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The classic framework of Johnson-Mehl-Avrami-Kolmogorov (JMAK) has been commonly used in studies of thin
film phase transformation kinetics despite its inherent limitation to transformations that occur in finite size do-
mains or via heterogeneous nucleation on surfaces. To address the effects of finite size and heterogeneous nucle-
ation on a JMAK analysis, we employ the level-set method to simulate phase evolution in thin film systems.
Isothermal transformations under a constant nucleation rate and isotropic interface growth, with both bulk
and surface nucleation cases are considered for broad range of film thicknesses. In agreement with past work,
wefind thatwhen the thickness of thefilm is sufficiently small or heterogeneous nucleation on surface is present,
it is possible to have a non-constant Avrami exponent over the course of phase transformation. Our results also
show that the rate constant varieswith thefilm thickness in contrast to bulk phase transformations. Furthermore,
we obtain the grain size distributions at the end of the transformation for various film thicknesses that vary
strongly in shape for small changes in film thickness when the film thickness is on the order of the characteristic
length. By analyzing this information and determining the change of the average grain size with film thickness,
we find that, the film thickness relative to the characteristic length is a reliable indicator of the dominant growth
dimensionality in thin film phase transformations.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

A phase transformation theory proposed by Johnson, Mehl, Avrami
and Kolmogorov (JMAK) in late 30s has been used extensively as a clas-
sic framework for describing nucleation and growth kinetics in different
materials systems. However, any constraint on system size or homoge-
neity of nucleation may violate the governing assumptions used in de-
riving the JMAK equation and thus lead to a departure from expected
behavior [1–5].

The core idea of JMAK theory is articulated as an exponential depen-
dence of the transformed volume fraction (fV) on time (t) with two co-
efficients [6–10],

f V ¼ 1− exp −ktnð Þ ð1Þ

where k is a temperature-dependent rate constant and n is the Avrami
exponent. To extract the Avrami exponent and rate constant from ex-
perimental data, Eq. (1) can be rewritten as

ln − ln 1− f V½ �½ � ¼ ln k½ � þ n ln t½ � ð2Þ
Using this relation one can plot ln[− ln[1− fV]] versus ln[t], which is
known as Avrami plot.When the assumptions of the JMAK equation are
all met, this plot is linear with a slope equal to the Avrami exponent (n)
and a y-intercept (at ln[t]=0) equal to ln[k]. The avrami exponent is
traditionally used to determine the dimensionality (D) of the growth.
For phenomena with constant nucleation rate kinetics, the Avrami ex-
ponent is expected as n=D+1, while for site saturated nucleation it
equals D [11].

Despite its simplicity, JMAK equation captures the kinetics of nucle-
ation and growth phase transformation in many bulk materials where
the transformation occurs with a constant crystallographically isotropic
interfacial velocity. However, several experimental results have shown
serious deviations from Eq. (2), particularly for systems with a finite
size. Thus, for most phase transformations occurring in thin films, it is
very difficult to satisfy the assumptions of the JMAK theory [1,5,
12–15]. The mixed dimensionality of thin film growth causes growing
particles to soon impinge upon the free surface and violate infinite
size assumption. Surface nucleation, which is often energetically favor-
able, also complicates the analysis of phase transformation kinetics
using the classical JMAK approach.

These limitations of JMAK equation have been frequently addressed
in literature [12–24]. In general there is a consensus that there should be
a lower Avrami exponent in systems with finite size. It has been also

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tsf.2016.06.035&domain=pdf
http://dx.doi.org/10.1016/j.tsf.2016.06.035
Journal logo
http://dx.doi.org/10.1016/j.tsf.2016.06.035
http://www.sciencedirect.com/science/journal/00406090
www.elsevier.com/locate/tsf


438 M.M. Moghadam et al. / Thin Solid Films 612 (2016) 437–444
observed that the Avrami exponent is not constant over the course of
transformation. Furthermore, the results of models of phase transfor-
mations that occur via heterogeneous nucleation suggest reduced
Avrami exponents, as well [12,15,16,21,25–27]. Beside the aforemen-
tioned studies, different attempts have also been made to extend
JMAK equation to account for these effects [21,23]. Despite these efforts,
the lack of a simple and comprehensive replacement for the JMAK anal-
ysis keeps this field as an active area of research.

