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FIG. S1. Additional interaction functions. Solid blue curve: tri-
angle wave from Eq. (S1); solid red curve: antisymmetrized variant
of the von Mises distribution from Eq. (S2) with κ < 0; dashed red
curve: antisymmetrized variant of the von Mises distribution from
Eq. (S2) with κ > 0. Panels (a) and (b) of Fig. S2 use the triangle
wave. Panels (c) and (d) use the antisymmetrized von Mises func-
tion, with positive κ (dashed red) in panel (c) and negative κ (solid
red) in panel (d). We note that for κ > 0 the slope at the ±π is never
steeper when compared to the origin and for κ < 0 the slope at the
origin is never steeper when compared to the slope at ±π .

I. ADDITIONAL COUPLING FUNCTIONS

Figure S1 illustrates two additional coupling functions that
we examined. We used a variant of the triangle wave (blue,
solid) given by the equation

ftri(u;c) =

{
2u
c |u|< c
2u

c−π
− sign(u)( 2π

c−π
) c≤ |u| ≤ π

, (S1)

assuming that 0 < c < π , and an antisymmetrized variant of
the von Mises distribution (red curves) given by

fvM(u; µ,κ) = sin(u−µ)
eκ cos(u−µ)

2πI0(κ)
. (S2)

We numerically probe the stability of the bimodal equi-
librium using these interaction functions in Fig. S2. Here
N = 100, the oscillators’ frequencies are drawn from a dis-
tribution N (0,100), the phase perturbation, ξi, is drawn from
the distribution N (0,0.01) and we set K = −1000. In pan-
els (a) and (b) we take the triangle wave defined in Eq. (S1)
and set c = 3π/4; this gives a stable fractionation threshold
1/4 < x < 3/4. We test that threshold numerically by setting
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FIG. S2. Numerical experiments using additional interaction
functions. We test the stability of the bimodal equilibria for alterna-
tive coupling functions shown in Fig. S1. (a) Triangle wave coupling
with initial fractionation in predicted stable range. (b) Triangle wave
coupling with initial fractionation outside predicted stable range. (c)
Von Mises coupling with κ > 0 (expected to be unstable). (d) Von
Mises coupling with κ > 0 (expected to be stable). In all panels
N = 100 and oscillators’ natural frequencies are drawn from the dis-
tribution N (0,100). Initial phases are bimodally distributed with
modes at 0 and π , with perturbations ξi, i = 1, . . . ,N, are drawn from
N (0,0.01).

xinitial = 7/10 < 3/4 in panel (a) and xinitial = 8/10 > 3/4 in
panel (b). As expected, we see that the fractionation is stable
in panel (a) and is unstable in panel (b).

In panels (c) and (d) we use the antisymmetrized von-Mises
function from Eq. (S2) with µ = 0 and xinitial = 1/2. In panel
(c) we set κ = 10, and, as expected, we see that the bimodal
equilibrium appears unstable; this is because there does not
exist a range of x such that Eq. (10) can be satisfied given
that the slope at the origin is far steeper than the slope at the
±π . We note that in (c) the system appears to tend to the
incoherent state. In panel (d) we set κ = −10 and observe
that the bimodal state appears to be stable under perturbation,
which is expected given that the slope at the ±π is steeper
when compared to the origin.

II. BASINS OF ATTRACTION FOR MULTIMODAL
STATES

We have conducted some preliminary numerical explo-
ration of the sizes of basins of attraction for various equilib-
ria for the example interaction function given in Eq. (11) of
the main text. We simulated the system one hundred times
with initial phases chosen independently at random from the
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FIG. S3. Basins of attraction. We plot the fraction of uniform ran-
dom initial conditions that end up in bimodal (blue circles), trimodal
(orange asterisks), or higher order multimodal (purple xs) states for
the concrete system examined in the main text. Here N = 100,
K = −10000 and oscillators’ natural frequencies are drawn from
the distribution N (0,100). We performed 100 unique simulations
for each value of a. Final states (presumed equilibria) were identi-
fied automatically via k-means clustering. Thresholds given in the
main text for stability of bimodality and the antiphase state are given
by the solid black line and the dot-dashed green line, respectively.
The threshold for the necessary condition for stability of the trimodal
state is given by the vertical dashed magenta line.

uniform distribution over the circle, i.e. U (−π,π], and eval-
uated the fraction of the time that the system converged to
each distinct equilibrium state. Results are shown in Fig. S3,
with N = 100, K =−10000, and oscillator natural frequencies
drawn from the distribution N (0,100).

Fig. S3 also shows the stability thresholds described in
Eqns. (12) (bimodal state), (A.13) (antiphase state), and tri-
modal state (A.12) of the main text, visualized by the solid
black, and dot-dashed green, and magenta vertical lines re-
spectively. In order to classify the observed equilibria, we use
a k-means algorithm on the unit circle, with the number of
clusters, k, being decided by the gap statistic. We say that a
equilibrium state is bimodal if k = 2, trimodal if k = 3, and so
on.

We note that the results are consistent with our analysis in
that the probability of a configuration is always zero in ranges
of a where it is excluded. Although, we have not analyzed
equilibria with more than three modes, we observe that such
modes are unlikely to be observed for most values of a, and
thus have apparently small basins of attraction.

Given that this experiment was conducted with heteroge-
neous oscillators, this lends plausibility to the idea that the
system will end up in a multimodal state for sufficiently large
coupling. More formal analysis of the basin size of the bi-
modal and trimodal state will be left for future work.
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FIG. S4. Critical coupling strength. We perform numerical experi-
ments to demonstrate the existence of a critical coupling strength for
our system and evaluate its dependence on parameter a using the in-
teraction function defined in Eq. (11) of the main text. Here N = 100,
the natural frequency distribution is given by N (0,σ2), and the ini-
tial phase distribution is ρ(θ) = 0.5δ (θ)+0.5δ (θ −ψ0), where ψ0
is the predicted phase separation given by the stable fixed points of
Eq. (11). Here, each curve represents a different value of a (values
indicated in legend). As in the standard Kuramoto model, the critical
coupling strength is dependant on the size of the standard deviation
of the distribution, but unlike the standard Kuramoto model, it ap-
pears to also depend on a, which sets the shape of the interaction
function.

III. CRITICAL COUPLING STRENGTH

In the standard Kuramoto model with attractive coupling,
there exists a critical coupling strength Kc at which the system
bifurcates from an incoherent state to the ordered state. To
look for K dependence in the system detailed in main text,
we examine the simplest cases of N = 2 and N = 3, and also
conduct several numerical experiments with results shown in
Fig. S4, though we leave more thorough exploration for future
work.

Figure S4 shows how order varies as we increase coupling
strength among nonidentical oscillators with the concrete in-
teraction function used in the main text. Here, we set N = 100
and draw the frequencies from the distribution N (0,σ2).
From here, we vary the quantity K/σ so that log10(K/σ) runs
from -2 to 4. Each curves shown above represents the result
of an experiment for a given value of a. Here, the order pa-
rameter is defined as follows:

R = max

{∣∣∣∣∣∑j

e2iθ j
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∣∣∣∣∣∑j

e3iθ j

N

∣∣∣∣∣ ,
∣∣∣∣∣∑j

e
2π
a iθ j

N

∣∣∣∣∣
}
. (S3)

Defining the order parameter in this fashion sets the value of
the order parameter to be 1 whenever the final configuration
is bimodal or an equally spaced trimodal solution. Just as in
the standard Kuramoto model, if the coupling strength K is not
sufficiently large in magnitude, the system goes to the incoher-
ent state due to intrinsic oscillator heterogeneity. We observe
that the critical coupling strength appears to be proportional
to the standard deviation of the frequency distribution, similar
to the result in the standard Kuramoto analysis, but we point
out that the critical coupling strength Kc also appears to have
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dependence on the value of a. We believe that some insight
into this dependence can be gained from examining the simple
N = 2 and N = 3 cases, though more rigorous analysis is left
for future work.

For N = 2, the system reduces to

ψ̇ = ∆ω−K f (ψ) (S4)

where ∆ω =ω2−ω1. Setting ψ̇ = 0, we find that a fixed point
ψ0 must satisfy the equation:

∆ω

K
= f (ψ0) . (S5)

Note, this fixed point does not always exist, but if the coupling
function f has zeros, a fixed point must arise as |K| → ∞.

Even without explicitly defining ψ0, we can observe scaling
dependencies for the critical coupling strength Kc, which is
defined such that

f (ψmax) =
∆ω

Kc
(S6)

where ψmax ∈ (−π,π] is the value such that f (ψmax) =
max f (ψ) (the arg max). We observe that Kc ∝ ∆ω , which is
expected if Kc ∝ σ as in the standard Kuramoto model (since
for two oscillators σ ∝ ∆ω) and is observed in our numerical
experiments even for N� 2.

We also observe that Kc scales with the maximum value
of the interaction function f , which in our numerical experi-

ments depends on the parameter a. Similar dependence is also
evident if we consider the N = 3 case.

For N = 3, we take the natural frequencies (without loss
of generality) to be 0,−σ/3,σ/3 respectively. As before, we
convert to difference coordinates ψ1 = θ2−θ1 and ψ2 = θ3−
θ2, and arrive at two conditions for existence of equilibria:

σ

K
= f (ψ2−ψ1)− f (ψ2)−2 f (ψ1) (S7)

σ

K
= f (ψ2−ψ1)+2 f (ψ2)+ f (ψ1) , (S8)

which simplify to

σ

K
= f (ψ2−ψ1)+ f (ψ2) (S9)

f (ψ1) =− f (ψ2) . (S10)

Hence, a necessary condition K must satisfy for the existence
of equilibria is

σ

K
≤ 2 f (ψmax) . (S11)

So, just as in the N = 2 case, we see that the critical coupling
strength Kc is proportional to the oscillator heterogeneity σ

and inversely proportional to the maximum of the interaction
function f .

We hypothesize that similar scaling laws hold for N � 1,
and find that such a hypothesis is consistent with data from
numerical experiments shown in Fig. S4.


