Tag Archives: mechanism design

Pricing carpool rides

The initial idea of the paper was proposed by Ruijie Li, then a visiting student from Southwest Jiaotong University. He read about the mechanism design issues in ride-sharing, and was convinced that more research is needed in this direction.  In this paper we focus on a feature that many ridesharing users care about: the schedule displacement (i.e., the difference between the desired and actual arrival time) in matching.   By assuming the users bid for shared rides by reporting their valuation of the displacement, we are able to analyze the matching and pricing problem using the auction theory, including the well-known VCG scheme.    The paper was published in Transportation Science in 2020.    A preprint may be downloaded here.


Abstract: This paper considers a carpool matching (CaMa) problem in which participants price shared rides based on both operating cost and schedule displacement (i.e, the absolute difference between the desired and actual arrival times). By reporting their valuation of this displacement, each participant in effect bids for every possible shared ride that generates a unique value to her. The CaMa problem can be formulated as a mixed integer program (MIP) that maximizes the social welfare by choosing matching pairs and a departure time for each pair. We show the optimal departure time can be determined for each pair a prior, independent of the matching problem. This result reduces the CaMa problem to a standard bipartite matching problem. We prove that the classical Vickrey-Clarke-Groves (VCG) pricing policy ensures no participant is worse off or has the incentive to misreport their valuation of schedule displacement. To control the large deficit created by the VCG policy, we develop a single-side reward (SSR) pricing policy, which only compensates participants who are forced by the system to endure a schedule displacement. Under the assumption of overpricing tendency (i.e., no participant would want to underreport their value), we show the SSR policy not only generates substantial profits, but also retains the other desired properties of the VCG policy, notably truthful reporting. Even though it cannot rule out underreporting, our simulation experiments confirm that the SSR policy is a robust and deficit-free alternative to the VCG policy. Specifically, we find that (1) underreporting is not a practical concern for a carpool platform as it never reduces the number of matched pairs and its impact on profits is largely negligible; and (2) participants have very little to gain by underreporting their value.

A-PASS for Travel Demand Management

Auction-Based Permit Allocation and Sharing System (A-Pass) for Travel Demand Management, co-authored by Ruijie Li and Xiaobo Liu (both at Southwest Jiaotong University, China).

This is a follow up to another paper related to the mechanism design problems arising from ridesharing.  In this paper, we try to show the promise of integrating ridesharing with quantity-based travel demand management.  One of the main insights is that by auctioning out permits (e.g., to use a road facility), we can eliminate the deficits that are otherwise unavoidable in classical  Vickrey-Clark-Gloves mechanism.  The paper just came out in Transportation Science. You may read the abstract below and download a preprint here.


We propose a novel quantity-based demand management system aiming to promote ride-sharing. The system sells the permit to access a facility (conceptualized as a bottleneck) by auction but encourages commuters to share the permits with each other. The permit is classified according to access time and the commuters may be assigned one of the three roles: solo driver, ride-sharing driver, or rider. At the core of this auction-based permit allocation and sharing system (A-PASS) is a trilateral matching problem (TMP) that matches permits, drivers and riders. We formulate TMP as an integer program, and prove it can be reduced to an equivalent linear program. A pricing policy based on the classical Vickrey-Clark-Gloves (VCG) mechanism is proposed to determine the payment for each commuter. We prove, under the VCG policy, different commuters will pay exactly the same price as long as their role and access time are the same. We also show A-PASS can eliminate any deficit that may arise from the VCG policy by controlling the number of shared rides. Results of numerical experiment suggest A-PASS strongly promote rider-sharing. As ride-sharing increases, all stake holders are better off: the ride-sharing platform receives greater profits, the commuters enjoy higher utility, and the society benefits from more efficient utilization of infrastructure.