We develop a computational approach employing the level-set
method to explore phase transformation kinetics within thin films,
under a constant nucleation rate. The level-set method brings a unique
capability to conduct a systematic study of thin film phase transforma-
tions for broad range of film thicknesses and nucleation origins. Simula-
tion results provide new insights on different aspects of thin-film phase
transformation kinetics, including the evolution of the Avrami exponent
over time, the dependence of the rate constant on thefilm thickness and
the growth dimensionality.

This paper is organized as follows. In Section 2, we discuss constant
nucleation rate and define characteristic length and time for this mech-
anism. In Section 3, we outline our simulation methodology based on
level-set method. In Section 4, we highlight our results for bulk and sur-
face nucleation cases. In Section 5, we discuss the results in further de-
tails. Section 6 contains a brief summary of main findings.

2. Constant nucleation rate

We assume a constant nucleation rate ( _NV) where _NV is the number
of nuclei per untransformed volume per time. To make a meaningful
comparison between different systems, the kinetics of a given system
is described using characteristic length and time scales [15,16]. The
characteristic length (λ) is:

λ ¼
_NV

v

 !−1=4

ð3Þ

where v is the constant interface growth velocity in normal direction.
The characteristic length encompasses a competition between nucle-
ation and growth,which can reveal basic information regardingfinal av-
erage grain size [28]. The characteristic time scale (τ) is defined as:

τ ¼ λ
v

ð4Þ

These characteristic length and time scales are then used to scale all
the dimensional quantities of the system. In thismanuscript, * is used to
denote all non-dimensional quantities, e.g. the relative film thickness

h⁎=h/λ. In these dimensionless variables, _NV
� ¼ 1, _NV

� ¼ 1 and v⁎=1.

3. Simulation methodology

The level-set method [29,30] is a geometrical scheme to predict
complicated evolution of fronts and interfaces over the time and is an
ideal approach to simulate interface-controlled phenomena such as
crystallization, chemical and ion dissolution, eutectic growth, cellular
precipitation and discontinuous coarsening [31]. It is, in particular, suit-
able to follow particle coalescence as well as contact with the external
domain [32–34]. Interfacial evolution on experimental length and
time scales is another advantage of using level-set method, which
makes its results directly comparable with phase transformation exper-
iments [29,30].

In the current paper, we use a level-set method to simulate a phase
transformation with isotropic interfacial velocity in a thin film. A level-
set function (ϕ) is defined such that |∇ϕ |=1. Here, ϕ is a signed dis-
tance function wherein it is negative inside a particle (transformed re-
gion), and positive outside the particle (untransformed region). The
interface between the transformed and untransformed region is thus
ϕ=0. Isotropic growth is achieved by defining a velocity field as a con-

stantmotion in the direction normal to the interface V
!¼ vN

!
, where v is

constant interface velocity and N
!

is a normal vector to the interface. The
equation of motion of the level-set function for the assumed velocity
field is

∂ϕ
∂t

þ v ∇ϕj j ¼ 0: ð5Þ

Forward Euler time discretization is then employed to track the evo-
lution of ϕ over time explicitly in 3D Cartesian meshed domain as fol-
low:

ϕtþ1 ¼ ϕt−vΔt ð6Þ

For all examined cases, a uniform mesh space and time step are
used: Δx⁎=Δy⁎=Δz⁎=10−2 and Δ t⁎=10−2 respectively. In each
time step, the volume with negative ϕ value is determined in order to
track the transformed volume. The local Avrami exponent n, is then nu-
merically extracted from Eq. (2) by applying a five-point stencil deriva-
tive using following equation [35]:

n ¼ d ln − ln 1− f v½ �½ �
d ln t½ � ð7Þ

To verify this approach, a 3D simulation of a phase transformation
was used with a constant nucleation rate and compared with the
JMAK predictions. Periodic boundary conditions were imposed in all di-
rections and nuclei were adding to the system homogenously to satisfy
all assumptions of JMAK theory. For all data presented in the verification
section, which is taken as a function of volume fraction evolution, the
average standard deviation is 10−2 to 4.1×10−3 for system volumes
ranging from 100 to 400. These values provide a measure of the spread
of the simulation results around an average value. For each data point,
40 independent runs were averaged.

