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ABSTRACT 
Multimodal analysis has had demonstrated effectiveness in 
studying and modeling several human-human and human-computer 
interactions. In this paper, we explore the role of multimodal 
analysis in the service of studying complex learning environments. 
We use a semi-automated multimodal method to examine how 
students learn in a hands-on, engineering design context. 
Specifically, we combine, audio, gesture and electro-dermal 
activation data from a study (N=20) in which students were divided 
into two experimental conditions. The two experimental 
conditions, example-based reasoning and principle-based 
reasoning, have previously been shown to be associated with 
different learning gains and different levels of design quality. In 
this paper we study how the two experimental conditions differed 
in terms of their practices and processes. The practices included 
four common multimodal behaviors, that we’ve entitled ACTION, 
TALK, STRESS and FLOW. Furthermore, we show that 
individuals from the two experimental conditions differed in their 
usage of the four common behavior both on aggregate, and when 
we model their sequence of actions. Details concerning the data, 
analytic technique, interpretation and implications of this research 
are discussed. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computer Uses in Education 
– Miscellaneous.  

General Terms 
Algorithms, Human Factors. 

Keywords 
Learning Sciences; Computational; Constructionist; Data Mining 

1. INTRODUCTION 
Multimodal analysis has provided a powerful tool for studying 
complex human-human and human-computer interactions across a 
variety of domains. Furthermore, these technologies have had a 
strong impact on the development of multimodal interfaces that 
create more naturalistic, engaging and authentic environments. The 
development of multimodal interfaces has started to make its way 
into the education domain in the form of intelligent tutoring 

systems, but has been scarcely explored in non-computer mediated 
environments. In this paper, we follow in the paradigm of 
multimodal learning analytics [1 - 3] in order to expand multimodal 
analysis to complex, hands-on learning environments. While 
multimodal analysis has long been a staple of education research, 
the introduction of computational multimodal techniques has 
received some resistance. This hesitation is understandable given 
the infancy of the field. In an effort to contribute to this discussion 
and propel the advancement of the multimodal learning analytics 
paradigm, we report on the affordances of employing a multimodal 
analysis in a complex learning environment and show how 
multimodal learning analytic techniques can be relevant for 
improving the field. 

This study builds on our prior work [4], where we present two 
different approaches that students use in engineering design: 
example-based reasoning – using examples from the real-world as 
an entry point into solving a task; and principle-based reasoning – 
using engineering fundamentals as the basis for one’s design. These 
two reasoning strategies complement prior work on analogical 
problem solving [5], case-based reasoning [6], mechanistic 
reasoning [7, 8] and expertise [9 - 11]. In [4] we described example-
based reasoning and principle-based reasoning in qualitative terms, 
and then proceeded to use these two approaches in a controlled 
study (N=20) that compares how each approach impacts learning 
gains and performance during a collaborative hands-on activity. In 
that study we found that students in the principle-based reasoning 
condition engineered higher quality structures and also had higher 
learning gains from pre-test to post-test. The goal of this paper is to 
discover the multimodal practices that can help explain the 
observed differences in the two experimental conditions, learning 
and success. Furthermore, as a primary objective we want to show 
that the two experimental conditions, principle-based reasoning and 
example-based reasoning, are associated with markedly different 
processes. 

In what follows we briefly present some pertinent prior literature; 
describe the experiment from which the data was derived; delineate 
the basic algorithm used to analyze the data; summarize important 
results; and discuss the implications of this work. 

2. PRIOR LITERATURE 
This paper builds on a rich body of research in educational data 
mining and learning analytics [12]. Through these disciplines 
researchers have demonstrated the ability to analyze data from a 
wide range of modalities. Previous work includes examples from 
intelligent tutoring systems that leverage: discourse analysis (e.g. 
[13]), content word extraction (e.g. [14]), uncertainty detection 
(e.g. [15]), sentiment analysis (e.g. [16 - 18]), linguistic analysis, 
prosodic and spectral analysis, and multi-modal analysis (e.g. [13, 
19]). Additionally we leverage approaches from the multimodal 
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interfaces community: technological tools and research for 
integrating data streams [20, 21]; extracting rich context from 
audio-video data [22]; and behavior [23], for example. We also 
build on work from engineering education that has focused on 
studying design patterns among novices and experts (e.g. [24]).  

