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We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More

specifically, we perform both numerical and analytical studies of steady-state diffusion in prototyp-

ical microstructures in which there is either a discrete spectrum of grain-boundary activation ener-

gies or else a complex distribution of grain-boundary character, and hence a continuous spectrum

of boundary activation energies. An effective diffusivity is calculated for these structures using

simplified multi-state models and, for the case of a continuous spectrum, employing experimentally

obtained grain-boundary energy data. We identify different diffusive regimes for these cases and

quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine

the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906778]

I. INTRODUCTION

Most models of grain-boundary (GB) diffusion in poly-

crystals assume, for tractability, that all boundaries have

identical diffusivities and, hence, the same activation ener-

gies for diffusion. For all but the simplest of microstructures,

the reality is, of course, much more complex. In particular,

GB character is inherently variable,1 and therefore there is a

spectrum of diffusivities associated with the boundaries that

comprise a polycrystal. Moreover, there is accumulating evi-

dence that layering (i.e., complexion) transitions2,3 can occur

at grain boundaries as a function of temperature or pressure,

thereby altering boundary structure and chemistry and, there-

fore, boundary kinetics. The interplay among these factors in

systems with interconnected GB networks makes the deter-

mination of the effective diffusion response for polycrystals

non-trivial in many cases. In particular, the effective activa-

tion energy may be a function of temperature and will be dic-

tated by a complicated microstructural average.

A number of simplified models of polycrystalline mass

transport in idealized geometries have been formulated and

quantitative results have been obtained in certain diffusive

regimes. For example, Whipple and Suzuoka considered an

isolated, isotropic GB region with a high diffusivity sur-

rounded by a lower diffusivity bulk region and were able to

obtain approximate, analytical solutions to the diffusion equa-

tion.4,5 These solutions can be applied to the description of

polycrystalline diffusion in the case of well-separated bounda-

ries (i.e., large grain size) and small bulk diffusion lengths

(i.e., type-B diffusion kinetics).6 More recently, this analysis

has been generalized to the case of thin films by Gilmer and

Farrell.7,8 Moreover, Fisher9 also employed an idealized repre-

sentation of an isolated grain boundary to obtain the concen-

tration profile in the boundary when there is a constant surface

source, neglecting volume diffusion from that source. As the

aforementioned models are based on structureless boundaries,

other workers10 have extended these treatments by incorporat-

ing more realistic descriptions of low-angle boundary structure

in diffusive models based on dislocation arrays. In addition,

others have sought to include microstructural features of

a polycrystal in their analysis,11,12 and to formulate numerical

models of non-steady state diffusion in idealized

polycrystals.13

In recent years, some investigators have begun to exam-

ine the role of GB variability in the context of diffusion in

polycrystalline media. For example, Chen and Schuh14 have

modeled diffusion on a heterogeneous GB network compris-

ing boundaries with two distinct diffusivities and assessed the

accuracy of effective medium approximations in determining

an effective diffusivity. More recently, using a similar

approach, Li and Holland15 examined the interplay between

network topology and boundary character, as described by

two distinct GB diffusion coefficients. While this work pro-

vides an important connection between boundary structure

and measurable kinetic properties, it is also desirable to link

the effective diffusivity to realistic GB character distributions

and to examine the temperature dependence of the activation

energy for diffusion to identify diffusive regimes and to quan-

tify deviations from Arrhenius behavior.

In this paper, we assess the impact of GB variability on

mass transport in two models of a polycrystal by employing

both numerical and analytical methods to extract an effective

diffusivity from a steady-state diffusion profile. We consider

both idealized cases in which the spectrum of GB diffusivities

is discrete and the case in which there is a continuous spec-

trum of diffusivities. In this latter case, we link the distribu-

tion of boundary diffusivities to experimentally obtained GB

character data and determine the effective diffusivity for two

prototypical microstructures. The dependence of the corre-

sponding effective activation energies on temperature is also

calculated and compared to standard Arrhenius behavior.

