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Many real-world systems exhibit noisy evolution; interpreting their finite-time behavior as arising
from continuous-time processes (in the Itô or Stratonovich sense) has led to significant success in
modeling and analysis in a variety of fields. Here we argue that a class of differential equations
where evolution depends nonlinearly on a random or effectively-random quantity may exhibit finite-
time stochastic behavior in line with an equivalent Itô process, which is of great utility for their
numerical simulation and theoretical analysis. We put forward a method for this conversion, develop
an equilibrium-moment relation for Itô attractors, and show that this relation holds for our example
system. This work enables the theoretical and numerical examination of a wide class of mathematical
models which might otherwise be oversimplified due to a lack of appropriate tools.

I. GENERALIZING LANGEVIN
EQUATIONS

Langevin equations are often used to represent
theoretical differential behavior for systems exhibit-
ing stochastic dynamics (see, e.g., [1, 2]). These
equations have a standard form, which we will aim
to generalize:

dx

dt
= f(x, t) + g(x, t)ηt ,

where ηt represents the “Gaussian white noise”
term, δ-correlated in continuous time. If g(x, t) ex-
hibits x dependence, such Langevin equations are ill-
defined, necessitating either the Itô or Stratonovich
interpretation, which will differ in their “drift” be-
havior [2, 3].

Here, we seek to generalize to systems of the form

dx

dt
= R(x, t, ηt). (1)

We argue that, with the proper conversion proce-
dure based on the central limit theorem [4], these
Langevin-type systems may be reduced to equiva-
lent Itô behavior, allowing for consistent simulation
and theoretical analysis.

As a motivating example, we start by highlighting
the difference between two similar-looking Langevin-
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type equations:

dx

dt
= −x3 + ηt, (2)

dx

dt
= −(x+ ηt)

3. (3)

Equation (2) is a classic Langevin equation with
cubic attraction towards zero and diffusive noise—
easily interpreted (in either the Itô or Stratonovich
sense) as the stochastic differential equation (SDE)
dx = −x3dt + dW (where dW represents the usual
derivative of a Wiener process), enabling all the an-
alytical and numerical options that entails.

Equation (3), however, is notably different in that
the nonlinear cubing operation happens to a funda-
mentally random quantity, linking the deterministic
and random parts of the equation. Näıve numeri-
cal simulation simply converges to deterministic be-
havior as the time-step shrinks, since the fluctua-
tions average out before x changes considerably. If
timestep-independent stochastic behavior is desired,
we must develop a new consistent and coherent in-
terpretation of this equation.

“Baked-in” stochasticity of this type might arise
in a variety of physical modeling scenarios. For ex-
ample, nonlinear drag forces acting on a macroscopic
object in a turbulent flow would cause velocity to
evolve according to this type of Langevin equation,
with “noise” coming from rapidly fluctuating rela-
tive fluid velocity—including, e.g., viscous drag on a
cylinder in a turbulent wake [5]. We compute results
for this velocity distribution, and its stark difference
from a näıve approach, at the end of this section.
Physical systems with nonlinear feedback based on
rapidly fluctuating quantities or quantities subject
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to random measurement error would also be of this
type. Inasmuch as measurement error acts as inde-
pendent random variation of a quantity, the behavior
of simulated or artificially forced dynamical systems
would also benefit from this analysis. Our interest
was motivated by an earlier model for individuals
reacting to a stochastic political environment [6]. A
variety of other physics-inspired nonlinear models of
complex real-world phenomena may also share this
form.

We note that the systems we are concerned with
differ from other ways in which nonlinearity can arise
in stochastic systems, for example in the determin-
istic part (e.g. [7]) or when x-dependence appears
multiplied by the stochastic quantity (e.g., [8, 9]), or
when functions are applied to a continuous random-
walking quantity rather than the uncertain/noisy
quantity itself (as Itô’s lemma would handle [2]).
Certain specific problems exhibiting nonlinear de-
pendence on stochastic quantities have been ex-
amined [10], but a general theory of this class of
Langevin equations has not been developed.

Our argument is based on the consideration that
over any finite time-scale, a theoretical system such
as Eq. (3) will have experienced a large enough num-
ber of nearly-independent increments that the gener-
alized central limit theorem should apply [11]. That
is, the net increment over any finite time must be
drawn from the family of stable distributions, or—
if the intrinsic noise has finite variance—a Gaussian
distribution in particular [11]. This intuitively dove-
tails with the more practically-motivated necessary
condition that, in the numerical simulation of any
continuous-time system, its behavior must not de-
pend sensitively on the simulated timestep; that is,
one relatively large step must result in the same dis-
tribution (in an ensemble average sense) as the com-
mensurate number of arbitrarily small steps.