Through the computer science and learning analytics communities 
we are continuously seeing new technologies and techniques for 
analyzing data. The challenge, however, is to leverage those 
technologies in a way that aligns with learning theory, and that 
allows us to answer important questions about learning. In terms of 
learning theory, this work is informed by that of [25] which 
qualitatively identified different multimodal learning and/or 
epistemic states. These states were characterized by body pose, 
amount of dialogue and student gaze as they worked in groups to 
complete a worksheet. Because of differences in context, we are not 
examining the same modalities, nor do we expect to see the same 
states. Nonetheless, the underlying assumptions around the 
connection between behavior, epistemology and learning remain 
central to the approach that we employ. 

Finally, the analytic tools used to identify student behavioral states 
borrows strategies from our prior work in learning analytics [26 - 
29]. In these papers we analyzed high frequency data by reducing 
the dataset down to a set of representative states that generalized to 
all of the participants. This is the same approach that we will 
employ in this paper, but differ from the prior work in that we 
construct states that include multimodal data, as opposed to 
constructing states from log-files, computer program snapshots or 
click-streams. 

3. METHODS 
To provide the reader with additional context, we briefly describe 
the research participants and the task that they completed before 
entering into a discussion of the analysis and results. 

Students used common household materials: one paper plate, 4 ft. 
of garden wire, four drinking straws and five wooden Popsicle 
sticks. The objective was to use the materials provided to create a 
structure that could support a weight of approximately half a pound. 
Participants were also asked to support the weight as high off the 
table as possible.  

Our population of students consisted of twelve 9th- through 12th-
grade students and eight undergraduate students. Pairs of students 
were randomly assigned to either use example- or principle-based 
reasoning, after controlling for prior education experience. Thus, 
each condition had six high school students and four undergraduate 
students. In the example-based condition, students generated three 
example structures from their home, community or school in order 
to motivate their design. In the principle-based condition, students 
identified three engineering principles that conferred strength and 
stability to a ladder, an igloo and a bridge before embarking on the 
building task. 

The data capture environment included: a Kinect sensor – for 
capturing audio, gesture and video; a high resolution web camera - 
to record how students moved the different materials; and an 
electro-dermal activation sensor – for measuring stress and/arousal. 
All sensor data was synchronized through the data collection 
software, and also verified by a research assistant. 

3.1 Activity Sequence 
The overall flow of activities that students completed included: a 
pre-test; an intervention, i.e. one of the two conditions; a 
preliminary design drawing; a hands-on, paired, building activity; 
post-test; and reflection (Figure 1). 

 
Figure 1. Overall study design 

3.2 Data 
Audio data. Data was derived from a combination of audio channels 
from an overheard web camera, and from the Xbox Kinect sensor. 
A custom piece of software was developed based on the Carnegie 
Mellon University (CMU) Sphinx Speech Recognition Toolkit. 
Specifically, the source code was modified to leverage the 
program’s voice activity detection feature. Voice activity detection 
is an automated means for determining when voice-based audio in 
being generated. Several speech recognition software solutions 
contain some variant of voice activity detection. The custom 
software provided voice detection start and stop times for all of the 
audio channels. Audio was considered to be present if either of the 
audio sources detected a voice, within a given second of time. Thus 
the final format of this data is a binary representation. Every second 
of the activity is labeled with a zero or one, for the absence or 
presence of audio at that time stamp. Because the audio channel 
captured sound from both participants this piece of data is the same 
for each person in a dyad. 

