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Interfacial diffusion is governed to a large degree by geometric parameters that are determined by crystallo-
graphic orientation. In this study, we assess the impact of orientational anisotropy on mass transport at internal
interfaces, focusing on the role of preferred crystallographic orientation (i.e., texture) on mass diffusion in a
polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion for
polycrystals having various grain-orientation distributions. By relating grain misorientation to grain-boundary
energies and, via the Borisov relation, to the diffusivity, we link microstructure variability to kinetics. Our aim
is to correlate shape features of the orientation distribution, such as the location and shapes of peaks, with the
calculated effective diffusivity. Finally, wediscuss the role of crystallographic constraints, such as those associated
with grain junctions, in determining the effective diffusivity of a polycrystal.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Many studies have established that atomic diffusion at interfaces
depends, in general, on geometric parameters that are determined by
the orientation of the interface, local atomic coordination, etc. For
example, Ayrault and Ehrlich demonstrated that there is an orienta-
tional anisotropy in surface self-diffusion for Rh [1], while early work
on the surface self-diffusion of Pt atoms showed that diffusion
mechanisms depended on surface orientation for channeled surfaces
[2,3]. In the case of internal interfaces, such as grain boundaries,
boundary orientation also dictates the observed interfacial diffusivity.
The orientational anisotropy of boundary transport was studied in
early work by Turnbull and Hoffman in which Ag self-diffusion in tilt
grain boundaries was shown to depend on crystal misorientation [4,
5]. Somewhat later, Herbeuval et al. [6] also noted an orientational
anisotropy in measured self-diffusion rates of aluminum for various
tilt boundaries.

From the foregoing discussion, it is evident that the transport
behavior for a material comprising many interfaces, such as grain
boundaries in a polycrystal, will necessarily involve a complex interplay
among the disparate diffusive paths connecting these interfaces. For this
reason, most tractable descriptions of grain-boundary (GB) diffusion in
polycrystals make the simplifying assumption that all boundaries have
the same diffusivities. However, given the inherent richness of a typical
GB character distribution (i.e., a summary of the observed grain orienta-
tions and relatedmacroscopic degrees of freedom) [7], there is, in fact, a
spectrum of boundary diffusivities, and it is an open question as to how
these diffusivities conspire to determine the effective transport
behavior of a polycrystal. In one limiting case, namely that correspond-
ing to highly textured materials in which grain orientations are non-
random, a relatively small subset of crystallographic orientations dic-
tates observable, anisotropic properties [8,9]. Such textures arise, for ex-
ample, when a metal is plastically deformed in a forming operation.

Some workers have begun to link GB variability (i.e., boundaries
having a spectrum of boundary activation energies and, hence, diffusiv-
ities) to the effective diffusivity in polycrystals in several studies. For
example, Schuh and coworkers [10] examined effective medium
approximations for the effective diffusivity in simplified models of
heterogeneous GB networks. Similarly, Li and Holland [11] investigated
a model having two distinct GB diffusivities to assess the roles of
network topology and boundary character in determining the collective
diffusion response of the system. Most recently, Mohebi-Moghadam
et al. [12] studied the impact of GB variability on diffusion in a polycrys-
tal by obtaining an effective diffusivity as a function of temperature for
differentmicrostructures usingmulti-statemodels. Inmost of the afore-
mentioned studies simplifying assumptions for the grain-orientation
probability density function (pdf) were employed, resulting in a
spectrum of boundary diffusivities comprising one or two states [13].
While these investigations provide an important link between bound-
ary structure and interfacial transport, it is also desirable to connect
the effective diffusivity to GB character distributions that reflect the
microstructural complexity and preferred grain orientations in many
materials.