We proceed henceforth with the assumption of fi-
nite underlying variance. This means that the incre-
ment over any small but finite time must be drawn
from a Gaussian distribution with mean equal to the
mean of the underlying process. We may also choose
this distribution’s variance per unit time to likewise
match the underlying process, maintaining consis-
tency with the classic Langevin-Itô conversion and
agreement in standard cases.

By this reasoning, we argue that every such
stochastic process with finite variance is in fact
equivalent to an Itô SDE over any finite time-
scale: in particular, the SDE with deterministic part
matching the underlying mean behavior and ran-
dom part matching its standard deviation. We note
that this is not a one-to-one mapping, but rather
many-to-one: any stochastic process with the same
mean and standard deviation would behave identi-

cally, and thus be represented by the same Itô SDE.
That is, for a general stochastic system of the form

dx

dt
= R(x, t, ηt) ∼ P (r|x, t),

where R is some finite-variance stochastic quantity
dependent on x and δ-correlated in time, with dis-
tribution P , one should simulate the Itô SDE

dx = F (x, t)dt+G(x, t)dW, where

F (x, t) = mean [R(x, t)] =

∞∫

−∞

rP (r|x, t)dr,

G(x, t) = std [R(x, t)] =

√√√√√
∞∫

−∞

[r − F (x, t)]
2
P (r|x, t)dr,

if these quantities exist. We will limit ourselves to
stationary and autonomous processes (i.e., F (x, t) =
F (x) and G(x, t) = G(x)) from this point forward,
but the theory should extend to non-stationary pro-
cesses.

Once we have this Itô equation, we may use stan-
dard numerical integration techniques for individ-
ual trajectories, or convert the system to a Fokker-
Planck form and evolve the solution’s probability
distribution ρ(x) directly, with

∂ρ(x, t)

∂t
= − ∂

∂x
[F (x)ρ(x, t)]+

1

2

∂2

∂x2
[
G(x)2ρ(x, t)

]
.

As an example, we will now examine a slightly
generalized version of Eq. (3) to determine the effect
of noise with arbitrary constant amplitude σ:

dx

dt
= −(x+ σηt)

3. (4)

In section S1 of the Supplemental Material (SM),
we examine a yet more general version of this at-
tractor with arbitrary positive-integer exponent, but
for illustration and concreteness henceforth focus on
this cubic nonlinear-stochastic attractor. Using the

shorthand notation N(r|µ, σ) = e
−(r−µ)2

2σ2 /(σ
√

2π),
we have:

F (x|σ) =

∞∫

−∞

−r3N(r|x, σ)dr

= −x3 − 3σ2x

and

G(x|σ) =

√√√√√
∞∫

−∞

[−r3 − F (x)]2N(r|x, σ)dr

=
√

9σ2x4 + 36σ4x2 + 15σ6.
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So we argue that the system

dx

dt
= −(x+ σηt)

3

is equivalent to the Itô SDE

dx = (−x3 − 3σ2x) dt

+
√

15σ6 + 36σ4x2 + 9σ2x4 dW, (5)

which is amenable to various methods of simulation
and analysis like any other Itô equation. We note
that this Itô equation is significantly different from
anything one might obtain from the similar-looking
but simply additive Langevin form in Eq. (2).

To reiterate: a näıve interpretation of Eq. (4)
would lead to the Itô SDE

dx = −x3dt+ σ3dW , (6)

which has completely different physical behavior
than our proposed interpretation in Eq. (5)[12]. Ba-
sic properties like the variance of the equilibrium dis-
tribution differ, with divergence possible in Eq. (5)
but not in Eq. (6). This has significant implications
for all types of stochastic models used throughout
physics.

As an illustrative physical example, we consider
the regime of quadratic drag with rapidly varying
relative fluid velocity—of relevance to the behavior
of particles in well-developed turbulence. In the one-
dimensional case without stochasticity, relative ve-
locity v would vary as dv/dt = −cv|v| (here the
constant c sets the time scale, and we set it to 1
henceforth). When random velocity fluctuations are
included, we have:

dv

dt
= −(v + σηt)|v + σηt|. (7)

This might näıvely be modeled by the Itô equation

dv = −v|v|dt+ σ2dW , (8)

which has an exact solution for its steady-state prob-
ability distribution

p(v) =
C

σ2/3
exp

(−2|v3|
3σ2

)
, (9)

where C is a normalization constant, namely
37/6Γ(2/3)/(25/3π).