Hand/wrist movement. Hand/wrist movement data was also 
generated from the Xbox Kinect sensor. Once again a custom built 
application was used to store three dimensional data for twelve 
upper body joints. The application uses native features available 
from the Kinect for Windows SDK, specifically, the ability to 
conduct skeletal tracking in the seated position. The custom 
application stores the data at 10 Hz. From the file generated, we 
utilize only the left and right wrist, hand and elbow data points. For 
each successive pair of data points we compute the angular 
displacement for the vectors that connect: left wrist and left hand; 
left wrist and left elbow, right wrist and right hand; right wrist and 
right elbow. The eventual angular displacement that is recorded is 
an average of the four angular displacements. Using angle as the 
means for comparison reduces biases introduced by participants 
having different sized bodies and limbs. Accordingly, for each 
tenth of a second in time we have stored the total angular hand/wrist 
displacement. 

Electro-dermal Activation. Electro-dermal activation (also referred 
to galvanic skin response and/or skin conductance) readings were 
captured at 8 Hz. Processing electro-dermal activation data 
involved controlling for individual differences in variance, as well 
as individual differences in stress response. In practice, this was 
achieved by collecting baseline data as students completed the task 
of counting down by 7.We will refer to this as the “math” stress 
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test. As additional baseline data, students also completed a Stroop 
test, and had their electro-dermal activation recorded during non-
task related activities. As before, each data point was time-stamped 
with the local date and time. Each data point was then transformed 
into an index value by subtracting the mean from the “math” stress 
test, and then dividing by the standard deviation of the “math” 
stress test data for that student. When we compared electro-dermal 
activation index values across the different activities, there were no 
statistically significant differences between experimental 
conditions for the baseline data, the Stroop test, or the math test. 
However, across the intervention, design phase and the building 
activity differences were statistically significant. This provided 
validation that this normalization was effective. 

3.3 Algorithm 
The approach follows our previous work [26, 27] on analyzing 
design strategies and success on hands-on engineering tasks. Here 
we significantly extend that work by incorporating multimodal 
data, as opposed to simply using hand-coded data. A visualization 
of the general algorithm is described Figure 2. 

 
Figure 2. General algorithm 

Time-stamp. The first step of extracting process data is to ensure 
that all data is properly time-stamped. This provides a means for 
synchronizing across the different modalities. 

Segment. The time-stamped data is then segmented. Data is 
segmented every time a pair’s structure is tested. We interpret 
testing as representing an instance in which at least one person in 
the pair is eliciting feedback that will update the students on the 

current stability of their structure. Testing usually takes the form of 
a team member placing the weight on the structure.  

Segmentation always resulted in a single value for each data stream. 
For the audio data the value is the proportion of the “test segment” 
during which voice activity was detected. For the hand/wrist 
movement data, the value is the average total angular displacement 
during that “test segment.” Finally, the electro-dermal activation 
value is the average index value during that particular “test 
segment.” 

As a whole, the segmentation process serves to smooth the data. 
Instead of having to take into account each of the spikes and troughs 
that may emerge from any of the data streams, segmentation allows 
us to look at broader trends. Noise reduction is also achieved during 
the following step. 

Cluster. After the segmentation process, there are hundreds of 
unique “test segments.” Some of these will be very similar to one 
another, only differing by an infinitesimal amount, while others 
vary quite extensively from one another. The goal of clustering is 
to identify natural groupings among the various “test segments” 
and ultimately provide a common set of states, or behaviors, by 
which to compare individual user sequences. However, before 
proceeding with clustering, we first do data standardization. 
Namely, we adjust each value, such that all of the data in a given 
column has a mean of zero and a standard deviation of one. This 
process eliminates bias in clustering, by ensuring that each column 
contributes equally to the distance metric, which is this case with 
Euclidean distance. After standardizing the data, we used X-Means 
clustering to group the data points into a set of clusters that place 
each “test segment” with the other “test segments” that it is most 
similar to. Once each “test segment” has been grouped with similar 
“test segments,” each cluster, or group, can be described based on 
the average values of all of its members. These values provide the 
basis for determining common behavioral practices across the three 
analyses in Chapter 3. 

