separatrices emanating from the chimera saddle points near the R_0 -manifold ($A = 0.1, \beta = 0.025$). Download link here.