But this system is more faithfully modeled by us-
ing our proposed conversion, which yields

dv = F2(v|σ)dt+G2(v|σ)dW , (10)

where

F2(v|σ) = −
(
σ2 + v2

)
Erf

(
v

σ
√

2

)
−
√

2

π
xσe

−v2

2σ2 ,

G2(v|σ) =
√
v4 + 6v2σ2 + 3σ4 + 3[F2(v|σ)]2
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FIG. 1: Equilibrium velocity distributions.
Comparison of equilibrium distributions for the

drag system in Eq. (7) with σ = 0.2, computed by
Fokker-Planck integration of our proposed behavior
(10) and compared to the exact solution (9) for a
näıve interpretation of the system’s behavior.Top:
Linear scale. Bottom: Zoomed-out log-scale view,
emphasizing clear differences in implied behaviors.

(computation details in section S1 of the SM). The
significant difference in behavior between these sys-
tems is illustrated in in Fig. 1.

II. EQUILIBRIUM MOMENT ANALYSIS
OF ITÔ SDES

We now shift our focus from Itô interpretation
of generalized Langevin equations to a technique of
equilibrium analysis for Itô SDEs themselves. Equi-
librium distributions are of considerable interest in
any system where they exist. However, in some
cases, direct analytical calculation of the steady-
state distribution (as described in, e.g., [2]) requires
integrals that fail to converge. Our interpretation of
the stochastic cubic attractor (5) is of this type, and
we will show that this technique yields insight into
its structure.

Suppose we seek to examine the equilibrium dis-
tribution (if it exists) of the autonomous Itô SDE

dx = F (x)dt+G(x)dW. (11)

We will use Euler-Maruyama numerical integration
[13] as a guide: in discrete time, we have

∆x = F (x)∆t+G(x)
√

∆t η, (12)

where η ∼ N(0, 1). We may write the expression for
the distribution of the new value ξ = x + ∆x from
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any previous position x:

ξ ∼ N
(
x+ F (x)∆t , G(x)

√
∆t
)
,

P (ξ|x) =
1

G(x)
√

2π∆t
e

−[ξ−x−F (x)∆t]2

2G(x)2∆t . (13)

Given this probability density function (PDF) for
the outcome of a single step from any initial position
x, we may write an expression for the evolution of
the solution PDF from initial state ρk(x) to subse-
quent state ρk+1(x) a short time ∆t later:

ρk+1(ξ) =

∞∫

−∞

P (ξ|x)ρk(x)dx .

At equilibrium, this operation leaves the distribution
ρk = ρk+1 = ρ∗ unchanged, i.e.,

ρ∗(ξ) =

∞∫

−∞

P (ξ|x)ρ∗(x)dx . (14)

Rather than attempt to solve this implicit integral
equation for ρ∗ directly, we instead examine the sec-
ond (raw) moment of the distribution µ2 by multi-
plying both sides of Eq. (14) by ξ2 and integrating
over all ξ:

µ2 =

∞∫

−∞

ξ2ρ∗(ξ)dξ =

∞∫

−∞

ξ2



∞∫

−∞

ρ∗(x)P (ξ|x)dx


 dξ

=

∞∫

−∞

ρ∗(x)

∞∫

−∞

ξ2
1

G(x)
√

2π∆t
e

−[ξ−x−F (x)∆t]2

2G(x)2∆t dξ dx .

After swapping the order of integration[14], we ob-
serve that the inner integral over ξ is of the form

1

s
√

2π

∞∫

−∞

u2e
−(u−a)2

2s2 du = a2 + s2

with u = ξ, a = x+ F (x)∆t, and s = G(x)
√

∆t. So
we find

µ2 =

∞∫

−∞

ρ∗(x)
[
x2 + 2xF (x)∆t+ F (x)2∆t2

+G(x)2∆t
]
dx .