Fig. 1(a) plots the Avrami exponent versus volume fraction trans-
formed for the 3D phase transformation process [35], for different sys-
tem volumes. The Avrami exponents from the simulation are
relatively constant and equal to four as expected from JMAK theory.
The slight discrepancy in n at the end of the transformation is a result
of the final stages of the phase transformation in a finite system, since
the final stages of the transformation do not follow the random im-
pingement assumed in the classical JAMK theory [13,14]. We will ad-
dress this phenomenon in detail at discussion section. Avrami plots of
the simulation results shown in Fig. 1(b) display a linear regime with
a slope of four, corresponding to the Avrami exponent, in agreement
with JMAK theory. As it is shown in Eq. (2), the y-intercept in Avrami
plot is equal to ln[k]. From the simulation results we find k⁎=
1.04∓0.03. In three dimensions with constant nucleation rate, the rate
constant isk ¼ π

3 v
3 _NV, which yields the JMAK equation in dimensionless

form as [14,17]:

f V ¼ 1− exp −
π
3
t�4

h i
ð8Þ

Therefore, in theory, k⁎ is expected to be π/3 (=1.047). This is again
in reasonable agreement with JMAK theory, thus verifying our compu-
tational approach.

A broad range of film thicknesses (0.2–10) is examined to investi-
gate effects of film thickness on the phase transformation kinetics. For
h⁎≥1, the size of x-y plane is fixed as 10×10, while for h⁎b1, the size
of x-y plane is adjusted to set the total volume as 100. The number of re-
quired nuclei is added to the untransformed phase is based on the avail-
able untransformed volume in every characteristic time. Periodic



Fig. 1. Evolution of Avrami exponent in different system size. (a) Avrami exponent vs.
volume fraction transformed. (b) Avrami plot. Results are in reasonable agreement with
the predictions of JMAK theory. Solid line demonstrates the slope associated with n=4.
Average values over 40 runs with different random initial configurations are displayed.

Fig. 2. Visualization of a phase transformation process modeled by the level-set method
for bulk nucleation case with h⁎=0.2, shown is a small section of (2×2×0.2) of a larger
system. The transformed volume has been shown.
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boundary conditions are also imposed in lateral sides (x, y directions)
but not in z direction, since the film thickness is the z-direction.

4. Results

A phase transformation in a thin film can initiate either from the sur-
face or inside the film. We thus, present the results for bulk and surface
nucleation separately.

4.1. Thin film bulk nucleation

In thin film bulk nucleation case, nuclei can appear everywhere in-
side the thin film over the course of simulation. Calculation of the
Avrami exponent shows that for all h⁎, the initial value begins at four
which is consistent with the value obtained for a constant nucleation
rate in 3D unbounded bulk. As the new phase hits the surfaces of the
thin film (see Fig. 2), the Avrami exponent starts to decrease toward
three due to a change in growth dimensionality from3D to 2D. Although
this behavior is more or less observed in all cases, two distinct regimes
can be identified as h⁎ gradually increases. For smaller h⁎'s in Fig. 3(a),
there is a region after the initial growth where the growth is roughly
2D with Avrami exponents close to 3. However for larger film thick-
nesses, 3D growth is dominant with an Avrami exponent around 4.
This is qualitatively in agreement with Očenášek et al.'s [17] analytical
model that suggests 2D kineticswill be present for h⁎b0.3 and 3Dkinet-
ics will be operative for h⁎N10. The Avrami plot in Fig. 3(b) highlights
these two regimes as well. The lines for higher thickness (h⁎≥5) almost
coincide, with the slope relatively close to n≈4, a characteristic of 3D
growth. For smaller h⁎ values, the Avrami exponent is decreasing
gradually until reaching the value consistent with the characteristic of
2D growth (n=3) at h⁎=0.2.

The high values of the local Avrami exponent, observed in the first
few time steps in the local Avrami exponent plots are caused by the rel-
atively large changes in volume fraction evolution over the time. This
issue can be remedied by using a smaller time step and consequently
finer mesh, but this significantly increases computation time. For all
data presented in this section, which is taken as a function of volume
fraction evolution, the average standard deviation is 1.3×10−2 to
4.3×10−3 for film thicknesses ranging from 0.2 to 10. These values pro-
vide ameasure of the spreadof the simulation results around an average
value. For each data point, 40 independent runs were averaged.