Several models may be employed to represent the distribution of
grain orientations and associated misorientations in a polycrystal. For
example, for the case of randomly misoriented grains, each grain
assumed to have cubic symmetry, Mackenzie deduced the orientational
pdf for grain misorientation [14,15]. This pdf highlights the relative
importance of high-misorientation boundaries up to a cutoff angle of
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Fig. 1. A schematic of the simulation cell showing the location of the applied boundary
conditions and the underlying simplified grain-boundary geometry, a centroidal Voronoi
tessellation.
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approximately π/3 and serves as a benchmark for other distributions. In
reality, in most polycrystalline materials, the grains are not randomly
distributed and the grain-orientation pdf often exhibits peaks at partic-
ular orientations. In some cases, such as the design of transformer steels
and polycrystalline superconductors, texture may be engineered so as
to improve performance [16].

In this paper, we consider the impact of texture on GB transport in
polycrystals. In doing so, we highlight the role of specific grain orienta-
tions or a range of orientations on the effective diffusivity of the system.
Our approach is fairly general in that we consider generic, simplified
grain-orientation pdfs and explore the consequences of orientational
anisotropy on GB diffusion. This paper is organized as follows. In
Section 2, we outline the simulationmethodology and numerical calcu-
lation of an effective diffusivity in a polycrystal having a distribution of
GB diffusivities. In Section 3, we present our simulation results and a
comparison with effective-medium theory. Section 4 contains a discus-
sion and our conclusions.

2. Simulation methodology

Weemploy amethodology tomodel GB diffusion that is described in
an earlier publication [12] and adapted for our purposes here. A
two-dimensional model is used here to approximate real polycrystals,
although there will obviously be some differences between two- and
three-dimensional systems. More specifically, we simulate steady-
state GB diffusion on a square lattice with a GB network modeled as a
centroidal Voronoi tessellation comprising 100 generators [17]. While
the usual Voronoi tessellation [18] is based on generators that are
randomly distributed in space, the centroidal Voronoi tessellation
results from generators that are the mass centroids of the coalesced
grains and has the virtue of producing a fairly equiaxed microstructure.
This system is placed in a computational cell having dimensions ‘ × ‘, as
shown in Fig. 1, and serves as a prototype for transport in polycrystalline
materials.

The orientation, ϕ, of a particular grain is taken to be a continuous
random variable drawn from a probability density function (PDF),
p(ϕ), that we will refer to as a grain-orientation pdf. To describe poly-
crystals with various textures, we consider two grain-orientation
PDFs, namely the Gaussian peaked at ϕ' having a width σ and given by

p ϕð Þ ¼ 1ffiffiffiffiffiffi
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the latterwith peaks separated byΔ and having a relative peak heightχ.
Clearly, theparameterσ controls thewidth of eachGaussian. In practice,
we truncate these densities to define afinite range forϕ by imposing the
restriction that 0 ≤ ϕ ≤ π/2. This truncation will change the normaliza-
tion in Eq. (2); however, for ϕ' away from 0 and π/2 and σ small, this
correction is immaterial. To sample from these distributions, we use a
transformation of variables for uniform deviates to generate the single
Gaussian (Eq. (1)) [19] and, for the double-peaked Gaussian (Eq. (2)),
we employ the rejection method [20].

Once grain orientations have been assigned randomly in space,
the misorientation, ψ, associated with each GB can be determined
and, from this information, the corresponding GB energy, γ, and
the GB diffusivity, DGB, are also calculated. More specifically, for
two grains having orientations ϕ1 and ϕ2 meeting at a particular
GB, ψ = |ϕ1 − ϕ2|. The dependence of γ on ψ is expected to follow
the Read–Shockley model for the case of low-angle boundaries [21,22]
(i.e., small ψ). For arbitrary misorientations there are approximate
descriptions of GB energetics [23–25] and, for simplicity, we have
adopted the Van Siclen expression [24] given by

γ ψð Þ ¼ γ0sin 2ψð Þ ð3Þ

for 0 ≤ψ ≤ π/2.γ0 is evidently themaximumGB energy corresponding to
ψ= π/4. This expression is clearly an oversimplification that neglects, to
a first approximation, the orientation of the local GB plane, θB. This
simplification is consistent with other two-dimensional models of GB
energetics [24] and grain growth [23]. To incorporate other GB degrees
of freedom in this description, one can generalize Eq. (3) by construction
of a GB energy, γ(θB − ϕ1, θB − ϕ2), that reflects the dependence of the
energetics on θB. (Wewill discuss this further in the Conclusions.) Finally,
we note that, due to the crystallographic constraint that grains meet at
triple junctions, the distribution of misorientations, and therefore GB
energies is, however, not strictly random in space. This issue will be
discussed further later in this paper.

The diffusivity, Dð r!Þ, for this system is taken to be an isotropic field
that depends on r!, where r! locates a lattice point. The diffusivity
assigned to each lattice point is either the bulk or the GB diffusivity,
namely DB or DGB, respectively, the latter a random variable drawn
from the pdf, p(DGB). To obtain p(DGB), a connection between γ and
DGB is established by invoking an empirical relation due to Borisov
[26–29] given by

γ ψð Þ ¼ 1
2α2

� �
kBTln ηð Þ þ ΔQ ψð Þ½ �; ð4Þ

where α is the average atomic distance, η is (approximately) the ratio of
the GB and bulk diffusional prefactors and ΔQ is the difference between
the bulk and the GB diffusional activation energies. One then finds that,
at temperature T,

DGB ≈DBexp 2α2γ ψð Þ=kBT
� �

; ð5Þ



Fig. 2. a.) The probability density function, p(γ), for the GB energy, γ, for a grain-orientation
pdf consisting of a single Gaussianwithwidth parameterσ=0.1. b.) The probability density
function, p(DGB), versus the normalized GB diffusivity, DGB/DB, for a grain-orientation pdf
consisting of a single Gaussian with width parameter σ= 0.1.
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where DB is the bulk diffusivity and kB is Boltzmann's constant [30]. For
future use it is convenient to rewrite Eq. (4) as

γ ¼ γ ψð Þ
γ0

¼
ln

DGB

DB

� �

ln
Dmax
GB

DB

� � ; ð6Þ

whereDGB
max is themaximumGB diffusivity corresponding to amisorien-

tationψ= π/4. In our simulations,DB/D0= 9.16 × 10−6, whereD0 is the
bulk diffusional prefactor, and η = 5. This value for the bulk diffusivity
was chosen to correspond to a system with a diffusional activation
energy of 1.0 eV at a temperature of 1000 K.

Having assigned diffusivities to each lattice point, our approach
employs a control-area based, finite-difference method to obtain the
concentration field, cð r!Þ, as a function of position, r!. For simplicity,
we take the diffusivity, Dð r!Þ to be an isotropic field that depends on r!.
The determination of an effective diffusivity, Deff, follows from a
calculation of the steady-state flux. In particular, central-difference
techniques [19] are employed to discretize the differential equation

∇
!� D r!

� �
∇
!
c r!
� �h i

¼ 0; ð7Þ

alongwith a tridiagonalmatrix algorithm to obtain a numerical solution
[31]. Dirichlet boundary conditions c(y=0)= 1 and c(y= ‘) = 0 and
Neumann conditions (∂c/∂x)(x=0)= (∂c/∂x)(x= ‘)= 0 are imposed
on the unit cell to obtain a unique solution (see Fig. 1).

After the solution converges to the steady-state concentration

profile, cssð r!Þ, the associated flux vector, J
!ð r!Þ ¼ −Dð r!Þ∇!cssð r!Þ, is

obtained for each control area. The effective diffusivity is calculated by
performing an areal average of the flux. One then obtains

Deff ¼ ‘ J
!

r!
� �D E

� ŷ; ð8Þ

where the angle brackets denote an average over the control areas com-
prising the system [32]. To obtain statistically meaningful values for the
effective diffusivity, the results are averaged over approximately 100
realizations of the microstructure for a given set of grain-orientation
parameters.

3. Results

3.1. Simulations results

Consider first a grain-orientation pdf, p(ϕ), consisting of a single
Gaussian (see Eq. (1)) having a standard deviation (i.e., width parame-
ter) σ. As described above, by transformation of variables, one may
construct two other pdfs, namely that for the GB energy, γ, and for the
GB diffusivity, DGB. Fig. 2a and b shows the pdfs for γ and DGB, respec-
tively, for σ = 0.1 while Fig. 3a and b shows the corresponding figures
for σ = 1.0. For ease of comparison, the GB diffusivity is normalized
by the bulk diffusivity, DB. A comparison of Figs. 2a and 3a reveals that
there is a higher fraction high-γ boundaries for σ = 1.0. This occurs
since an increase in σ results in an increase in high-misorientation,
and therefore high-γ, boundaries. As high-γ boundaries are also high-
diffusivity interfaces (see Eq. (5)), the distribution in Fig. 3b contains
many high-diffusivity GBs relative to that shown in Fig. 2b. Putting
these results together, Fig. 4 shows the effective diffusivity, Deff, as a
function ofσ. As is evident from thefigure,Deff increaseswith increasing
σ until, for sufficiently large σ, it converges to the result obtained for a
uniform pdf for 0 ≤ ϕ ≤ π/2 (dashed line). This result follows from the
fact that, in the limit of small σ, grain misorientations and the
corresponding GB energy are relatively small. Hence, from Eq. (5), the
associated diffusivity is also small, leading to a relatively small Deff. As
σ increases, larger misorientations with larger concomitant GB
diffusivities are produced, thereby leading to an increase in Deff. Clearly,
for relatively large values of σ, p(ϕ) becomes more like the uniform pdf
and, hence, the observed plateau in Fig. 4.

To represent a microstructure with a more complex texture, consid-
er next a grain-orientation pdf comprising two Gaussians (see Eq. (2))
with peaks separated by Δ, having relative height λ, and each having
the same width parameter σ. We are interested in the dependence of
Deff on the texture parameters Δ, λ and σ. Fig. 5 shows the double-
peaked grain-misorientation pdf for this case and, for comparison, the
pdf for a spatially random distribution of misorientations. For the latter
pdf, the peak for small misorientations is higher because suchmisorien-
tations can be created by drawing two grain orientations from the same
peaked region of the grain-orientation pdf. The reason for the difference
between these pdfs is that, in the former case, grain misorientations are
not randomly distributed due to the crystallographic constraint that
grains meet at triple junctions. VanSiclen has discussed the energetic
consequences of this constraint in two recent publications [24].

The dependence of Deff/DB on Δ is shown in Fig. 6a for σ= 0.05 and
λ = 1. The initial increase in Deff is due to the creation of more high-
misorientation boundaries as peak separation increases. Deff reaches a
maximum at Δ = π/4 as γ(ψ) is a maximum for the misorientation
ψ = π/4 (45o). Fig. 6b shows the dependence of Deff/DB on relative
peak height, λ for Δ = π/4 and σ = 0.05. As is evident from the figure,
there are, broadly speaking, two diffusive regimes. For small λ relatively
large grain misorientations are dominant as grain orientations are often
drawn from separate peaks. This dominance of larger misorientations
results in a relatively large value for Deff. The observed decrease in Deff

at large λ follows from the fact that larger values of λ favor sampling
of orientations associated with the higher-peaked Gaussian and,



Fig. 3. The same as for Fig. 2, except for σ = 1.0.
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Fig. 5. The grain-misorientation pdf, p(ψ) versus the grain misorientation, ψ, for the case
used here in which the grain-orientation pdf comprises two Gaussians (solid line). For
comparison, the pdf for a spatially randomdistribution ofmisorientations is also displayed
(dashed line). For this case,Δ= π/4,σ=0.07 andλ=1.0. The textureparametersΔ andσ
control the relative proportion of low- and high-angle boundaries present in the
microstructure.
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thereby, the prevalence of low-angle grain boundaries. These low-angle
boundaries are associated with smaller values of γ and, hence, smaller
values of the effective diffusivity, Deff. Finally, the dependence of
Deff/DB on peak width, σ, is shown in Fig. 6c for Δ = π/4 and λ = 1.
The non-monotonic behavior of Deff(σ) exhibited in this figure can be
understood as follows. For small σ, the sampling is dominated by large
misorientations associated with orientations drawn from two well-
separated peaks. As σ initially increases, there are larger misorientations
associated with both peaks, leading to more high-angle boundaries and,
therefore, an increase in Deff. However, for somewhat larger values of σ,
sampling tends to occur more often for a narrow range of ϕ associated
with one peak, leading to an increase in low-angle boundaries and a
Fig. 4. The effective diffusivity, lnDeff, as a function of the width parameter, σ, for a grain-
orientation pdf consisting of a single Gaussian. The dashed line corresponds to Deff for
grain orientations distributed uniformly on [0, π/2].
decrease in Deff. For relatively large values of σ, the peaks would overlap
considerably and, in this limit, it is expected that Deff will be nearly that
associated with a uniform distribution of ϕ.

3.2. Effective medium theory

It is useful to obtain a semi-quantitative model to interpret the
results presented in the previous section. In particular,wewill construct
a simplified description of the texture models described above and,
from the corresponding pdfs, calculate an effective diffusivity. From
this point of view, the grain-orientation, ϕ, and therefore the misorien-
tation ψ, can be regarded as continuous random variables whose pdfs
will dictate the effective diffusivity of the associated microstructure.
Although it is possible to employ the truncated Gaussians used in the
numerical calculations outline above, it is simpler to replace this
function by the appropriate number of rectangular functions. Thus, if
ϕ is uniformly distributed on the interval [0, σ], then the associated
grain-orientation pdf is given by

p ϕð Þ ¼ 1
σ

� �
Θ ϕð ÞΘ σ−ϕð Þ; ð9Þ

where Θ(ϕ) denotes a step function. As described in the Appendix A, if
two random grain orientations, ϕ1 and ϕ2, are drawn independently
from this uniform density, then one can calculate the pdf for the
associated grain misorientation ψ = |ϕ1 − ϕ2| and, using Eq. (3) and a
transformation of variables, the pdf associated with the reduced GB
energy γ ¼ γðψÞ=γ0 . To compute the effective diffusivity with this
model, it is necessary to determine first the pdf for the GB diffusivity.
This is accomplished by employing the Borisov relation (Eq. (6)) and
performing a change of variables to obtain p(DGB). An expression for
the pdf is given in the Appendix A.

Having obtained p(DGB), one can now calculate Deff using effective-
medium theory. In this approach an effective diffusivity is obtained for
an idealized model comprising diffusive elements, by analogy with the
theory of electrical conduction in mixtures [33]. In particular, one
assumes that there is a spectrum of GB diffusivities on a lattice, and
that the system is outside the percolation regime. For the purposes of
illustration, we will neglect here the contributions to Deff from bulk
sites. Following Kirkpatrick [33], one finds, for a square lattice, that

Z
dDGB

DGB−Deff

DGB þ Deff
p DGBð Þ ¼ 0: ð10Þ



Fig. 6. a.) The dependence of the normalized effective diffusivity, Deff/DB, on peak separa-
tion, Δ, for the case in which the grain-orientation pdf consists of two Gaussians. For this
case, σ = 0.05 and λ = 1. The maximum in Deff at Δ = π/4 corresponds to a maximum
in the GB energy, γ(ψ), at ψ = π/4. b.) The dependence of the normalized effective diffu-
sivity, Deff/DB, on relative peak height, λ for the case in which the grain-orientation pdf
consists of two Gaussians. The decrease in Deff with increasing λ results from preferred
sampling of the higher-peaked Gaussian. For this case, Δ = π/4 and σ = 0.05. c.) The
dependence of the normalized effective diffusivity, Deff/DB, on peak width, σ, for the case
in which the grain-orientation pdf consists of two Gaussians. For this case, Δ = π/4 and
λ = 1.

Fig. 7. The reduced diffusivity, lnDeff/Deff, (σ = π/2) versus the width parameter, σ for a
textured microstructure having a single grain-orientation peak. These results were
obtained using effective-medium theory.
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This equation can be solved iteratively for Deff using numerical
integration upon substitution of DGB.

As an illustration of this method, consider a texturedmicrostructure
with a grain-orientation pdf described by Eq. (9). Fig. 7 shows a plot of
ln[Deff/Deff(σ= π/2)] versus thewidth parameter, σ for this microstruc-
ture. As is evident from the figure, Deff increases as σ increasing until
reaching a limiting value of Deff (σ = π/2). This behavior is very similar
to that seen in Fig. 4. While the two figures are qualitatively similar,
quantitative differences between them are due to several factors.
These differences can be attributed, for example, to assumptions inher-
ent in mean-field theory (e.g., ignoring spatial correlations among
boundaries and detailed grain shape) that approximate the description
of the model system and to the fact that, as stated above, the contribu-
tion of bulk sites to the diffusivity are, for simplicity, ignored in the
mean-field treatment. Finally, the use of rectangular functions (see
Eq. (9)) to approximate Gaussians will also lead to discrepancies
between the curves in Figs. 4 and 7.

4. Discussion and conclusions

We have examined the impact of orientational anisotropy on
diffusion at internal interfaces (i.e., grain boundaries) and, in particular,
the role of preferred crystallographic orientation (i.e., texture) on mass
transport in a polycrystal. From both computer simulation and effective
medium theory, it was found that anisotropy has a significant impact on
the effective diffusivity of an assemblage of grains. The impact of texture
on the effective diffusivity was expressed in terms of basic shape fea-
tures of the grain misorientation distribution, such as peak heights,
widths, and separation. These shape features control the relative
proportion of low- and high-angle boundaries and therefore, via the
Borisov relation, the collective diffusion response of a polycrystal.
Moreover, crystallographic constraints were shown to affect the grain
misorientation distribution and, therefore, the effective diffusivity.

The results obtained here suggest several directions for study. One
may, for example, wish to tailor a microstructure to obtain a particular
range of effective diffusivities. From this work, it is evident that the
grain-orientation pdf may be engineered so as to produce the desired
distribution of boundary diffusivities. In particular, one can envision a
reverse engineering strategy exploiting the methodology described
here that would yield the desired results for a number of different
textures. It would also be of interest to extend the results here to the
percolation regime in which the connectivity of clusters of boundaries
will determine observed properties. It is expected that effectivemedium
theorywill fail in this regime, and onemay be limited to some degree to
numerical investigations. As we have considered here two-dimensional
microstructures, wewould also like to examine the role of boundary var-
iability in three-dimensional polycrystals. While one would expect qual-
itative similarities between the kinetics in two- and three-dimensions,
quantitative differences may be expected due to topological differences
associated with grain morphologies and grain connectivity.

Finally, as discussed above, our description of GB energetics in terms
of grainmisorientation alone is a simplification, and so it is of interest to
include local GB orientation information in the description as well.
Other authors have suggested approximate energy expressions [24]
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that incorporate additional degrees of freedom associated with grain
boundaries. These expressions can easily be incorporated into the
numerical scheme for calculating effective diffusivity described here.
In reality, of course, the situation is more complex. In particular, Rohrer
and coworkers have shown that a knowledge of the full grain-boundary
character distribution is important in determining energetics [34,35].
More generally, given the wealth of experimental data for GB energies
as a function of themacroscopic GB degrees of freedom that is becoming
available, it should be possible to formulate soon expressions for GB dif-
fusivities in three-dimensional systems that incorporate this additional
information. These research directions are the subject of ongoing
studies.

Appendix A

We consider here a number of prototypical pdfs that highlight the
main features of randomand oriented grain distributions. For simplicity,
wewill employ a random, grain-orientation variable, ϕ, that is uniform-
ly distributed on the interval [0, σ]. The associated probability density
function (pdf) is then given by

p ϕð Þ ¼ 1
σ

� �
Θ ϕð ÞΘ σ−ϕð Þ; ð11Þ

where Θ(ϕ) denotes a step function.
Suppose that two independent, random grain orientations, ϕ1 and

ϕ2, are drawn such that their joint density p(ϕ1, ϕ2) = p(ϕ1)p(ϕ2).
One can then define the orientation difference Ψ = ϕ1 − ϕ2 and, via a
transformation of variables [36], the associated pdf is

~p Ψð Þ ¼
Z ∞

−∞

Z ∞

−∞
dϕ1dϕ2 p ϕ1ð Þp ϕ2ð Þ δ Ψ−ϕ1 þ ϕ2ð Þ

¼
Z ∞

−∞
dϕ2 p Ψ þ ϕ2ð Þp ϕ2ð Þ: ð12Þ

One then finds that

~p Ψð Þ ¼ 1
2σ2

� �
Ψ−σ j þ jΨ þ σ j−2jΨj jð Þ; ð13Þ

and that, for the misorientation, ψ = |Ψ|, the associated pdf is

p
0
ψð Þ ¼ 2

σ2

� �
σ−ψð Þ Θ ψð ÞΘ σ−ψð Þ: ð14Þ

(For notational simplicity, we will henceforth denote all pdfs with
the function p.) We note here that, as discussed in the text, the
assignment of random orientations to a microstructure results in subtle
misorientation correlations owing to crystallographic constraints.

We next wish to obtain the pdf associated with the grain-boundary
energy γ = γ0sin(2ψ) (Eq. (3)). Taking γ ¼ γ=γ0, one has that

p γð Þ ¼
Z ∞

−∞
dψ p ψð Þ δ γ−sin 2ψð Þð Þ: ð15Þ

It is convenient here to employ the delta function expansion [37] for
0 ≤ a ≤ π/2

δ γ−sin 2ψð Þð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ2

q δ ψ−ψ0ð Þ þ δ ψ−ψ1ð Þ½ �; ð16Þ

where ψ0 ¼ ð1=2Þsin−1ðγÞ and ψ1 ¼ π=2−ð1=2Þsin−1ðγÞ. Upon substi-
tuting Eq. (16) into Eq. (15) and integrating, one obtains, for 0 ≤ σ ≤ π/4,

p γð Þ ¼ 1
σ2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γ2
q σ−

1
2
sin−1 γð Þ

	 

Θ γð ÞΘ sin 2σð Þ−γð Þ; ð17Þ
and, for π/4 b σ ≤ π/2,

p γð Þ ¼

1
σ2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γ2
q σ−

1
2
sin−1 γð Þ

	 

Θ γð ÞΘ sin 2σð Þ−γð Þ;

1
σ2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γ2
q 2σ−

π
2

h i
Θ γ−sin 2σð Þð ÞΘ 1−γð Þ:

8>>>>><
>>>>>:

ð18Þ

Finally, consider the pdf corresponding to a strong texture having
two primary grain orientations separated in angle by Δ. For simplicity,
we take the heights of the two peaks to be the same (i.e., χ = 1). In
this case,

p ϕð Þ ¼ 1
2σ

� �
Θ ϕð ÞΘ σ−ϕð Þ þ Θ ϕ−Δð ÞΘ σ þ Δ−ϕð Þ½ �; ð19Þ

and the associated misorientation distribution is given by

p ψð Þ ¼ 1
σ2

� �
σ−ψð Þ Θ ψð ÞΘ σ−ψð Þ þ 1

4
σ þ Δ−ψj þ jσ−Δþ ψj−2jΔ−ψj jð Þ

	 

:

ð20Þ

This misorientation distribution has two peaks of unequal height.
This difference in peak height arises because two similar orientations
are sampled more often than two dissimilar orientations.
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