Distributing the integral and subtracting µ2 from
both sides (note that the integral of x2 against ρ∗ is

simply the definition of µ2), we find

0 = ∆t

∞∫

−∞

ρ∗(x)
[
2xF (x) +G(x)2

]
dx

+ ∆t2
∞∫

−∞

ρ∗(x)F (x)2dx , (15)

which should hold exactly for any such Itô system.
Enforcing this to leading order in ∆t for our cubic
stochastic attractor gives

0 =

∞∫

−∞

ρ∗(x)
[
2x(−x3 − 3σ2x)

+ (9σ2x4 + 36σ4x2 + 15σ6)
]
dx

=15σ6

∞∫

−∞

ρ∗(x)dx+ (36σ4 − 6σ2)

∞∫

−∞

x2ρ∗(x)dx

+ (9σ2 − 2)

∞∫

−∞

x4ρ∗(x)dx .

=15σ6 + 6σ2(6σ2 − 1)µ2 + (9σ2 − 2)µ4 (16)

So we obtain a relationship between moments of the
equilibrium ρ∗.

However we notice a problem: if σ is large enough
that 9σ2−2 > 0 and 6σ2−1 > 0 (i.e., σ >

√
2/3), all

terms on the right hand side are positive and there
is no way for the equality to hold.

If we had preserved all terms from Eq. (15), rather
than truncating at leading order, we would have ob-
tained the full, exact relation

0 = 15σ6 + (36σ4 − 6σ2 + 9σ4∆t)µ2

+ (9σ2 − 2 + 6σ2∆t)µ4 + ∆t µ6 . (17)

This still does not avoid the problematic implication
at large σ—in fact, it makes the situation slightly
“worse” by adding more positive terms. This con-
tradiction implies that we were wrong to treat µ2 as
finite: the equilibria for these values of σ must have
infinite second moments.[15]

If we repeat our above analysis, but with the 2kth

moment of ρ∗ instead of the second[16], we have

µ2k =

∞∫

−∞

ξ2kρ∗(ξ)dξ

=

∞∫

−∞

ρ∗(x)

∞∫

−∞

ξ2k

G(x)
√

2π∆t
e

−[ξ−x−F (x)∆t]2

2G(x)2∆t dξ dx .

(18)
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Integrals of the following form arise:

I2k : =
1

σ
√

2π

∞∫

−∞

u2ke
−(u−a)2

2σ2 du

= (2k)!

k∑

i=0

σ2ia2k−2i

(2i)!!(2k − 2i)!
.

So with any Itô SDE we have

µ2k =

∞∫

−∞

ρ∗(x)

×
[

(2k)!

k∑

i=0

(G(x)
√

∆t)2i(x+ F (x)∆t)2k−2i

(2i)!!(2k − 2i)!

]
dx

=
k∑

i=0

(2k)!

(2i)!!(2k − 2i)!
∆ti

∞∫

−∞

ρ∗(x)G(x)2i

×
2k−2i∑

j=0

(
2k − 2i

j

)
xj [F (x)∆t]2k−2i−jdx .

Regrouping by powers of ∆t and retaining only lead-
ing order behavior, we find that the constant term
(i = 0, j = 2k) cancels from the left hand side, leav-
ing

0 = ∆t

∞∫

−∞

ρ∗(x)
[
2kx2k−1F (x) +G(x)2

]
dx .

This relation should hold for any equilibrium of
an Itô SDE for which the 2kth raw moment is finite.
If F (x) and G(x)2 are polynomials, this may be used
to obtain a recursion relation for all moments of the
equilibrium ρ∗.

For example, in the case of our cubic nonlinear-
stochastic attractor from Eq. (4),

0 =

∞∫

−∞

ρ∗(x)
[
2kx2k−1(−x3 − 3σ2x)

+ (9σ2x4 + 36σ4x2 + 15σ6)
]
dx

=15σ6 + 36σ4µ2 + 9σ2µ4 − 6kσ2µ2k − 2kµ2k+2

for integers k ≥ 1.
While this slightly under-specified system of equa-

tions doesn’t yield exact moments, it implies that
those moments should lie on a surface, which we con-
firm by numerical simulation (see section S2 of the
SM). When the typical magnitude of x is small com-
pared to σ (i.e., µ2 � σ2), however, Eq. (5) is well
approximated by an SDE with constant noise and

linear drift: an Ornstein–Uhlenbeck process [17, 18]
(see also, e.g., [19] or [20]). This implies a normal
distribution at equilibrium, with moment relation-
ship

µ4 = 3µ2
2. (19)

Plugging this additional constraint into our lowest-
order relation Eq. (16) yields

0 = 15σ6 + 6σ2(6σ2 − 1)µ2 + 3(9σ2 − 2)µ2
2 ,

which agrees well with simulation in the relevant pa-
rameter region: see Fig. 2. For a direct look at the
Gaussian nature of equilibria across this transition,
see section S3 of the SM.

FIG. 2: Numerical validation. Comparison of
numerical results (via Fokker-Planck evolution) to
the theoretical relation, augmented with the extra
Gaussian condition µ4 = 3µ2

2. The shaded region
indicates µ2 < 0.1σ2 (top) and correspondingly
µ4 < 0.03σ4 (bottom), where the Gaussian

approximation (from µ2 � σ2) should be most
valid. Top: Smaller σ values take longer simulated

time T to equilibrate, but do approach the
theorized line. For high noise amplitudes, the

relation need not hold, and indeed theory suggests
that µ2 and µ4 should diverge for σ >

√
2/3

(indicated by the vertical dashed line). Bottom:
As predicted by theory, the fourth moment µ4 does

indeed appear to diverge for σ >
√

2/3, though
simulation with ever wider domain width W

(measured in number of standard deviations of the
equilibrium solution) is needed capture more of the
distribution’s tails (all curves shown for T = 100).
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III. DISCUSSION AND LIMITATIONS

The first proposition of this paper—the argu-
ment for Ito-equivalency of nonlinear Langevin-type
systems—is really a proposed definition rather than
a theoretical result. Like Langevin equations them-
selves, the notation is simple and intuitive, but solid
mathematical interpretation requires the use of the
more rigorous notation, and we propose that inter-
pretation in terms of Itô calculus.

We apply logic based on the central limit the-
orem for finite-variance random variables, but the
Langevin noise terms are not regular random vari-
ables and their variance may not be well-defined
or finite. If variance is treated as well-defined but
not finite, other (non-Gaussian) stable distributions
per time-step may arise, rather than normally dis-
tributed Itô time-steps.

We also note the perhaps-undesirable sensitivity
to the assumption of Gaussian underlying noise in
Eq. (1). In particular, the assumption that ηt is
normally distributed may be incorrect for some sys-
tems with biased or irregularly shaped noise, and if
the noise shape is known it should be used.

The Itô equilibrium analysis ending with Eq. (15)
applies to any Itô system with an equilibrium where
the second raw moment of that equilibrium is finite,
but it is of particular use when the functions F and
G2 are polynomial in nature, since this allows the
analysis to culminate with a relation between even
moments rather than merely integrals against an un-
known distribution.

Finally, in the analysis of our particular cubic-
attractor equilibrium, we have employed an approx-
imation (valid only for σ2 � µ2) which allowed us to
fully prescribe the moments of the equilibrium when
they are finite. It remains unclear whether a more
general constraint valid for arbitrary σ can be found.

IV. CONCLUSIONS

We have shown that a class of “nonlinear-
stochastic” Langevin equations may be interpreted

such that they have well-defined behavior after con-
version to an equivalent Itô system. We have ap-
plied this theory to a class of nonlinear attracting
fixed points to analyze their equilibria via moment
relations, and showed that simulations bear out this
analysis. This type of equilibrium may be more gen-
eral than initially apparent, since nearly any isolated
attracting fixed point is locally well-approximated
by equations of this form.

This conversion technique should lead to more
faithful physical modeling, yielding qualitatively dif-
ferent behavior when compared to simplifications
which transform a deterministic quantity and add
noise afterward. In particular, we have shown that
there exists a critical noise level in one such system
which leads to divergent moments of its equilibrium,
something that cannot occur if x-independent noise
is simply added after the nonlinear operation. Con-
versely, our reasoning also leads to the implication
that apparent Itô behavior might be driven by any
number of nonlinear Langevin processes.

Independent but complementary to these con-
siderations, the equilibrium-analysis section of this
work applies to all Itô systems, and can lead to recur-
sive moment relations or other insights in their study
when exact equilibrium solutions aren’t attainable.
In particular, we note that the divergent moments
this technique exposes for the example system would
be difficult to deduce using numerical solutions of
the Itô (or corresponding Fokker-Planck) equation
in question.
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S1. GENERALIZATION TO POSITIVE-INTEGER ATTRACTORS

Here we examine a generalization of the nonlinear attracting system from the main text: the nth-order
attracting fixed point. As in the main text, the nonlinear attracting function is applied to a Gaussian random
variable (in the Langevin sense) centered on the current value (using N(r;x, σ) as shorthand for the Gaussian
pdf with mean x and standard deviation σ):

r := x+ ση, i.e. r ∼ N(r|x, σ)
dx

dt
= − sgn(r)|r|n, n ∈ Z+ . (1)

Using the proposed Itô conversion from the main text, this should be equivalent to the system

dx = F (x|σ, n)dt+G(x|σ, n)dW, where (2)

F (x|σ, n) =
〈
dx

dt

〉
=

∫ ∞

−∞

[
− sgn(r)|r|n

]
N(r|x, σ)dr (3)

G(x|σ, n) = std

(
dx

dt

)
=

√√√√√
∞∫

−∞

[− sgn(r)|r|n − F (x|σ, n)]2N(r|x, σ)dr. (4)

We first note that G can be easily computed in terms of F :

G(x|σ, n) =

√√√√√
∞∫

−∞

[
− sgn(r)|r|n − F (x|σ, n)

]2
N(r|x, σ)dr

=

√√√√√
∞∫

−∞

[
r2n + 2 sgn(r)|r|nF (x|σ, n) + F 2(x|σ, n)

]
N(r|x, σ)dr

=

√√√√√
∞∫

−∞

r2nN(r|x, σ)dr + 2F (x|σ, n)
∞∫

−∞

sgn(r)|r|nN(r|x, σ) + F 2(x|σ, n)
∞∫

−∞

N(r|x, σ)dr

=
√
µ2n,x,σ + 3F 2(x|σ, n),
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where the first term is not quite F (x|σ, 2n)—due to the sign difference—but rather the (much simpler) 2nth

non-central moment of the normal distribution N(r|x, σ):

µ2n,x,σ :=

∞∫

−∞

r2nN(r|x, σ)dr

=

∞∫

−∞

(x+ z)2nN(z|0, σ)dz

=
2n∑

i=0

(
2n

i

)
x2n−i

∞∫

−∞

ziN(z|0, σ)dz

=
n∑

j=0

(
2n

2j

)
(2j − 1)!!x2n−2jσ2j .

We now seek F . If n is odd, this calculation is simply the non-central moment again:

F (x|σ, n) =
∫ ∞

−∞
−rn

[
1

σ
√
2π

e
−(r−x)2

2σ2

]
dr if n odd

=
n∑

i=1
i odd

(
n

i

)
(i− 1)!!xn−iσi (5)

=
n∑

i=1
i odd

An,i x
n−iσi, (6)

where An,i : =

(
n

i

)
(i− 1)!! =

n!

i!!(n− i)!
. (7)

However if n is even, we must split the integral and the boundary terms no longer cancel due to the sign
difference:

F (x|σ, n) =
∫ ∞

−∞

[
− sgn(r)|r|n

]
N(r;x, σ)dr

=

∫ 0

−∞
rnN(r;x, σ)dr −

∫ ∞

0

rnN(r;x, σ)dr

=

∫ ∞

−∞
rnN(r;x, σ)dr − 2

∫ ∞

0

rnN(r;x, σ)dr

=
n∑

i=0
i even

An,i x
n−iσi − 2

∫ ∞

−x

(x+ w)nN(w; 0, σ)dw

=
n∑

i=0
i even

An,i x
n−iσi − 2

n∑

i=0

(
n

i

)
xi

∫ ∞

−x

wn−iN(w; 0, σ)dw

︸ ︷︷ ︸
J−x(n−i)

. (8)

We then need to process the expression marked J using IBP, and unlike before we have boundary terms:

J−x(p) : =

∫ ∞

−x

wpN(w; 0, σ)dw

=


(−1)p−1 (p− 1)!!√

2π
e

−x2

2σ2

p∑

j=1
j odd

xp−jσj

(p− j)!!


+

{
0, if p odd
(p−1)!!

2 σp
[
1 + Erf

(
x

σ
√
2

)]
, if p even .
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We can now expand the relevant sum from (8), separating out the Erf parts of J from the sums:

−2
n∑

i=0

(
n

i

)
xiJ−x(n− i) = −2

n∑

i=0
n−i even

(
n

i

)
xi (n− i− 1)!!

2
σn−i

[
1 + Erf

(
x

σ
√
2

)]

− 2
n∑

i=0

(
n

i

)
xi(−1)n−i−1 (n− i− 1)!!√

2π
e

−x2

2σ2

n−i∑

j=1
j odd

xn−i−jσj

(n− i− j)!!

= −
[
1 + Erf

(
x

σ
√
2

)] n∑

i=0
i even

An,n−i x
iσn−i

+

√
2

π
e

−x2

2σ2

n∑

i=0

(−1)iAn,n−i

n−i∑

j=1
j odd

xn−jσj

(n− i− j)!!
,

using the fact that n is even to recondition the sums and simplify the alternating negative sign. We now
notice that we can combine all terms of constant j in the second line, rearranging the order of the sums:

√
2

π
e

−x2

2σ2

n∑

i=0

(−1)iAn,n−i

n−i∑

j=1
j odd

xn−jσj

(n− i− j)!!
=

√
2

π
e

−x2

2σ2

n−1∑

j=1
j odd

xn−jσj

n−j∑

i=0

(−1)i
An,n−i

(n− i− j)!!
.

So we may rename index variables i → k and j → i and define another constant:

Bn,i :=

√
2

π

n−i∑

k=0

(−1)k
An,n−k

(n− k − i)!!
=

√
2

π

n−i∑

k=0

(−1)k
(
n

k

)
(n− k − 1)!!

(n− k − i)!!

in order to reunify the sums for even and odd i:

−2
n∑

i=0

(
n

i

)
xiJ−x(n− i) =

n∑

i=0

xn−iσi ·




−An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd
.

And finally recombine with the first term of (8) to get F itself:

F (x|σ, n)|n even =

n∑

i=0
i even

An,i x
n−i σi +

n∑

i=0

xn−iσi ·




−An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd

=

n∑

i=0

xn−iσi ·




An,i −An,n−i

[
1 + Erf

(
x

σ
√
2

)]
, i even

Bn,i e
−x2

2σ2 , i odd
. (9)

In particular, for the n = 2 case which might have utility for modeling drag amidst turbulence, we have

F (x|σ, 2) = −
(
σ2 + x2

)
Erf

(
x

σ
√
2

)
−
√

2

π
xσe

−x2

2σ2 ,

=⇒ G(x|σ, 2) =
√
µ4,x,σ + 3F 2(x|σ, 2)

=

√√√√x4 + 6x2σ2 + 3σ4 + 3

[
(σ2 + x2) Erf

(
x

σ
√
2

)
+

√
2

π
xσe

−x2

2σ2

]2

.
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S2. ADDITIONAL FIGURES

Here we have provided some additional 3-dimensional figures elaborating on the 2-dimensional ones from
the main text.

FIG. S1: Small-noise convergence. Three dimensional version of Fig. 1 (top panel) from the main
paper; at small noise σ, solutions converge over increasing simulated time T to the intersection of the
Gaussian condition and Eq. (11), our theorized surface from the main paper relating the equilibrium’s

second and fourth moments to the inherent noise σ: 0 = 15σ6 + 6σ2(6σ2 − 1)µ2 + (9σ2 − 2)µ4.

FIG. S2: Large-noise divergence. Three dimensional version of Fig. 1 (bottom panel) from main paper
relating noise amplitude σ to the second and fourth moments of the equilibrium (µ2 and µ4, respectively),

but on a linear scale. We can see the clear suggestion of divergence for (at least) µ4; as our domain
captures more standard deviations W of the solution, the measured µ4 grows without bound. We propose
that noise values σ beyond the asymptote “curtain” σ∗ =

√
2/3 ≈ 0.47 must have divergent second and

fourth moments.
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FIG. S3: Gaussian validity boundary. Three dimensional, linear-scale zoom of the region where the
Gaussian assumption fails to hold. Our solutions fall off the intersection line due to their non-Gaussian

nature.
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S3. GAUSSIAN/NON-GAUSSIAN TRANSITION

In the main text we argue that the small-noise limit of the stochastic-cubic-attractor system leads to a
Gaussian equilibrium. We can see this transition clearly in Fig. S4.
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FIG. S4: Equilibrium shape transition. Comparison of equilibrium distributions for different noise
values to Gaussian distributions with the same standard deviation. Top Left: For small σ, equilibria

exhibit the signature parabolic shape (on semi-log axes) indicating a near-Gaussian distribution. Other
panels: For larger σ, equilibria exhibit increasingly “fat tails” differentiating them from Gaussians.
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