The Avrami plot also shows the obvious variation of the rate con-
stant (y-intercept at ln[t⁎]=0) with respect to the film thickness. For
larger h⁎ values, the rate constant is k≈π/3 as predicted by Eq. (8) for
3D growth in bulk. However in thinner films, rate constant decreases
by film thickness [17] to k=πh⁎/3. This is consistent with the predom-
inant 2D growth of the transformed phase, after early impingement at
the surface that prevents 3D growth. This trend is better highlighted
in Fig. 4, which demonstrates how the rate constant evolves as the
film thickness increases. The two distinguishing behaviors, which are
highlighted earlier, are more evident here. The rate constant for h⁎≫1
asymptotes to π/3,whichmeans that as thefilm gets thicker, 3D growth
plays more dominant rule in transformation. On the other side, for
h⁎b1, the rate constant follows approaches k=πh⁎/3, which indicates
more 2D growth as film gets thinner. Transition between these two re-
gimes occurs smoothly around h⁎=1. Considering the fact that the rate
constant in JMAK theory counts for extended volume (ignoring the im-
pingement) over the course of the transformation, this change in rate
constant can lead to the new insight regarding the growth
dimensionality.



Fig. 3. Evolution of Avrami exponent as a function of h⁎ for bulk nucleation case. Average
values over 40 runs with different random initial configurations are displayed. (a) Avrami
exponent vs. volume fraction transformed. (b) Avrami plot. Fine solid line at ln[t⁎]=0,
highlights different y-intercept as an indication of different rate constant. Solid lines
demonstrate the slope associated with given n.

Fig. 5. (a) Probability density of grain size distribution for different film thicknesses.

(b) Average grain size ( �d
�
) as a function of film thickness.
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As discussed above, inferring the growth dimensionality from the
Avrami exponent results in the condition that indicates the 2D growth
for h⁎≤0.3 and 3D growth for h⁎≥10. However investigating the rate
constant evolution indicates that the growth dimensionality in thin
film never reflects an absolute 2D or 3D kinetics over a wide range of
the film thicknesses. Though it is possible to define a dominant growth
mechanism as a function of the relative film thickness. To analyze the
growth dimensionality further, we take advantage of the level-set sim-
ulation to determine the grain size distribution at the end of the trans-
formation. We find that the thickness of the film has a major influence
on grain size distribution. Fig. 5(a) shows the probability density of
Fig. 4.Variation of rate constant (k⁎) with film thickness (h⁎). Average values over 40 runs
with different random initial configurations are displayed.
finding a grain of a given size for different h⁎. Two distinguished regimes
are evident. For h⁎b1, a relatively sharp peak with high probability in
the limited range of 1≤d⁎≤1.5 is observed, while for h⁎≥1, humped
shape, with a broader peak and approximately similar probability for
0.5≤d⁎≤2 is seen. Interestingly, there is a significant, but smooth,
change in the grain size distribution on crossing h⁎=1. These distribu-
tions are very different from those observed during classical grain
growth in bulk system [36]. Total number of grains (Ngrn) used to gen-
erate grain size distribution ranges from 6097 to 25,342 for h⁎=0.2
and h⁎=10 respectively. Bin size is scaled as Ngrn

−1/3, which has been
proven as an optimal bin size for representing the large number of
data with a compact distribution [37,38]. The non-zero probability of
grain size less than zero in Fig. 5(a) is generated by a kernel-smooth
density estimate and is not present in the actual simulation results.

In Fig. 5(b), we show the change of the average grain size (�d
�
) with

h⁎. The average grain sizewas determined using a spherically equivalent

volume (�d
� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�V�

=4π3
q

) where �V
� is the average grain volume. Eq. (9)

represents a reasonable fit to the data shown in Fig. 5(b).