Re-label. All “test segments” that are put into the same cluster are 
given the same name. Accordingly, each student’s sequence of “test 
segments” can now be represented as a list of clusters. 

Normalize. In the normalization step, each student’s re-labeled 
sequence is lengthened to permit direct comparisons between each 
pair of participants. The two forms of normalization used are L-1 
normalization and dynamic time warping [30]. In the case of L-1 
normalization, each sequence is lengthened so that all participants’ 
sequences are of equal length. In dynamic time-warping, a 
modification of Levenshtein distance [31] is used to find the best 
match between pairs of sequences. 

Compare Behavior Frequency. After L-1 normalization, the next 
step is to compare behavior frequency data across the three metrics 
of interest: success, experimental condition; and learning. The 
comparisons are based on Mood Median Tests along each of the 
individual clusters of “test segments.”  However, instead of the 
traditional Mood Median Test, which computes statistical 
significance based on a Chi-Square distribution, we use a binomial 
test. These two tests were used because the data did not meet the 
requirements for MANOVA and violated the typical requirements 
of a Chi-Square Test. This step represents the conclusion of one 
branch of the analysis tree (left hand branch of Figure 2). 

Compute Distances. Following dynamic time warping, a distance 
is computed between each pair of participants. 

Group Participants. Based on the pair-wise distances, similar 
participants are forced into one of two groups using K-Means 
clustering. In each case a student is put into the group that contains 
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other students whose process was most similar to their own. 
Forcing the students into one of two groups was done to align with 
the two experimental conditions. 

Compare Participant Groups. Finally, the groups are compared 
using a binomial test to determine the probability that individuals 
were randomly assigned to their specific group. Specifically, it is 
here that we examine the hypothesis that different groups, as 
partitioned by experimental condition, success on the activity, or 
based on post-test score, used markedly different processes from 
one another. 

4. Results 
4.1 Cluster Centroid Analysis 
The first entry point for analysis is the generalized “test segment” 
cluster centroids that are derived from the X-Means clustering step. 
In particular, we found four multimodal “test segment” types 
(Figure 3). In discussing each cluster centroid, we will proceed 
from the most common “test segment” to the least common (Figure 
4). Additionally, for each cluster, we created a name that captures 
the primary multimodal behaviors associated with that cluster of 
“test segments. 

 
Figure 3. “Test Segment” cluster centroids for multimodal data 

The most common segment, FLOW, is characterized by near or 
below average behavior across all three variables: audio, hand/wrist 
movement and electro-dermal activation; and is roughly 60% of all 
“test segments.” As one can likely deduce, calling this cluster 
FLOW is a reference to [32]. As we compare the usage across 
conditions, rate of success and quality of learning, the argument for 
calling this category FLOW will become clearer. For now, suffice 
it so say that this cluster represents the vast majority of all “test 
segments”, and that it is typified by average stress, average 
movement and little audio, providing initial indication that this state 
is in line with Csikszentmihalyi’s flow. One can picture students in 
FLOW concentrating on the task by carefully manipulating the 
materials without the need for extensive discussion, movement or 
stress. 

 

 
Figure 4. Distribution of Multimodal “Test Segments” 

The second most frequently occurring “test segment” is ACTION, 
which represents 18% of all “test segments.” This behavior 
primarily consists of students who are currently engaging in above 
average hand/wrist movement.  What’s more, though, is that this 
occurs in the absence of high electro-dermal activation, which is 
normally correlated with body movement. An additional point of 
interest is the lack of audio associated with this behavior. Students 
are focused on building and refraining from extensive discussion 
with one another. Accordingly, one might conjecture that the 
students are findings other means through which to communicate 
with one another. 

After ACTION, the most frequently occurring state is TALK. This 
particular cluster represents approximately 18% of all “test 
segments.” The amount of audio in this cluster is approximately 
two standard deviations above the mean. Hand/wrist data is just 
above the mean, and electro-dermal activation is nearly half a 
standard deviation below average. Again, this is analogous to 
ACTION in that students appear to only engage one of the 
multimodal behaviors at a given time. 

The final cluster is STRESS. This behavior is characterized by 
extremely large values of electro-dermal activation, as well as 
above average hand/wrist movement. As mentioned before, one 
would expect for electro-dermal activation and hand/wrist 
movement to correlate with one another. Hence we can anticipate 
that the electro-dermal activation values may be slightly inflated, 
but are still, more than likely, well above average. On the other 
hand, that the students are stressed, may be causing them to work 
more frantically, which would result in an increase in hand/wrist 
movement. STRESS accounts for approximately 10% of students 
“test segments.” 

4.2 Process Similarity Analysis 
Before discussing the specifics of the process differences we first 
present results from grouping students based on the similarity of 
their processes. Recall that this analysis is derived from the right 
hand-branch of Figure 2. Seven of the eight students assigned to 
Group A are from the principle-based condition. The inverse 
pattern is observed for Group B, with seven of the eight individuals 
in that group coming from the example-based reasoning condition 
(Figure 5).  
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Figure 5. Composition of groups based on experimental 
condition as derived from process similarity 

The likelihood of this happening randomly is less than 0.002, 
suggesting that the two conditions did, in fact, utilize markedly 
different processes. One question is if these results are being 
inflated by the dyadic nature of the task. For example, two 
individuals that work together are likely to mirror each other’s 
behavior. When we control for this by removing the partner from 
consideration, students are still likely to be most similar to another 
individual from the same experimental condition. 

Having observed that there are salient differences between the 
processes that the two conditions use, as determined through 
multimodal data, we now consider the nature of those differences. 
Recall that these differences are based on Mood Median Tests 
where we used a binomial distribution as opposed to a Chi-Squared 
distribution. Accordingly, all p-values are based on an exact 
binomial test. 

4.3 Coarse-Grain Cluster Usage Analysis 

  
Figure 6. Median common behavior usage by condition 

Figure 6 shows the median normalized frequency of cluster usage 
by experimental condition. From the figure it is apparent that the 
median value for FLOW is quite different between the two 
conditions. A test of statistical significance confirms that students 
in the principle-based reasoning condition were more frequently (p 
= .007) in FLOW than their peers in the example-based reasoning 
condition. No other statistically significant differences emerged 
between the two groups when comparing their cluster frequency. 

In terms of success there are no statistically significant differences 
in terms of cluster, or behavior, usage (Figure 7). 

  
Figure 7. Median common behavior usage by success 

Much like the case of success, the data does not reveal any 
significant differences between students who experienced positive 
learning, and those who experienced negative learning (Figure 8).  

 
Figure 8. Median common behavior usage by learning score 

4.4 Fine-Grain Cluster Usage Analysis 
A fine-grained analysis indicates that there are significant 
differences between the two conditions during all three portions of 
the activity. Students in the principle-based reasoning condition are 
more likely to be in FLOW for the first (p < 0.001 (1.9x10-5), 
second (p = 0.007) and third (p = 0.007) thirds, than their peers in 
the example-based reasoning condition. This suggests that the two 
conditions are most divergent during the first portion of the activity. 
In particular, many of the students from the example-based 
reasoning condition primarily spend the first third of the activity in 
ACTION.   

The fine-grained analysis did not identify any significant 
differences between successful and unsuccessful students in terms 
of how frequently they used the different clusters, or common 
behaviors. 

The fine-grained analysis did indicate that students that learned 
more through the activity were more likely be in FLOW during the 
first third of the activity. Specifically, the students that received 
positive post-test scores were much more likely (p < 0.001 
(0.0004)) to use FLOW than students who received a negative post-
test score. This trends continues among the students that received a 
score of zero, but not at a statistically significant level. 

5. DISCUSSION 
In deciphering the differences between the principle-based 
reasoning condition and the example-based reasoning condition, 
the current multimodal analysis included statistically significant 
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differences in the process similarity metric between the 
experimental conditions. Furthermore, both the coarse-grain and 
fine-grained analyses offered important insights into identifying the 
elements of each condition’s process that differed. Specifically, 
coarse and fine-grained analyses showed that students in the 
principle-based reasoning condition made more extensive use of 
FLOW than students in the example-based reasoning condition.  

Important to note, however, is that FLOW was characterized by 
multimodal behavior, meaning that a uni-modal analysis would not 
have been able to identify the presence and usage of FLOW, since 
FLOW was based on all three modalities. This provides support for 
the need to employ multimodal analyses.  

Differences in FLOW usage emerged during all three portions of 
the activity and was most pronounced during the first third. This is 
telling because it indicates that the differences were not merely the 
result of students being more or less successful on the activity. In 
fact, this analysis did not reveal any differences between successful 
and unsuccessful students at any grain size. Instead, the only other 
difference was observed from the learning metric. Once again, 
FLOW was positively correlated with student learning. From this, 
we can deduce that FLOW is one of the behaviors that characterized 
the principle-based reasoning condition, and also played a role in 
fostering student learning during the activity.  

As we consider possible interpretations for these results we will 
again turn to prior work on epistemological frames. Specifically, in 
[33] the authors showed that multimodal behavior during cognitive 
clinical interviews can be correlated with three common 
epistemological frames: the inquiry frame; the expert frame; and 
the examination frame. Of particular relevance to this paper are the 
inquiry frame and the expert frame. The inquiry frame is typified 
by students whose work pattern is somewhat disjointed in that they 
may regularly engage in inquiry related practices. This is in contrast 
to the expert frame where students tend to be able to work through 
a given question or response without extensive hesitation. As we 
compare the usage of FLOW between the example-based reasoning 
condition and the principle-based reasoning condition, we see that 
these two experimental conditions may be related to the two 
different epistemological frames. Namely, example-based 
reasoning may be more closely associated with the inquiry frame, 
and the principle-based reasoning condition may bear greater 
resemblance to the expert frame. For example, students in the 
principle-based reasoning condition are able to stay in FLOW 
during a larger portion of the activity meaning that they complete 
less “inquiry” during the course of the building task (here we take 
the TALK, ACTION and STRESS behaviors as being more closely 
associated with acts of inquiry). Thus the theoretical framework 
used to motivate the initial multimodal analysis can also be used to 
explain the nature of the differences that we observed through our 
research study. 

6. LIMITATIONS AND FUTURE WORK 
One limitation is that we have focused on behavior level features. 
For example, the audio, hand/wrist movement and electro-dermal 
activation data was all low-level. In future work we will conduct 
more semantic analyses of the individual modalities before 
subjecting them to data fusion. For example, a series of hand/wrist 
movements may be interpreted as a specific gesture (e.g. pointing, 
shrugging, etc.). This may help identity additional commonalities, 
as well as highlight more of the complex multimodal behavioral 
patterns that students use.  

Additionally, in future work we plan to explore additional problem 
and content domains. The current work was restricted to an 
engineering design context where students were issued a challenge. 

While there was great variability in ways to successfully complete 
the activity, we would like to examine these behavioral patterns on 
a design task that is entirely of the student’s choosing. Finally, in 
future research we employ new data collection techniques that offer 
more fine-grain capture of how students are interacting with each 
other and with the materials that are at their disposal.  

7. CONCLUSION 
Studying complex, open-ended, hands-on learning environments is 
be quite challenging. Researchers may spend significant time 
manually coding and analyzing video data with the hope of 
understanding the effect of a given treatment, or experimental 
condition. In this paper we have shown how a semi-automated 
analysis of multimodal data can be used for studying user behaviors 
during different learning treatments. We have also shown how the 
results derived from our study can be explained through the same 
theoretical lens that contributed to its framing and design. Our hope 
is that through this paper, researchers will develop additional 
insights and motivation for leveraging multimodal learning 
analytics to study complex learning environments in ways that can 
clearly connect to the learning sciences. 
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