Tag Archives: algorithm

Entropy maximization for multi-class assignment

The lack of uniqueness constitutes a serious concern for any analysis that relies on class-specific traffic assignment results, such as understanding the impact of a transport policy on the welfare of travelers from different income groups, sometimes known the vertical equity analysis.  Entropy maximization is a standard approach to consistently selecting a unique class-specific solution for multi-class traffic assignment.

Here, we show the conventional maximum entropy formulation fails to strictly observe the multi-class bi-criteria user equilibrium condition, because a class-specific solution matching the total equilibrium link flow may violate the equilibrium condition. We propose to fix the problem by requiring the class-specific solution, in addition to matching the total equilibrium link flow, also match the objective function value at the equilibrium.  This leads to a new formulation that is solved using an exact algorithm based on dualizing the hard, equilibrium-related constraints.

Our numerical experiments highlight the superior stability of the maximum entropy solution, in that it is affected by a perturbation in inputs much less than an untreated benchmark multi-class assignment solution.  In addition to instability, the benchmark solution also exhibits varying degrees of arbitrariness, potentially rendering it unsuitable for assessing distributional effects across different groups, a capability crucial in applications concerning vertical equity and environmental justice. The proposed formulation and algorithm offer a practical remedy for these shortcomings.

This is the third paper completed by the first author, Qianni Wang, who officially joined my group last year.

The paper was currently under review at Transportation Research Part B.  You may download a preprint here, or read the abstract below.


Abstract: Entropy maximization is a standard approach to consistently selecting a unique class-specific solution for multi-class traffic assignment. Here, we show the conventional maximum entropy formulation fails to strictly observe the multi-class bi-criteria user equilibrium condition, because a class-specific solution matching the total equilibrium link flow may violate the equilibrium condition. We propose to fix the problem by requiring the class-specific solution, in addition to matching the total equilibrium link flow, also match the objective function value at the equilibrium. This leads to a new formulation that is solved using an exact algorithm based on dualizing the hard, equilibrium-related constraints. Our numerical experiments highlight the superior stability of the maximum entropy solution, in that it is affected by a perturbation in inputs much less than an untreated benchmark multi-class assignment solution. In addition to instability, the benchmark solution also exhibits varying degrees of arbitrariness, potentially rendering it unsuitable for assessing distributional effects across different groups, a capability crucial in applications concerning vertical equity and environmental justice. The proposed formulation and algorithm offer a practical remedy for these shortcomings.

Differentiable bilevel programming

A Stackelberg congestion game (SCG) is a bilevel program in which a leader aims to maximize their own gain by anticipating and manipulating the equilibrium state at which followers settle by playing a congestion game. Large-scale SCGs are well known for their intractability and complexity.   In this study,  we attempt to marry the latest developments in machine learning with traditional methodologies — notably bilevel optimization and game theory — to forge an integrative approach based on differentiable programming.  Among other advantages,  the approach enables us to treat the equilibration of a congestion game as a deep neural network (see below), so that a suite of computational tools, notably automatic differentiation, can be easily applied.  You may download a preprint here.


Abstract: A Stackelberg congestion game (SCG) is a bilevel program in which a leader aims to maximize their own gain by anticipating and manipulating the equilibrium state at which followers settle by playing a congestion game. Large-scale SCGs are well known for their intractability and complexity. This study approaches SCGs through differentiable programming, which marries the latest developments in machine learning with conventional methodologies. The core idea centers on representing the lower-level equilibrium problem using an evolution path formed by the imitative logit dynamics. It enables the use of automatic differentiation over the evolution path towards equilibrium, leading to a double-loop gradient descent algorithm. We further show the fixation on the lower-level equilibrium may be a self-imposed computational obstacle. Instead, the leader may only look ahead along the followers’ evolution path for a few steps, while updating their decisions in sync with the followers through a co-evolution process. The revelation gives rise to a single-loop algorithm that is more efficient in terms of both memory consumption and computation time. Through numerical experiments that cover a wide range of benchmark problems, we find the single-loop algorithm consistently strikes a good balance between solution quality and efficiency, outperforming not only the standard double-loop implementation but also other methods from the literature. Importantly, our results highlight both the wastefulness of “full anticipation” and the peril of “zero anticipation”. If a quick-and-dirty heuristic is needed for solving a really large SCG, the proposed single-loop algorithm with a one-step look-ahead makes an ideal candidate.

Hyperpath Truck Routing

My work in this area was resulted from my collaborations  with an online freight exchange platform in China between 2017 and 2019.  When I began to work with the firm in 2017, through Xiaobo Liu at SWJTU,  it was called Truck Gang (货车帮).  Soon after that it was merged with Yunmanman (运满满),  and the merged company was named Manbang (满帮).   When Manbang eventually went public in 2021, it was valued at nearly $24B.    The results reported in this paper were produced using data provided by Truck Gang, and the paper was published in Transportation Science a couple of years ago, co-authored by my former student John Miller and Xiaobo.


Abstract:  Online freight exchange (OFEX) platforms serve the purpose of matching demand and supply for freight in real time. This paper studies a truck routing problem that aims to leverage the power of an OFEX platform. The OFEX routing problem is formulated as a Markov decision problem, which we solve by finding the bidding strategy at each possible location and time along the route that maximizes the expected profit. At the core of the OFEX routing problem is a combined pricing and bidding model that simultaneously (1) considers the probability of winning a load at a given bid price and current market competition, (2) anticipates the future profit corresponding to the current decision, and (3) prioritizes the bidding order among possible load options. Results from numerical experiments constructed using real-world data from a Chinese OFEX platform indicate that the proposed routing model could (1) improve a truck’s expected profit substantially, compared with the benchmark solutions built to represent the state of the practice, and (2) enhance the robustness of the overall profitability against the impact of market competition and spatial variations.

Bi-criteria traffic assignment

The traffic assignment problem (TAP) aims to find the distribution of agents—travelers, goods or data—in a network according to certain rules that govern how the agents make choices and move in the network. This problem lies at the heart of numerous applications, ranging from infrastructure planning to travel demand management. In these applications, it is often important to differentiate the agents according to the governing rules.  The trade-off between two attributes by agents with heterogeneous preferences is ubiquitous in route choice, traffic assignment, congestion games and beyond, and it leads to the bi-criteria traffic assignment (BiTA) problem concerned herein.  In this study, we develop a novel  algorithm to solve a continuous version of the BiTA problem. See Abstract for details.

This is a joint work with my former visiting PhD student and  Postdoc Jun Xie (currently Associate Professor at Southwest Jiaotong University, Chengdu, China) and Qianni Wang, an MS student currently at Northwestern University. The paper is currently under revision at Operations Research; a preprint can be downloaded here.


Abstract: This paper studies the continuous bi-criteria traffic assignment (C-BiTA) problem, which aims to find the distribution of agents with heterogeneous preferences in a network. The agents can be seen as playing a congestion game and their payoff is a linear combination of time and toll accumulated over the selected path. We rediscover a formulation that enables the development of a novel and highly efficient algorithm. The novelty of the algorithm lies in a decomposition scheme and a special potential function. Together, they reduce a complex assignment problem into a series of single boundary adjustment (SBA) operations, which simply shift flows between “adjacent” efficient paths connecting an origin-destination (OD) pair using a Newton method. The SBA algorithm is capable of producing highly detailed path-based solutions that hitherto are not widely available to C-BiTA. Our numerical experiments, which are performed on networks with up to forty thousand links and millions of OD pairs, confirmed the consistent and significant computational advantage of the SBA algorithm over the Frank-Wolfe (FW) algorithm, the widely-held benchmark for C-BiTA. In most cases, SBA offers a speedup of an order of magnitude.  We also uncovered evidence suggesting the discretization-based approach—or the standard multi-class formulation—-is likely to produce far more used paths per OD pair than C-BiTA, a potential computational disadvantage. Equipped with the proposed algorithm, C-BiTA, as well as its variants and extensions, could become a viable tool for researchers and practitioners seeking to apply multi-criteria assignment models on large networks.

Hyperbush

Hyperbush Algorithm for Strategy-based Equilibrium Traffic Assignment Problems

This recent paper extends the concept of bush to hyperbush and uses it devise a new class of algorithms for strategy-based traffic equilibrium assignment problem, of which frequency-based transit assignment is an archetype.  One of the longest papers that I’ve ever written (nearly 50 pages), the paper just appeared online in Transportation Science.    Here is a preprint  Hyperbush.


Strategy-based equilibrium traffic assignment (SETA) problems define travel choice broadly as a strategy rather than a simple path. Travelers navigating through a network based on a strategy end up following a hyperpath. SETA is well suited to represent a rich set of travel choices that take place en-route at nodes, such as transit passengers’ transfer decision, truckers’ bidding decision and taxi drivers’ re-position decision. This paper recognizes and highlights the commonalities among classical and emerging SETA problems and proposes to unify them within a same modeling framework, built on the concept of hypergragh. A generic hyperbush algorithm (HBA) is developed by decomposing a hypergraph into destination-based hyperbushes. By constructing hyperbushes and limiting traffic assignment to them, HBA promises to obtain more precise solutions to larger instances of SETA problems at a lower computational cost, both in terms of CPU time and memory consumption. To demonstrate its generality and efficiency, we tailor HBA to solve two SETA problems. The results confirm HBA consistently outperforms the benchmark algorithms in the literature, including two state-of-the-art {hyperpath-based} algorithms. To obtain high-quality equilibrium solutions for SETA instances of practical size, HBA runs up to five times faster than the best competitor with a fraction of its memory consumption.