�d
� ¼ −0:0564 h�−0:8409 þ 1:29 ð9Þ

Interestingly this plot shows the same trend as seen for rate constant
(Fig. 4). For h⁎N1, the average grain size asymptotes to 1.29,which is the
value for an infinite system as given by JMAK theory [9] and in agree-
ment with Očenášek et al.'s [17] estimate for the average grain size for

3D growth of �d
� ¼ 1:28. At lower thicknesses (h⁎b1), the average

grain size shows a strong dependence on film thickness. In this range,
our average grain size values are lower than Očenášek et al.'s [17] pre-
diction for 2D growth. For instance at h⁎=0.3, our result shows �d

� ¼ 1:
13 while their prediction is 1.76. This discrepancy caused by their
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assumption of absolute 2D growth, leads them to use the average sur-
face area instead of the average volume in grain size calculation. How-
ever, one can convert their 2D result to 3D by assuming a cylindrical
shape for each grain and incorporating the film thickness in volume es-
timation. For example for h⁎=0.3 we find using the 3D definition of

grain size that Očenášek's result [17] yields �d� ¼ 1:11, which is consis-
tent with our finding. However the large difference in the initial grain
size calculation (N50%) shows that the assumption of absolute 2D
growth in this range can lead to an inaccurate result, even in films
with small h⁎ values. This also emphasizes how care must be exercised
in interpretation of grain size data, especially when they are extracted
from the experiment.

The present connection between final average grain size and film
thickness enables us to determine the characteristic length of an exper-
iment by substituting measured �d and h in Eq. (9) and solving for λ nu-
merically. Taken together, all of the aforementioned results indicate a
significant distinction between growth dimensionality of thin film
phase transformationswhen the thickness is above or below the charac-
teristic length. This new criterion defines predominant growth mecha-
nism as two-dimensions for h⁎b1 and three-dimensions for h⁎≥1. This
is in qualitative agreement with Teran et al.'s [39] analytical model
that predicts that when the film thickness is smaller than the average
grain size, the kinetics of the transformation is best described as 2D,
while as film thickness increases beyond the final average grain size,
3D growth offers a better description.
Fig. 7. Evolution of the Avrami exponent as a function of h⁎ for the surface nucleation case.
Average values over 40 runs with different random initial configurations are displayed.
(a) Avrami exponent vs. volume fraction transformed (1-surface case). (b) Avrami
exponent vs. volume fraction transformed (2-surface case). Dashed line represents
solution for a 1D planar front.
4.2. Thin film surface nucleation

Occasionally phase transformations begin from either the surface of
a thin film or the interface with the substrate. It is also possible that nu-
cleation takes place at both surfaces simultaneously. Thus, we consider
both scenarios of one or two surface nucleation to investigate effect of
h⁎on the kinetics of the phase transformation in thin films.

Fig. 6 shows time evolution of phase transformation process for the
one and two-surface nucleation cases. The Avrami exponents for these
two scenarios are presented in Figs. 6 and 7. Interestingly, both scenar-
ios show similar behavior with only slight differences in time and
growth dimensionality. For all simulations, the Avrami exponent starts
from four, due to the relatively unconstrained growth of particles in
3D. As transformation evolves in time, three different regions can be
Fig. 6. Visualization of phase transformation evolution in time for surface nucleation, h⁎=3.0
fraction has been shown).
seen. For h⁎≤0.5, the Avrami exponent decreases toward three, which
is an indicator for 2D kinetics. For h⁎≥3, there is a decrease in the Avrami
exponent toward two and even lower values, which indicates transition
, section view (3×1×3) (a) 1-surface case and (b) 2-surface case (transformed volume
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from 3D to 1D growth. To highlight this transition, an analytical solution
for 1D growth is also plotted in Fig. 7(a) and (b) [24,25]. Clearly, at suf-
ficiently long time all film thicknesses follow 1D growth and this behav-
ior becomes more pronounced when h⁎ is larger. Among all these
simulations, h⁎=1 shows a unique trend with no major deviation
from initial value. This behavior is also evident in Fig. 8(a) and (b) as
this case yields the only straight line (with a slope near four) in Avrami
plot, which is consistent with the constant Avrami exponent in n vs. fv
plot. Changes in the slope for samples with h⁎≥3 is obviously more pro-
nounced than for thinner films (h⁎≤0.5) as mentioned before. A set of
parallel lines shown in Fig. 8(a) and (b) at early time represents a
short period of time at the beginning of all simulations that yield the
same Avrami exponent.