Finally, we examine the impact of a GB complexion transi-

tion on diffusion in a polycrystal.

This paper is organized as follows. In Sec. II, we outline

our simulation methodology for solving the steady-state dif-

fusion equation. In Sec. III, we discuss two major factors

controlling polycrystalline diffusion response, namely, the

variability of boundary structure and microstructural geome-

try. In Sec. IV, we highlight our analytical results for a
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simple microstructure comprising parallel boundary and our

numerical results for Voronoi microstructures. Section V

contains a brief summary of the main findings of this work

and a discussion of related issues.

II. SIMULATION METHODOLOGY

Steady-state GB diffusion in a two-dimensional system

having a polycrystalline microstructure is modeled here by

employing a control-volume based, finite-difference method

to solve numerically for the concentration field, cð~rÞ, as a

function of position ~r . For this inhomogeneous system in a

cell of size ‘� ‘, one can regard the isotropic diffusivity,

Dð~rÞ, as a function of~r . The determination of an effective dif-

fusivity, Deff, for the system begins with the assignment of

diffusivities and initial concentrations to both lattice and GB

sites of a square lattice, along with the imposition of the

Dirichlet boundary conditions cðy ¼ 0Þ ¼ 1 and cðy ¼ ‘Þ ¼ 1

and the Neumann conditions ð@c=@xÞðx ¼ 0Þ ¼ ð@c=@xÞ
ðx ¼ ‘Þ ¼ 0 (see Fig. 1). Standard central-difference meth-

ods16 are then used to discretize the differential equation

~r � ½Dð~rÞ~rcð~rÞ� ¼ 0; (1)

and a tridiagonal matrix algorithm is employed to obtain a

numerical solution.17 After convergence to the steady-state

concentration profile cssð~rÞ, the corresponding flux vector,
~Jð~rÞ ¼ �Dð~rÞ~rcssð~rÞ, is calculated for every control vol-

ume. The effective diffusivity is then obtained by first per-

forming an area average of the flux to obtain

Def f ¼ ‘h~Jð~rÞi � ŷ; (2)

where the angle brackets denote an average over the area of

the system.18

We will consider here two prototypical microstruc-

tures, namely, a series of parallel boundaries and a poly-

crystal comprising Voronoi grains. These two characteristic

structures are shown in Figs. 2(a) and 2(b), respectively.

The former structure is consistent with parallel transport

and will be discussed in more detail below. The

microstructure shown in Fig. 2(b) was generated from a

centroidal Voronoi tessellation (CVT) algorithm compris-

ing 100 generators.19 By contrast with the standard Voronoi

tessellation based on randomly distributed generators, the

CVT is constructed from generators that are the mass

centroids of the resulting grains. Consequently, the CVT

algorithm leads to a more uniform distribution of nearly-

equiaxed grains. In our discretized representation, the grain

boundaries of this microstructure are matched with a group

of lattice sites such that neighboring control volumes share

at least one side. Moreover, grain boundaries are assigned

widths of at most three control volumes. To obtain statisti-

cally meaningful results, Def f ðTÞ at a temperature T is aver-

aged over approximately 50 independent microstructures,

each having the same number of generators. Finally, the

corresponding effective activation energy is obtained by

differentiation from the relation Qef f ðTÞ ¼ �kB@lnðDef f Þ=
@ð1=TÞ.

III. POLYCRYSTALLINE MASS TRANSPORT

As indicated above, mass transport in polycrystals is a

complex phenomenon owing to several factors, including the

variability of GB activation energies and the connectivity of

the GB network. The interplay between these factors deter-

mines the effective diffusivity of the system and its depend-

ence on temperature, stress, etc. In this section, we first

outline two descriptions of boundary kinetics in terms of the

probability density of the boundary activation energy. While

these models are necessarily idealized, a connection will be

made with experimental data. We next highlight two proto-

typical microstructural models that constitute a collection of

interconnected, fast diffusive pathways surrounded by a bulk

region. For these models, we obtain approximate analytical

expressions for the effective diffusivity. In the Sec. IV, we

determine Def f ðTÞ for the two prototypical microstructures

using the aforementioned kinetic models to describe the dis-

tribution of activation energies.
FIG. 1. A schematic of the simulation cell showing the location of the

applied boundary conditions.

FIG. 2. Two prototypical microstructures used to calculate an effective dif-

fusivity, Deff. (a) A parallel arrangement of grain boundaries (shown in

black). In general, each boundary has a different diffusivity. (b) A Voronoi

microstructure resulting from randomly distributed generators.
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A. Variability of activation energies

As noted above, in most treatments of GB diffusion in

polycrystals, one makes the simplifying assumption that all

boundaries have the same diffusivity and, hence, identical acti-

vation energies for diffusion.4,5 While this assumption makes

subsequent analyses tractable, in reality there is a distribution

of GB character, and therefore a spectrum of diffusivities

and associated activation energies, Q
ðiÞ
GBði ¼ 1; 2;…;N0Þ, for

the N0 grain boundaries comprising a given microstructure.

Thus, it is useful to regard the activation energy for diffusion,

Q, as a continuous random variable with a corresponding den-

sity of states, NðQÞ, and an associated probability density func-

tion, pðQÞ. For example, a discrete model of microstructural

kinetics having n GB activation energies and a bulk (B) activa-

tion energy, QB, would take the form

pðQÞ ¼ fBdðQ� QBÞ þ
Xn

i

fidðQ� Q
ðiÞ
GBÞ; (3)

where fi is the volume fraction of GB sites, fB is the volume

fraction of bulk sites, and dðQÞ is the Dirac delta function.

These volume fraction variables obey the constraint

fB þ
P

ifi ¼ 1. This simplified kinetic model will be consid-

ered in some detail below.

A more realistic, continuous model for GB diffusion

must account for the microstructural complexity of a poly-

crystal. Consider the distribution of GB energy, c, for a fer-

ritic steel, as obtained by Beladi and Rohrer,20 shown in

Fig. 3. In the following development, we will formulate a

general continuous model and neglect, to a first approxima-

tion, the temperature dependence of c. One can approximate

the logarithmic dependence of boundary population on c
shown in the figure by defining a GB population, NðcÞ, such

that the associated population density

�p cð Þ ¼
�N cð ÞÐ cmax

cmin
dc �N cð Þ

¼ b exp �acð Þ; (4)

where a is the (temperature-dependent) slope of the plot, b is

a constant, and cmin (cmax) is the minimum (maximum) GB

energy in the range considered. Proper normalization of this

density leads to

�p cð Þ ¼
�N cð Þ
N0

¼ 1

exp �acminð Þ � exp �acmaxð Þ

" #
exp �acð Þ;

(5)

where the total number of boundaries N0 ¼
Ð cmax

cmin
dc �NðcÞ.

The distribution of GB energies can be related to the dis-

tribution of GB activation energies for diffusion by employ-

ing an empirical relation due to Borisov that relates c to the

GB activation energy, QGB, at a temperature T.21–24 This

relation can be written conveniently as

c ¼ 1

2a2

� �
kBTln

D0GB

D0B

� �
þ QB � QGBð Þ

� �
; (6)

where a is the average atomic distance and D0GB ðD0BÞ is the

diffusional prefactor for a GB (the bulk). Given the Borisov

relation, one can now perform a transformation of variables

to obtain using Eq. (5)

p Qð Þ ¼ jf

exp jQmax
GBð Þ � exp jQmin

GB

� �
" #

� exp jQð ÞH Q� Qmin
GB

� �
H Qmax

GB � Q
� �

þ fBd Q� QBð Þ; (7)

where f is the GB fraction, j ¼ a=2a2; HðQGBÞ is a step

function, and

Qmax
GB ¼ �2a2cmin þ kBTln

D0GB

D0B

� �
þ QB;

Qmin
GB ¼ �2a2cmax þ kBTln

D0GB

D0B

� �
þ QB:

(8)

In the discussion below, we will calculate an effective diffu-

sivity based on this relation as a function of the distribution

width parameter DQ ¼ Qmax
GB � Qmin

GB .

B. Microstructural models

Given the probability density for Q, pðQÞ, one can

obtain an approximate expression for the effective diffusiv-

ity, Def f ðTÞ, for a particular microstructure. As noted above,

we will consider two special cases here, namely, a parallel

arrangement of boundaries and a CVT microstructure con-

structed from a collection of distributed generators. These

prototypical microstructures are shown in Figs. 2(a) and

2(b), respectively.

1. Independent, parallel grain boundaries

To a good approximation, the diffusion kinetics associ-

ated with the microstructure in Fig. 2(a) is describable in

terms of parallel transport processes. This approximation is

valid to the extent that the different boundary regions are in-

dependent and, hence, when the boundary separation is rela-

tively large. Thus, for a common prefactor, D0, one may

write that25,26

FIG. 3. The logarithm of the number of grain boundaries as a function of

GB energy, c, for a ferritic steel, as obtained from Ref. 20. Reprinted with

permission from H. Beladi and G. S. Rohrer, Acta Mater. 61(4), 1404–1412

(2013). Copyright 2013 Elsevier.
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Def f Tð Þ ¼ D0

N0

ð1
0

dQN Qð Þexp � Q

kBT

� �
; (9)

and identify a corresponding effective activation energy

Qef f Tð Þ ¼

Ð1
0

dQQN Qð Þexp � Q
kBT

� 	
Ð1

0
dQN Qð Þexp � Q

kBT

� 	 : (10)

The effective diffusivity, Def f ðTÞ, plays the role of the classi-

cal partition function in statistical mechanics27 in this con-

text, an analogy that will be exploited further below.

2. Centroidal Voronoi microstructure

For the case of the CVT shown in Fig. 2(b), it is useful to

obtain analytically an approximate value for Deff. For this pur-

pose, one can regard this system as a composite medium com-

prising elements having different kinetic properties. As such,

there are several approaches that can be taken to determine

Deff, including the establishment of rigorous bounds28 and the

use of a Maxwell-Garnett effective-medium artifice.29,30

Following the Maxwell-Garnett approach as applied to mass

transport,31 an approximation for Deff can be obtained as fol-

lows. For a system with a single GB diffusivity, DGB, one can

approximate the medium as a collection of bulk (grain interior)

regions embedded in a GB matrix (see Fig. 4). This assignment

of regions is advantageous as it creates a series of spatially

compact domains surrounded by a common matrix. By solving

for the steady-state concentration fields in the bulk, matrix,

and embedded medium, one obtains, in two dimensions,

Def f ¼ DGB 1þ 2 1� fð Þ DB � DGBð Þ
DB þ DGB � 1� fð Þ DB � DGBð Þ

� �
; (11)

where f is the GB area fraction.

For systems having more than one GB diffusivity, we

have devised a new approach here. More specifically, one

can proceed as described above, except that one must define

DGB to reflect the spectrum of GB diffusivities. Two pre-

scriptions were employed for this purpose. The first prescrip-

tion assumes that there is a mixture of GB diffusivities

outside the percolation regime. Following Kirkpatrick,30 one

finds, for a square lattice, that:ð
dD0GB

D0GB � DGB

D0GB þ DGB
p D0GB

� �
¼ 0; (12)

where pðD0GBÞ is the probability density function for the GB

diffusivity. For a given probability density function, Eq. (12)

can be solved for DGB for use in Eq. (11). The second pre-

scription, due to Hart,32 assumes that the GB diffusivities

can be combined independently. Thus, for two diffusivities,

DGB Tð Þ ¼ f1D 1ð Þ
0GB exp �Q 1ð Þ

GB

kBT

 !
þ f2D 2ð Þ

0GB exp �Q 2ð Þ
GB

kBT

 !" #
;

(13)

where D
ð1Þ
0GB and D

ð2Þ
0GB are the diffusional prefactors for the

two boundaries. The values of DGB calculated using Eq. (13)

can again be used in Eq. (11). Both prescriptions will be

employed to interpret our results, as described below.

IV. RESULTS

A. Analytical results—Parallel boundaries

1. Two boundary types

We first examine the case of diffusion in a system com-

prising parallel grain boundaries, as shown in Fig. 2(a). As

noted above, in the limit that the GB diffusivities are much

larger than the bulk diffusivity, the boundaries constitute

nearly independent, fast diffusive pathways. Thus, in this

limit, we can calculate Deff directly from Eq. (9) without

appealing to numerical methods. As an example, consider

two distinct GB boundary types, with corresponding activa-

tion energies Q
ð1Þ
GB and Q

ð2Þ
GB and volume fractions f1 and f2.

The effective diffusivity, found using Eq. (3), is

Def f Tð Þ ¼ D0 fB exp � QB

kBT

� �
þ f1 exp �Q 1ð Þ

GB

kBT

 !"

þ f2 exp �Q 2ð Þ
GB

kBT

 !3
5: (14)

Figure 5(a) shows the dependence of the logarithm of Def f ðTÞ
on 1/T for the case of two distinct boundaries with coeffi-

cients given by fB¼ 0.5, f1¼ 0.05, and f2¼ 0.45 and corre-

sponding activation energies QB¼ 1.0 eV, Q
ð1Þ
GB ¼ 0:1 eV, and

Q
ð2Þ
GB ¼ 0:35 eV. For this parameter set, there are broadly two

diffusive regimes, as determined by the relative activation

energies and the relative volume fraction of sites. This behav-

ior is characteristic of kinetic quantities in systems having

different activation energies, such as diffusion in polycrystal-

line silver33 and the electrical conductivity of an extrinsic

semiconductor.34 The effective activation energy is displayed

in Fig. 5(b). It is evident that there are, broadly speaking, two

regimes characterized by different activation energies. In Fig.

5(c), the temperature derivative C¼ dQeff/dT is shown as a

function of T. This quantity plays a role analogous to the heat

capacity in statistical physics and exhibits a “Schottky” peak

FIG. 4. A schematic of an idealized microstructure showing the geometry

associated with the Maxwell-Garnett calculation of Deff. The matrix phase

comprises the grain boundaries, having a diffusivity DGB, while the embed-

ded phase corresponds to the grain interiors, having a diffusivity DB. The

effective diffusivity, Deff, is obtained by solving the steady-state diffusion

equation subject to the appropriate boundary conditions at the bulk/boundary

and boundary/effective medium interfaces.
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that is characteristic of multi-level systems. Indeed, from the

location of this peak, one can define a transition temperature,

TK� 800 K, separating the two kinetic regimes. More gener-

ally, the shape of this peak embodies information about the

spectrum of activation energies that characterizes this system.

2. Continuous distribution of activation energies

For the continuous distribution of activation energies

given in Eq. (7), one can calculate Deff using Eq. (9). Upon

substituting Eq. (7) into Eq. (9), one obtains

Def f Tð Þ ¼ D0

f1r
r� �

� �
exp r� �ð Þ � 1

exp rð Þ � 1

� �(

� exp �� �QGB

� �
þ fB exp �� �QB

� �)
; (15)

where the dimensionless parameters are r ¼ jDQ;
� ¼ DQ=kBT, �QGB ¼ Qmin

GB =DQ, and �QB ¼ QB=DQ. We note

that Nicholas found a similar expression for an effective

reaction rate when considering the problem of parallel acti-

vated processes involving multiple catalytic sites.25 Before

examining the corresponding Qef f ðTÞ, it is useful to obtain

first the normalized, relative activation energy, calculated

using Eq. (15), in the somewhat artificial, boundary-

dominated limit fB=f1 ! 0. One finds that

�Qef f ¼
Qef f � Qmin

GB

DQ
! 1

�� r
þ 1

1� exp �� rð Þ : (16)

In the zero-temperature limit, ð�!1Þ �Qef f ! 0 for r finite,

while in the high-temperature limit ð�! 0Þ �Qef f ! 1=2 as

r! 0 and �Qef f ! 1 as r!1. Thus, if there is little vari-

ability in the distribution of GB activation energies over a

range of width DQ, Qeff increases by an amount approxi-

mately equal to the average of Qmax
GB and Qmin

GB at high temper-

atures. If, however, there is substantial variability in the

distribution of activation energies, then Qeff varies over the

full range from Qmin
GB to Qmax

GB as the temperature increases.

In most cases, however, the behavior outlined above is

masked by bulk diffusion due to the high volume fraction of

bulk sites. At nanocrystalline length scales, however, where

the volume fraction of grain boundaries can be 50%,35 one

expects a competition between GB and bulk diffusion.

Figure 6 shows the dependence of �Qef f on � (temperature)

for three different values of r for the case that fB/f1¼ 1 and a

normalized bulk activation energy �QB ¼ 3:0. As expected, at

high temperatures, �Qef f saturates at a value somewhat above

that in the boundary-limited case since bulk diffusion is op-

erative at these temperatures.

B. Simulation results—Centroidal Voronoi
microstructure

For the case of a CVT, as shown in Fig. 2(b), we obtain

Deff by numerical solution of the steady-state diffusion equa-

tion, as outlined above. We also assess various effective-

medium approximations formulated to describe the diffusive

response of these systems. Given our focus on the steady

state, each side of Eq. (1) can be divided by D0B, and so only

the ratios of prefactors are relevant here. Also, for concrete-

ness, we fix the bulk activation energy QB¼ 1.0 eV. For this

microstructure, we investigate the transport behavior for

three different scenarios, namely: (1) two types of bounda-

ries (i.e., boundaries having different activation energies and

diffusional prefactors), (2) a system undergoing a complex-

ion transition in which a fraction of the boundaries trans-

forms at a temperature Tt, and (3) boundaries having a

spectrum of activation energies distributed according to Eq.

(7). Rather than explore a wide range of parameter space, we

focus here on a few illustrative cases that exhibit different

diffusive regimes.

FIG. 5. (a) The logarithm of Def f ðTÞ=D0B versus inverse temperature,

QB=kBT, for the case of two distinct boundaries with volume fractions given

by fB¼ 0.5, f1¼ 0.05, and f2¼ 0.45 and corresponding activation energies

QB¼ 1.0, Q
ð1Þ
GB ¼ 0:1, and Q

ð2Þ
GB ¼ 0:35 (in units of eV). (b) The effective

activation energy, Qef f =QB, versus temperature, T, for this case. (c) The

quantity C=kB ¼ dQef f =dT versus temperature, T, where kB is Boltzmann’s

constant. Note the peak that is characteristic of multi-state systems.
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1. Scenario 1: Two types of boundaries

In this scenario, two distinct grain boundary types, with

diffusivities described by different activation energies and

prefactors, comprise the microstructure. The goal here is to

investigate the role of boundary type in determining the

effective diffusivity. We consider two cases, with the corre-

sponding parameter sets summarized in Table I. In each

case, the total volume fraction of boundary sites is 0.105.

The first case corresponds to a typical situation in which

grain boundaries constitute high-diffusivity paths (with rela-

tively low associated activation energies) relative to the bulk

owing to their relatively open structure. By contrast, the sec-

ond case corresponds to a situation in which the GB activa-

tion energies exceed that of the bulk. While this situation

may be somewhat counterintuitive as it does not occur in

metals, larger activation energies for GB diffusion have been

reported for some ceramic systems.36 For this latter case, the

effective diffusivity is dominated by grain boundaries at high

temperatures, while for low temperatures, bulk diffusion is

found to be dominant for the choice of model parameters

given in Table I.

For the first case, Fig. 7(a) shows the dependence of

Def f ðTÞ on inverse temperature as obtained from numerical

solution of the steady-state diffusion equation and from two

implementations of effective medium theory. Figure 7(b)

shows the dependence of the associated effective activation

energy, �Qef f ðTÞ, on temperature, T. More specifically, DGB is

calculated in two different ways, using either the Kirkpatrick

(see Eq. (12)) or the Hart (see Eq. (13)) approach. Deff is

then obtained for each case by substituting DGB into

Eq. (11). As is evident from Fig. 7(a), at high temperatures

both implementations reproduce the numerical data well,

while at low temperatures, the use of Eq. (13) in the effective

medium approximation is superior. Moreover, the tempera-

ture dependence of �Qef f ðTÞ highlights two diffusive regimes

with a kinetic transition temperature at TK� 600 K. The low-

temperature regime is dominated, as expected, by the grain

boundaries.

For the second case, Fig. 8(a) shows the dependence of

Def f ðTÞ on inverse temperature as obtained from numerical

solution of the steady-state diffusion equation, by the

Maxwell-Garnett effective medium theory (with the Hart

approach) and by a hybrid approach described below. The

use of the standard Maxwell-Garnett effective medium theory

is not wholly adequate here, as indicated in the figure. The

reason for this inadequacy is that the large volume fraction of

bulk sites employed here and the higher bulk diffusivity

imply that the bulk phase, rather than the grain boundaries,

should be considered as the matrix phase at low temperature.

Thus, one can apply the Maxwell-Garnett approach as before

in the high-temperature regime, while in the low-temperature

TABLE I. A summary of the kinetic parameters for the two cases compris-

ing scenario 1. The total volume fraction of boundary sites is 0.105 with

approximately 40% of the boundaries being type 1.

Case 1 Case 2

Q
ð1Þ
GB=QB 0.3 1.5

Q
ð2Þ
GB=QB 0.7 1.25

D
ð1Þ
0GB=D

ð2Þ
0GB 0.0001 100

FIG. 7. (a) The dependence of the logarithm of the effective diffusivity,

Def f ðTÞ=D0B, on inverse temperature, QB/kBT, for case 1 (scenario 1) as

determined by the solution of the steady-state diffusion equation (circles)

and from the Kirkpatrick (dashed line) and Hart (solid line) effective me-

dium theories. (b) The associated effective activation energy Qeff/QB as a

function of temperature, T (circles). Also shown is the GB contribution to

Qeff, calculated using the Hart approach (solid line), and the bulk contribu-

tion to Qeff (dotted line). Note that there are, broadly speaking, two distinct

diffusive regimes.

FIG. 6. The dependence of the normalized, effective activation energy
�Qef f ¼ ðQef f � Qmin

GB Þ=DQ on � for r¼ 0.01 (solid line), 2.0 (dashed line),

and 10.0 (dotted-dashed line). The ratio of bulk to GB volume fractions is

fB/f1¼ 1, and the normalized bulk activation energy �QB ¼ 3:0.
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regime, one should interchange the roles of GB and bulk. The

resulting hybrid effective medium theory is seen to reproduce

the data well over the wide range of temperatures considered

here. Figure 8(b) shows the dependence of the associated

effective activation energy, �Qef f , on temperature. It should be

noted that by contrast with the previous case, the low-

temperature regime is dominated by bulk kinetics, while the

high-temperature regime reflects grain-boundary kinetics.

This dominance of bulk kinetics at low temperatures follows

from the choice of parameters given in Table I.

2. