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Origin of Name Brands and Generics\ast 

Joseph D. Johnson\dagger 

Adam M. Redlich\dagger 

Daniel M. Abrams\ddagger 

Abstract. Firms in the U.S. spend over $200 billion each year advertising their products to consumers,
around one percent of the country's gross domestic product. It is of great interest to
understand how that aggregate expenditure affects prices, market efficiency, and overall
welfare. Here, we present a mathematical model for the dynamics of competition through
advertising and find a surprising prediction: when advertising is relatively cheap compared
to the maximum benefit advertising offers, rational firms split into two groups, one with
significantly less advertising (a ``generic"" group) and one with significantly more advertising
(a ``name-brand"" group). Our model predicts that this segmentation will also be reflected
in price distributions; we use large consumer data sets to test this prediction and find good
qualitative agreement.
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1. Introduction and Background. Advertising is an important component of a
free market system; it has been estimated that advertising expenditures in the United
States exceeded $200 billion in 2018 alone [32]. Although the monetary investment
is large, it remains unclear exactly how advertising affects demand and what the im-
plications are for market competition. Perhaps advertising leads to increased market
efficiency, greater aggregate profit for sellers, or better outcomes for buyers. The
opposite could also be argued.

There are three prevailing theories as to how advertising influences the consumer
[30]. Advertising can be viewed as persuasive, whereby it changes the tastes of con-
sumers and increases demand (and price) [5, 11, 12]; informative, whereby it increases
competition and decreases price [36, 26, 34]; or complementary, whereby it appeals to
consumers with specific preferences that complement the consumption of the adver-
tised products [4, 27, 35]. These views have drastically different implications.
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626 JOSEPH D. JOHNSON, ADAM M. REDLICH, AND DANIEL M. ABRAMS

In this paper we focus on persuasive advertising and, as in [6], assume that it
increases demand. We look to work by Abernethy and Butler [1] to justify this
assumption, where they report that an average TV ad contains just one piece of
descriptive information about the displayed product (e.g., price, quality, performance,
etc.), and that 37.5 percent contain no descriptive information at all. We take this
to mean that a significant portion of TV ads are not informative, implying that they
are persuasive or complementary. Additionally, we make the simplifying assumption
that persuasive advertising is always complementary, as Lindst\"adt and Budzinski
argue that the viewer relates to the images and messages for both complementary
and persuasive advertising [21].

A large amount of research has been devoted to using game theory to choose the
optimal advertising expenditure to maximize profit [10, 22, 33, 31, 16, 13, 15]. Often
this work focuses on settings where there is a monopoly (only one supplier of a good
or service) or an oligopoly (only a small number of suppliers of a good or service)
[14, 13, 31, 16, 15, 22, 17].

Less research has focused on monopolistic competition, where there are many
suppliers of a product or service, but the products or services are differentiated only
by brand and/or quality. In this paper we develop a model for this setting, looking
at the expected advertising expenditure distribution for an arbitrary number of firms
competing in a single commodity-product sector. Our goal is to develop a qualitative
understanding of the expected shape of the advertising distribution in a monopolistic
competitive setting.

1.1. Synopsis of Modeling Approach. In developing our model, we make the
following simplifying assumptions:

1. Companies1 sell an indistinguishable product (except for brand label).
2. There is a linear relationship between the amount of a company's product

demanded by the public and the price of the product.
3. Demand for a company's product increases when its advertising is above the

mean advertising level and decreases when its advertising is below the mean.
4. Each company sets the price at a level that maximizes its profit.
5. Companies continuously adjust their advertising so as to maximize profit.

These assumptions lead to a system of ordinary differential equations describing the
dynamics of advertising investments for N firms.

These equations imply that, when advertising is relatively cheap compared to the
benefit of advertising, two groups arise: a ``generic-brand"" group that advertises a
minimal amount, and a ``name-brand"" group that advertises at a significantly higher
level.2 We find that this segmentation is stable and only ceases to exist when the
marginal cost of advertising becomes too high relative to the marginal benefit of
advertising. Although our model is intended chiefly to provide a conceptual ``toy""
description, fits to real-world price data3 show good qualitative agreement (see Fig-
ure 1).

We caution the reader that, though we use the terms ``generic"" and ``name brand""

1We use the terms ``companies"" and ``firms"" interchangeably.
2Note that the minimal advertising level may not be zero: there may be some fixed advertising

costs, e.g., associated with product packaging or distribution. We will treat the minimal level as
zero (representing zero ``excess"" advertising) for simplicity in presenting our model, but including an
additive constant does not change our predictions.

3Data in Figure 1 have been treated to compensate for psychological pricing, where prices tend
to end in certain digits such as ``0"", ``5"", and ``9"". See the supplementary material for details.
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Fig. 1 Price distributions. Red histograms show distribution of prices paid for four common house-
hold products; blue histograms show best-fit model predictions. Data are from a Nielsen
database [7] of over 64 million transactions (purchasing history for 60,000 households).

to refer to low and high advertising investment states, this is an oversimplification.
In the real world, some brands considered generic may in fact spend significantly on
advertising, and some well-known name brands may invest very little in it. However,
for simplicity of exposition, we will employ these terms throughout the paper.

1.2. Outline. In section 2, we present our mathematical model for how firms
work to differentiate themselves through advertising. We also present our results
relating to existence and stability of equilibria. In section 3, we report briefly on
the results of numerical experiments to verify consistency with model predictions. In
section 4, we present real-world data on price distributions for a variety of products
and evaluate model fits to assess the consistency of our predictions. Finally, in section
5 we discuss other possible applications of our model and limitations of our results.

2. Model and Analysis.

2.1. Model Derivation. Consider N companies (or firms) in a market, all selling
the same indistinguishable4 product. The ith firm purchases a quantity of advertising
ai.

5 For simplicity we assume that the firms have linear demand curves of the form

(2.1) Qi = Qfree(ai| \vec{}a) - kPPi , i = 1, 2, . . . , N,

where Qi is the quantity demanded of firm i's product, Pi is the unit price for firm
i's product, Qfree(ai| \vec{}a) is the quantity demanded when the unit price is zero, which
may depend on the full distribution of advertising in the market \vec{}a = (a1, a2, . . . , aN ),
and kP is a constant that sets the market's sensitivity to price.

One measure of a firm's health is the profit generated, with profit defined here as
revenue minus production and advertising costs. We take revenue Ri for the ith firm

4By ``indistinguishable"" we mean that the product without branding is indistinguishable, but the
brand label is always known to the consumer.

5This could be quantified, e.g., by clicks on a website ad banner, inserts in a newspaper, views
of an ad on TV, or supermarket placement costs.
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628 JOSEPH D. JOHNSON, ADAM M. REDLICH, AND DANIEL M. ABRAMS

to be solely due to sales of this single product at market price:

(2.2) Ri = QiPi = Qfree(ai| \vec{}a)Pi  - kPP
2
i , i = 1, 2, . . . , N.

In this model we only consider two types of operating costs, the cost of production
CQ(Qi) and the cost of advertising Ca(ai), and we assume an additive relationship

(2.3) Ci(Qi, ai) = CQ(Qi) + Ca(ai),

where Ci(Qi, ai) is the net operating cost for the ith firm. We assume that both
CQ and Ca are increasing functions of their arguments, and for simplicity6 assume a
power law form for each:

CQ(Qi) = kQQ
\mu 
i ,(2.4a)

Ca(ai) = kaa
\nu 
i ,(2.4b)

where \mu , \nu > 0 and kQ, ka are scale factors and can be interpreted as the marginal
costs of production and advertising, respectively, when \mu = \nu = 1. Thus, the profit
function for the ith firm is

\pi i = Ri  - Ci = Qfree(ai| \vec{}a)Pi  - kPP
2
i  - kQQ

\mu 
i  - kaa

\nu 
i .(2.5)

Critically, we tie a firm's level of advertising, ai, to its ability to capture market
power. We do this by assuming Qfree(ai| \vec{}a) to be a nondecreasing function of ai
referenced to the mean advertising level a = N - 1\Sigma N

i=1ai, i.e., a nondecreasing function
of ai - a (in the most general case, however, it might be an arbitrary function of the full
advertising distribution \vec{}a = (a1, . . . , aN )). We assume firms that advertise more than
the average firm have their demand curves shift out (i.e., quantity demand increases
by a constant amount for all Pi) and firms that advertise less than average have their
demand curves shift in (i.e., quantity demand decreases by a constant amount for all
Pi)---see Figure 2.

We also assume there is a saturation to the amount advertising can influence a
firm's ability to capture market share. A plausible smooth, nondecreasing function
that saturates is the sigmoid. We present results for that case in the supplemen-
tary material (SM). For greater algebraic simplicity, we define Qfree(ai| \vec{}a) here as the
following saturating piecewise linear function:

(2.6) Qfree(ai| \vec{}a) =

\left\{       
Qmin, ai  - a \leq  - \lambda ,

Qmin +
\Delta Qad

2\lambda 
(ai  - a) +

\Delta Qad

2
,  - \lambda < ai  - a \leq \lambda ,

Qmin +\Delta Qad, ai  - a > \lambda ,

where \Delta Qad is the maximum demand increase due to advertising, Qmin is the zero-
advertising (minimum) quantity demanded at zero price, which we deem ``intrinsic
demand,"" and \lambda is the width ofQfree(ai| \vec{}a) (roughly the amount of excess advertising---
above or below the mean---needed for benefits to saturate). See Figure 2 for an
illustration. Note, however, that for the purpose of comparison with data, we use the
more plausible sigmoidal form

(2.7) Qfree(ai| \vec{}a) =
\Delta Qad

2

\biggl\{ 
tanh

\biggl[ 
ai  - a

\lambda 

\biggr] 
+ 1

\biggr\} 
+Qmin.

6Power laws are common in both natural and engineered systems [23, 8], and there is evidence
that production costs can indeed be approximated by power law scaling [38].

D
ow

nl
oa

de
d 

01
/2

6/
23

 to
 1

65
.1

24
.1

64
.2

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Pi

Qi

ai = a

ai > a

ai < a

(a)

\lambda \lambda 
ai  - a

Qfree(ai| \vec{}a)

Qmin +\Delta Qad

Qmin

(b)

 - \lambda \lambda 

Fig. 2 Effect of advertising on a firm's demand curve. (a) Demand shifts due to advertising above
(red dashed) or below (blue dotted) the mean level (black solid). Vertical-axis intercepts are
Qfree(ai| \vec{}a). (b) A simple piecewise linear form for Qfree(ai| \vec{}a), the quantity demanded at
zero price, which we take to be a nondecreasing function of ai  - a that saturates at both
left and right limits. Here the minimum demand (with advertising far below the mean) is
Qmin, the maximum demand increase due to advertising is \Delta Qad, and the advertising needed
beyond the mean for saturation is \lambda .

Table 1 Parameter definitions. Table of parameters used in the model with descriptions.

Parameter Description

N Number of companies
Qmin The quantity demanded with minimal advertising at zero price
\Delta Qad The maximum demand increase due to advertising
kP Decrease in quantity demanded per dollar in unit price increase
kQ Scale factor for production cost

(cost of producing an additional unit when costs are linear)
ka Scale factor for advertising cost

(cost of producing an additional advertisement when costs are linear)
\lambda Amount of excess advertising above/below

the mean to achieve maximum/minimum advertising benefits
\mu Scaling exponent in the production cost function
\nu Scaling exponent in the advertising cost function

We assume that each firm always chooses the price P \ast 
i that maximizes its profit,

with corresponding quantity demanded Q\ast 
i . We introduce dynamics to the model

by assuming that firms change their advertising levels at a rate proportional to the
amount of profit to be gained, i.e.,
(2.8)

\tau 
dai
dt

=
\partial \pi i

\partial ai
=

\partial 

\partial ai

\bigl\{ 
Qfree(ai| \vec{}a)P \ast 

i (ai| \vec{}a) - kP[P
\ast 
i (ai| \vec{}a)]2  - kQQ

\ast 
i (ai| \vec{}a)\mu  - kaa

\nu 
i

\bigr\} 
,

where the constant \tau sets the time scale for equilibration; we will henceforth take
\tau = 1 (equivalent to rescaling the time axis) without loss of generality. The list of
model parameters with definitions is given in Table 1.

2.2. A Concrete Example. As an analytically tractable example, we first con-
sider the case where production and advertising costs grow at a linear rate, i.e.,
\mu = \nu = 1. Substituting (2.1) into (2.5), setting [\partial \pi i/\partial Pi]Pi=P\ast 

i
= 0, and solving for
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a - \lambda a+ \lambda 

ai = a

ka

ai

B(ai| \vec{}a)
ai = a

a+ \lambda 

ka

ai

B(ai| \vec{}a)

Fig. 3 Advertising dynamics given Qfree(ai| \vec{}a). We plot the the horizontal line y = ka together
with y = B(ai| \vec{}a) (see (2.12)) and add color to indicate the direction of change in advertising
according to (2.8). Blue regions show where a firm advertising an amount ai would choose to
increase its advertising, and red regions show where a firm advertising an amount ai would
choose to decrease its advertising. Panel (a) shows the case where Qfree(ai| \vec{}a) is a piecewise
linear function that levels off; (b) shows the case where Qfree(ai| \vec{}a) is sigmoidal.

the profit-maximizing price P \ast 
i gives

(2.9) P \ast 
i (ai| \vec{}a) =

1

2
[Qfree(ai| \vec{}a)/kP + kQ] .

The corresponding profit-maximizing quantity is

(2.10) Q\ast 
i (ai| \vec{}a) =

1

2
[Qfree(ai| \vec{}a) - kQkP] .

Substituting this into (2.8) yields the dynamical system

(2.11)
dai
dt

= B(ai| \vec{}a) - ka,

where B(ai| \vec{}a) is defined as
(2.12)

B(ai| \vec{}a) =

\left\{   
N  - 1

N

\Delta Qad

4\lambda kP

\biggl[ 
\Delta Qad

2\lambda 
(ai  - a) +

\Delta Qad

2
+Qmin  - kQkP

\biggr] 
, | ai  - a| < \lambda ,

0, | ai  - a| > \lambda .

B(ai| \vec{}a) represents the marginal benefit of advertising and ka the marginal cost of
advertising. For any firm with advertising close enough to the mean (| ai  - a| < \lambda ),
the function B is simply a line of positive slope (N  - 1)\Delta Q2

ad/(8N\lambda 2kP)  -  -  -  - \rightarrow 
N\rightarrow \infty 

\Delta Q2
ad/8\lambda 

2kP. Firms with B > ka have dai/dt > 0 and increase their advertising
budgets, while firms with B < ka decrease their advertising budgets. For all firms
far from the mean (| ai  - a| > \lambda ), B = 0 and thus dai/dt =  - ka < 0. This flow
is illustrated in the left panel of Figure 3. The corresponding flow in the case of
a smooth sigmoidal Qfree(ai| \vec{}a) is shown in the right panel of the same figure. The
intuition drawn from the piecewise case outlined here applies similarly to the sigmoid.

2.2.1. Existence of Equilibria. For a given a, there can be at most three fixed
points. In Figure 3, three fixed points are located at a\ast i = a + \lambda , the intersection
where B(a\ast i | a) = ka for a\ast i < a, and at a\ast i = 0 (since advertising cannot be negative).
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Because stability must alternate for one-dimensional flows, a\ast i = 0 and a\ast i = a+\lambda are
the only stable fixed points. Thus, any stable equilibrium distribution \vec{}a with mean a
must have ai = 0 or ai = a+ \lambda for all i.

We refer to the case when advertising is bimodal as the differentiated state. We
note that such a state may only exist when two stable fixed points exist, which requires
maxa B(a| \vec{}a) > ka. Letting N \rightarrow \infty , one can write this condition explicitly as

(2.13) max
ai

\partial \pi i

\partial ai
=

\Delta Qad (\Delta Qad +Qmin  - kQkP)

4\lambda kP
 - ka > 0.

Put simply, if advertising does not increase profit anywhere, bimodality cannot arise.
The differentiated state must be self-consistent---that is, the two stable fixed

points (at 0 and a+\lambda ) when averaged (including weights based on corresponding firm
fractions) must yield the appropriate mean advertising a. We refer to the fraction
of firms that choose to set their advertising to zero (``generics"") as x, and thus the
fraction of firms that set their advertising to a\ast i = a+ \lambda (``name brands"") is 1 - x. It
follows then that a = 0x+ a\ast i (1 - x) = (a+ \lambda )(1 - x) must hold for self-consistency.
Solving for a gives

(2.14) a =
\lambda (1 - x)

x
,

and the name-brand advertising level at equilibrium is then a\ast i = a+ \lambda = \lambda /x.
We also require that the unstable fixed point at B(a\ast i | a) = ka be nonnegative,

assuming the system has reached self-consistent equilibrium (i.e., a = \lambda (1 - x)/x as in
(2.14)). If the unstable fixed point were negative, that would imply dai/dt > 0 over
the entire domain 0 \leq ai < \lambda /x, which would contradict the assumption of a stable
fixed point at ai = 0 that went into the self-consistency argument above.

Imposing this constraint on the unstable fixed point defined by B(a\ast i | a) = ka, we
find
(2.15)

a
\ast (unstable)
i =

\lambda 

x\Delta Q2
ad

\biggl[ 
\Delta Q2

ad(1 - 2x) - 2x\Delta Qad(Qmin  - kPkQ) + 8x\lambda 

\biggl( 
N

N  - 1

\biggr) 
kakP

\biggr] 
and

(2.16) xcrit =
\Delta Q2

ad/2

\Delta Q2
ad +\Delta Qad(Qmin  - kPkQ) - 4\lambda 

\Bigl( 
N

N - 1

\Bigr) 
kPka

.

Here, xcrit bounds the feasible proportion of generic firms from above. Equations
(2.13) and (2.16) (with x < xcrit) establish necessary conditions for existence of the
differentiated state. It is not feasible to derive an equivalent analytical expression for
xcrit in the case of sigmoidal Qfree(ai| \vec{}a), but it is straightforward to compute xcrit

numerically for a given set of parameters, as we do in the SM.
Another state is possible where all firms set their advertising to zero---we refer to

this as the undifferentiated state. Clearly, from (2.11), maxa B(a| \vec{}a) < ka implies that
dai/dt < 0 for all ai. In this case, a\ast i = 0 for all i is the only equilibrium.

2.2.2. Stability of Equilibria. We now consider the stability of the differentiated
and undifferentiated states. First, we focus on the stability of the differentiated state.
We assume there exists an equilibrium with Nx ``generic"" firms choosing to invest
nothing in advertising, and N(1 - x) ``name-brand"" firms choosing to advertise at level
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632 JOSEPH D. JOHNSON, ADAM M. REDLICH, AND DANIEL M. ABRAMS

a+ \lambda , with 0 < x < 1 representing the proportion of ``generic"" firms. Assuming that
N \gg 17 and hence that a small perturbation of a single firm has a negligible impact
on the mean a, we consider perturbation of the ith ``name-brand"" firm's advertising
by an amount \delta and track how \delta (t) changes in time. That is, we set ai = a+\lambda + \delta (t),
which yields the system

(2.17)
d\delta 

dt
=

\left\{   
N  - 1

N

\Delta Qad

4\lambda kP

\biggl[ 
\Delta Qad

2\lambda 
\delta +\Delta Qad +Qmin  - kQkP

\biggr] 
 - ka, | \delta + \lambda | < \lambda ,

 - ka, | \delta + \lambda | > \lambda .

If the condition for existence of the differentiated state given in (2.13) holds, suffi-
ciently small | \delta | implies that d\delta /dt > 0 when \delta < 0. Additionally, it is clear that
d\delta /dt < 0 when \delta > 0. Thus, under this type of perturbation the differentiated
state is stable. If we similarly perturb one firm from the generic group, i.e., setting
ai = \delta > 0, we find
(2.18)

d\delta 

dt
=

\left\{   
N  - 1

N

\Delta Qad

4\lambda kP

\biggl[ 
\Delta Qad

2\lambda 
(\delta  - a) +

\Delta Qad

2
+Qmin  - kQkP

\biggr] 
 - ka, | \delta  - a| < \lambda ,

 - ka, | \delta  - a| > \lambda .

If a > \lambda , then there exists \delta > 0 small enough such that d\delta /dt < 0 since \delta < a + \lambda 
implies that d\delta /dt =  - ka < 0. If a < \lambda , then d\delta /dt is given by the linear equation in
(2.18) for small \delta . Thus, the differentiated state is stable under such a perturbation
when
(2.19)
d\delta 

dt

\bigm| \bigm| \bigm| \bigm| 
\delta \rightarrow 0+

=
N  - 1

N

\Delta Qad

4\lambda kP

\biggl[ 
 - \Delta Qad

2\lambda 
a+

\Delta Qad

2
+Qmin  - kQkP

\biggr] 
 - ka =

\partial \pi i

\partial ai

\bigm| \bigm| \bigm| \bigm| 
ai=0

< 0.

This means it must be unprofitable for companies with no advertising to increase their
advertising for the differentiated state to be stable.

Now we consider the stability of the undifferentiated state, ai = 0 for all i. As
stated in section 2.2.1, if maxa B(a| \vec{}a) < ka, then dai/dt < 0 for all values of ai. Thus,
it is clear that the undifferentiated state exists and is stable in that case. We now
focus on the case where maxa B(a| \vec{}a) > ka. If ai = 0 for all i, then a = 0. We consider
a perturbation of one firm from this state. Letting ai = \delta , again we find

(2.20)
d\delta 

dt
=

\left\{   
N  - 1

N

\Delta Qad

4\lambda kP

\biggl[ 
\Delta Qad

2\lambda 
(\delta ) +

\Delta Qad

2
+Qmin  - kQkP

\biggr] 
 - ka, 0 \leq \delta < \lambda ,

 - ka, \delta > \lambda .

If d\delta /dt < 0 when \delta = 0, by continuity of the d\delta /dt in the range of 0 < \delta < \lambda there
must exist some \delta > 0 sufficiently small such that d\delta /dt < 0. Therefore, the system
is stable under this kind of perturbation when

(2.21)
d\delta 

dt

\bigm| \bigm| \bigm| \bigm| 
\delta \rightarrow 0

=
N  - 1

N

\Delta Qad[Qmin +\Delta Qad/2 - kQkP]

4\lambda kP
 - ka =

\partial \pi i

\partial ai

\bigm| \bigm| \bigm| \bigm| 
ai=a

< 0.

We surmise from this that the undifferentiated state is stable only if increasing ad-
vertising is not profitable for the average firm.

7Numerical experiments suggest that stability conditions derived in this section also hold for
small N .
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Marginal Advertising Cost ka

B(a| \vec{}a) maxa B(a| \vec{}a)
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F
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Fig. 4 Regions of stability. We illustrate the regions of stability for the differentiated and undiffer-
entiated states, indicated in the figure by D and U, respectively. These are given by (2.13),
(2.21), and (2.22). Here blue indicates that a state is stable and red indicates that a state
is unstable. The middle column, where B(a| \vec{}a) < ka < maxa B(a| \vec{}a), is where both states are
stable.

The above stability arguments can be generalized to arbitrary infinitesimal per-
turbations of the advertising distribution in the limit N \rightarrow \infty . See work by Clifton,
Braun, and Abrams for a description of such an approach in a different context [9].

Figure 4 maps the regions of stability for the differentiated and undifferentiated
states given by (2.13), (2.21), and (2.22). Both the differentiated and undifferentiated
states can be simultaneously stable. If (2.13) and (2.21) both hold, then both states
are stable. Thus, we write the condition for bistability as

B(a| \vec{}a) = N  - 1

N

\Delta Qad[Qmin +\Delta Qad/2 - kQkP]

4\lambda kP
< ka < max

a
B(a| \vec{}a).(2.22)

In more intuitive terms,

(2.23)
\partial \pi i

\partial ai

\bigm| \bigm| \bigm| \bigm| 
ai=a

< 0 < max
a

\partial \pi i

\partial ai
.

Thus, bistability of the differentiated and the undifferentiated states occurs when
the maximum marginal profit is positive, but it is profitable for the average firm to
decrease its advertising. The regions of stability of the undifferentiated and differen-
tiated states are defined similarly when Qfree(ai| \vec{}a) is sigmoidal (and, hence, B(ai| \vec{}a)
altered appropriately---see the SM).

3. Numerical Experiments. In order to test model predictions, we perform sim-
ple numerical experiments; all results appear to be consistent with theory. Figure 5
shows an example of a simulation where the benefit of advertising saturates (we as-
sume a sigmoidal functional form) when ka < maxa B(a| \vec{}a). Starting from a uniformly
distributed initial condition, the firms arrange themselves so that there is a ``generic""
group at advertising level a = 0 and a ``name-brand"" group at a = aname > 0. Colors
have been added to indicate ranges where firms decrease (red) or increase (yellow)
their advertising (see figure caption for details).

Figure 6 demonstrates some of the existence and stability boundaries outlined
in section 2. Panels (a) and (b) start with an initial condition that is sampled from
the uniform random distribution \scrU (7.5, 12.5). When ka < maxa B(a| \vec{}a) (panel (a)),
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Fig. 5 Simulation of the system. In this figure we give snapshots of the numerical integration of
the system from initial condition to equilibrium. In panel (a), the system starts from the
uniform randomly distributed state with the advertising initial condition set as \scrU (7.5, 12.5).
In panel (b), the separation into two groups has begun. Companies change their spending
until the lower group is far away from the mean, as seen in panel (c). Finally, in panel (d), a
bimodal equilibrium has been reached, with one group representing generic brand companies
(a \approx 0) and the other representing name-brand companies (advertising at a nonzero value
at a = aname). The green areas indicate where companies will increase their advertising
and the red areas indicate areas where companies will decrease their advertising. In this
simulation we set the number of companies to N = 1000, ka = kP = kQ = \nu = \mu = \lambda = 1,
and Qmin = \Delta Qad = 10 (see Table 1 for parameter definitions).

firms separate into two groups and move toward the differentiated state. When ka >
maxa B(a| \vec{}a) (panel (b)), all firms tend to zero advertising.

Panels (c) and (d) each begin with bimodal advertising distributions, differing
only in the initial fractions generic x. In panel (c), initially x < xcrit, and the system
relaxes to a stable differentiated state. In panel (d), initially x > xcrit, and, since
no nearby differentiated state exists for that fractionation, the system ends up at a
different differentiated state (where x < xcrit) due to some firms transitioning from
the generic group to the name-brand group. See figure caption for more detail.

In the SM, we discuss simulation of other variants of our model including nonlinear
production cost curves (\mu \not = 1) and advertising cost curves (\nu \not = 1) and nonidentical
firms (e.g., nonuniform Qmin and/or \Delta Qad). We encountered no qualitative difference
in the results for those cases.

4. Data. We use price data from the Nielsen Corporation. Nielsen's consumer
panel data contains annual shopping information from thousands of American house-
holds, starting from 2004 with yearly updates. Individuals involved in the study used
in-home scanners to record all of their purchases that were designated for personal
use. Scanners recorded each product's Universal Product Code (a string of digits that
uniquely identify the product) and the product's price. We analyze data from 2014
containing over 64 million transactions from 60,000 households [7].

Our model's primary prediction is the distribution of advertising investments
across firms. While we would have preferred to employ data that directly reflects such
advertising budgets, we were not able to find any source comparable in quality to the
Nielsen price data set. Nevertheless, our model also carries with it predictions for
prices, though we must accept that real-world prices may be additionally influenced
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Fig. 6 Numerical exploration. We illustrate the qualitative states described in section 2. In panels
(a) and (b), we set the initial condition by sampling from the uniform random distribution
\scrU (7.5, 12.5). In panel (a), ka < maxa B(a| \vec{}a), and the firms approach a bimodal distribution
(differentiated state). In panel (b), ka > maxa B(a| \vec{}a), and the firms approach the zero
advertising (undifferentiated) state. In panels (c) and (d), we set the initial condition by
perturbing off a theoretical differentiated state with xcrit = 0.53. In panel (c), we set x =
0.5 < xcrit; after perturbation the system returns to the differentiated state. In panel (d), we
set x = 0.55 > xcrit; after perturbation some firms move from the generic group to the name-
brand group so that the final generic fraction x = 0.38 is less than xcrit = 0.53. Dashed lines
show the theoretical advertising level for the name-brand group before initial perturbation.
The dotted line in panel (d) shows the theoretical advertising level for the name-brand group
after the generic fraction has changed to its final value. In all simulations we set N = 100,
kP = kQ = \nu = \mu = \lambda = 1, and Qmin = \Delta Qad = 10.

by other unmodeled factors. In working with price data, we make the assumption
that these other unmodeled factors either have negligible impact or do not change the
unimodal/multimodal nature of the distribution.

4.1. Fitting Procedure. To fit our model predictions to data, we first define
an objective function H[f(p), g(p)] to quantify the difference between distributions
predicted by the model (f(p)) and inferred from the data (g(p)). Specifically, we set
our objective function H[f(p), g(p)] to be the square integrated difference between
the distributions

(4.1) H(f, g) =

\int \infty 

 - \infty 
[f(p) - g(p)]2dp.

We use the Nelder--Mead algorithm [25] to minimize this objective function over
a subset of parameters that most directly affect the demand curve given in (2.1): the
maximum benefit from advertising \Delta Qad, the minimum quantity demanded Qmin,
and consumers' price sensitivity, kP. If the data indicate bimodality, we also optimize
over the generic fraction x.

We model heterogeneity among firms by adding random variables \zeta i and \xi i to the
parameters \Delta Qad and Qmin, respectively. These random variables are drawn from
a normal distribution with mean zero and respective standard deviations \epsilon 1 and \epsilon 2.
We interpret \epsilon 1 as the variation in the quality of advertising messaging and \epsilon 2 as the
variation in natural demand for the firms' products, and we also optimize their values.

We must choose starting ``seeds"" for the Nelder--Mead algorithm since it is a local
optimization method. We do this by first extracting two modes from the price data,
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one which corresponds to the lower advertising investment group (generics) and the
other the higher advertising investment group (name brands). We then choose seed
parameters such that the model's predicted price distribution matches up with those
two modes. For a more detailed description of the initialization of the algorithm, see
the SM.

Figure 1 provides a few examples of fits for products that had more than 10,000
transactions. These examples also demonstrate the variety of products within the
data set. We see there is qualitative agreement between the model's predicted price
distributions and the empirical price distributions.

4.2. Statistics. We attempt to validate our model by fitting theoretical price
distributions to empirical data provided by the Nielsen Corporation [7]. We use
two tests, the Kolmogorov--Smirnov (KS) test and Hartigan's Dip Test, to assess the
quality of our fits. See Figure 1 for a sample of model fits to data.

The KS test generates the probability that two samples come from the same un-
derlying distribution by calculating the maximum absolute difference between their
cumulative distribution functions (CDFs). Here, a large difference implies a low prob-
ability that the two data sets come from the same distribution. For a majority (58\%)
of our model fits to the top 500 products, we fail to reject the null hypothesis (samples
from same underlying distribution) at a significance level of 0.05: the data and the
model prediction may come from the same distribution.

Hartigan's Dip Test assesses whether a distribution is unimodal by comparing
the CDF of the distribution to a unimodal test distribution [18]. A large difference
between the distribution in question and the test distribution indicates a low proba-
bility of the distribution being unimodal. We apply Hartigan's Dip Test to the 500
products with the most entries in the database, and find that 46\% have price distribu-
tions inconsistent with unimodality at a significance level 0.05. If price distributions
are linked to advertising expenditures, as our model indicates, then almost half the
products have a multimodal (bimodal or higher number of modes8) advertising dis-
tribution. For other products, unimodality could not be rejected, but data may not
be inconsistent with bimodality. See the SM for the full distribution of p-values.

5. Discussion. The theory we present provides a possible explanation for the seg-
mentation of commodity-product sectors into ``name-brand"" and ``generic"" products.
We speculate that similar explanations might exist for other contexts where hierarchy
emerges as a result of competition, or where interactions between individual agents
can lead to global patterns [29]. For example, competition for a mate [24, 9, 20] and
competition for resources [37, 19, 2] can both result in hierarchies observed in the
natural world. Our model might be adapted to yield insight into such phenomena.

5.1. Limitations. In creating a highly simplified model, we have inevitably made
some assumptions that limit its generality. These include the following assumptions.

\bullet We assumed that advertising was persuasive and, hence, that quantity de-
manded increased uniformly across all price levels as advertising increased.
In cases where advertising is informative, however, one would expect the slope
of the demand curve to increase, instead of simply shifting vertically.

\bullet We chose to leave the development of brand loyalty out of our model. This
could presumably be captured through a demand curve that becomes more

8We suspect that an extension of this model to allow stronger within-segment competition (i.e.,
name brands compete more strongly with each other than with generics) would lead to additional
modes.
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inelastic as loyalty increases.
\bullet We excluded spillover effects from ``generic advertising,"" whereby advertising
leads to increases in demand for all companies selling a similar product [28, 3].
We expect that this would increase profit for all companies but not affect the
bimodal segmentation our current model predicts.

\bullet We assumed advertising has a stable and lasting impact. Our model treats
the benefits of advertising as arising instantaneously, an approximation that
is only merited when the time scale of interest is much longer than the ad-
vertising's ``half-life"" in the consumer environment.

\bullet We assumed the existence of many producers selling similar products. Some
of our arguments would not be valid in the case of an oligopoly, where there
are only a handful of producers.

\bullet We approximated demand curves as linear, but of course these could (and
likely do) take on more complex forms for real products.

In addition to the limitations of our modeling approach, the data set we exam-
ined also contains some biases that should be pointed out. Most saliently, the price
distributions we examined are the result of different vendors selling identical products
for different prices: this means that branding is really present at the vendor level,
slightly different from the most direct and natural interpretation of the model. Also,
a large fraction of entries in the database are food and other consumable products,
since these are purchased more frequently than durable goods. Consumables might
have a different market structure than products in nonfood markets (e.g., electronics,
health care, housing, etc.).

5.2. Conclusions. We have presented a simple mathematical model for compe-
tition among firms on the basis of advertising. Despite the model's simplicity, a sur-
prisingly robust prediction emerges: products split into ``name-brand"" and ``generic""
groups. This prediction appears to be largely consistent with data both in a qualita-
tive sense (many products have nonunimodal price distributions) and a quantitative
sense (theoretical price distributions from the model are consistent with empirical
price distributions), even without a more detailed and accurate model.

Advertising has a large macroeconomic impact on corporate profits, market ef-
ficiency, and consumer welfare. The segmentation we report contrasts starkly with
(often implicit) assumptions of smooth, singly peaked functions for economic metrics.
We hope that our work helps refine intuition and inspires further inquiries into this
intriguing aspect of free market dynamics.

Data Availability. The data that support the findings of this study are available
from The Nielsen Company (US), LLC, but restrictions apply to the availability of
these data, which were used under license for the current study and so are not pub-
licly available. Data are however generally available for scientific research with an
institutional or individual subscription [7].
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