A better understanding of the aforementioned phenomena can be
achieved by monitoring Avrami exponent over time, as shown in Fig.
8(c) and (d). For relatively small h⁎ simulations (h⁎≤0.5), the departure
from 3D kinetics starts when the first grain touches the surface. After
contacting the surface the growth becomes 2D for a given grain,
which leads to a decrease in the Avrami exponent of the overall trans-
formation, see Fig. 8(c) and (d). As the number of impingements be-
tween grains contacting the surface increases, the Avrami exponent
decreases. However, since free growth from the untransformed surface
continues as a consequence of constant nucleation rate, the overall
Avrami exponent for relatively small h⁎ never reaches three.

For simulationswith h⁎≥3, the higher film thickness implies a longer
time for the 3D growth before reaching other side and starting the 2D
growth. However, at the same time nucleation and growth continues
on the surface until the transformed phase covers the entire surface(s).
At this point, nucleation on the surface(s) is stopped and all grains form
a relatively flat front that then grows in one direction toward opposite
surface (Fig. 6, intermediate stage). This causes a rapid decrease in the
Avrami exponent from four to that of 1D kinetics (two and lower).
These observations are in agreementwith Sun et al.'s [27] analytical pre-
diction that the surface nucleation leads to a decrease in n during a
transformation process. For special case of h⁎=1, system characteristic
Fig. 8. Evolution of the Avrami exponent as a function of h⁎ for the surface nucleation case.
(a) Avrami plot (1-surface case). (b) Avrami plot (2-surface case). Dashed line represents so
intercept as an indication of different rate constant. (c) Avrami exponent vs. natural log of tim
length (λ) is comparable to the film thickness, which implies uncon-
strained growth in three dimensions that transformsmost of the system
before grains start to impinge the surface(s). Therefore, 2D and 1D ki-
netics would not be able to contribute in this process significantly. As
a result, the phase transformation advances with 3D kinetics almost en-
tire run. For all data presented in this section, which is taken as a func-
tion of volume fraction evolution, the average standard deviation is
1.4×10−2 to 8.6×10−4 for film thicknesses ranging from 0.2 to 10.
These values provide a measure of the spread of the simulation results
around an average value. For each data point, 40 independent runs
were averaged.

As mentioned earlier, the general behavior of the phase transforma-
tion in both cases including one and two-surface nucleation are similar,
however some differences are still observable. Obviously, the total time
for a complete transformation is smaller in the two-surface nucleation
case because transformation initiates from both surfaces simulta-
neously. It is also evident that the two-surface simulations show less
1D character at a given fV, since they have less space available to form
relatively flat advancing fronts. In two-surface samples, the average
grain size is smaller and the grains show a more uniform morphology
than in one-surface samples (Fig. 5, final stage).

5. Discussion

Simulation results clearly show that the finite size of the system can
lead to a non-linear regime in theAvrami plot. In a case of homogeneous
nucleation (Section 4.1), the non-linear behavior is mostly seen at the
end of transformation in film thickness less than characteristic length
(h⁎≤1). As the transformation reaches the final stage, it becomes more
difficult to satisfy the assumptions of JMAK theory including the uni-
form distribution of nuclei and random impingement, owing to the
fact that the majority of the available untransformed space is
fragmented to the small pieces, scattered over the entire system.
Under these circumstances, the probability of having new nuclei in the
system is quite rare. It has been reported analytically and
Average values over 40 runs with different random initial configurations are displayed.
lution for a 1D planar front at h⁎=10. Fine solid line at ln[t⁎]=0, highlights different y-
e (1-surface case). (d) Avrami exponent vs. natural log of time (2-surface case).
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experimentally that this situation leads to a deviation from the ideal
JMAK behavior as well [13,14,24,27,35]. This phenomenon is also con-
sistent with the nucleation rate becoming discrete in finite systems un-
like an infinite system, which the nucleation rate remains continuous
[39]. Hence, as the system size becomes larger, the probability of contin-
uous nucleation toward the end of transformation increases and the
Avrami exponent goes to a constant value, as being predicted in
Očenášek et al.'s analytical model [17]. Fig. 9 shows the effect of system
size on the evolution of local Avrami exponent over the time for the ex-
treme case of h⁎=0.2. Evidently increasing the system size results in a
volume fraction evolution that yields a lower Avrami exponent in the
final stages of the transformation. However, the simulation doesn't
show any significant changes in the total transformation time (≈99%
completion of transformation) or structural property (average grain
size and the grain size distribution) for different system size.

The non-linear Avrami plot is more evident in results of the hetero-
geneous nucleation from the surfaces (Section 4.2). The results for h⁎≤1
demonstrate fairly similar behavior to homogeneous case and can be
explained by the same logic as before. But more interestingly the effect
of film thickness on non-linearity of the Avrami regime is more pro-
nounced for h⁎N1 (see Figs. 7 & 8). As mentioned earlier for thicker
films, transformation occurs via 3D growth at primary stage and after
passing multiple intermediate stages, continues through 1D growth.
This transition in growth dimensionality causes non-constant Avrami
exponent. Increasing the film thickness leads to more available space
for intermediate stages, which introducesmore curvature to the Avrami
plot.

Another parameter involved in JMAK equation is the rate constant,
which is frequently overlooked in the analysis of the growth dimension-
ality. In Figs. 3(b) and 8(a, b) it is clearly illustrated that film thickness
has direct effect on rate constant as each line crosses the y-axis at
ln[t⁎]=0 with a different value, despite the fact that all simulations

are performed with the same initial conditions ( _NV
�
and v⁎) and by

the JMAK analysis, are supposed to show identical rate constants as
shown in Fig. 1(b). In the derivation of the JMAK equation, the rate con-
stant accounts for the evolution of the extended volume (ignoring the
impingement), which makes it as significant as Avrami exponent in
study of transformation dimensionality. Furthermore, since the rate
constant is also used to determine the activation energy of the transfor-
mation, care must be taken to incorporate this size effect in calculation
[35,40]. It can be difficult to determine ln[t⁎]=0 experimentally, so as
discussed in Section 4.1, we can use the measured average grain size
and film thickness to determine characteristic length of the system.
Fig. 9. Evolution of Avrami exponent over time for bulk nucleation case (h⁎=0.2).
Depiction of an evident departure from the exponent of 3 at final stage that is expected
in infinite films. Average values over 40 runs with different random initial
configurations are displayed.
Then use that as a criterion to determine the dominant growth dimen-
sionality based on film thickness in thin film phase transformations
under a constant nucleation rate.

6. Conclusions

The level-set method has been employed to simulate an isothermal
phase transformation in thin films under constant nucleation rate and
isotropic growth. Results produced by this simulation method are
then used to investigate the effect of a finite size domain and heteroge-
neous nucleation on the kinetic behavior of the transformation using
the framework of the classic JMAK theory. Kinetic parameters including
the nucleation rate and interface velocity encompassed in characteristic
length and time scales of the system are used to conduct a systematic
study of phase transformation kinetics in bulk and surface nucleation
cases. It is confirmed that both finite size domain and heterogeneous
nucleation on the surface result in a reduced Avrami exponent. During
homogenous nucleation, only at sufficiently small film thicknesses
(h⁎≤1) a non-linear regime in Avrami plot is observable. However, the
effect of heterogeneous nucleation on the non-linearity of the Avrami
plot is more pronounced for thicker films (h⁎N1). It is shown that the
Avrami exponent can acquire different values over the course of the
transformation in thin films. The single value of the Avrami exponent
does not, therefore, always represent the dimensionality of the new
phase growth. The rate constant also varies strongly with film thickness
and nucleation heterogeneity. Thus, unless these variations of the rate
constant are considered, the temperature dependence of this parameter
will not yield the correct activation energy for the transformation. The
grain size distribution at the end of the transformation are obtained
for various film thicknesses and is used to show the dependence of
the average grain size on the film thickness. The connection between
these two parameters is then used to determine the characteristic
length of the system that can be used as a parameter for further analysis.
Tracking the change in the rate constant and the grain size distribution
lead to a new criterion for determining the dominant growth dimen-
sionality in thin film phase transformations, rather than the classical
non-constant Avrami exponent. This criterion identifies the growth di-
mensionality for a film thickness less than characteristic length (h⁎b1)
as 2D dominant and for thickness greater than characteristic length
(h⁎N1) as 3D dominant. However, the growth is never exactly 2D or
3D except for extremely thin 2D systems or nearly 3D volumes.
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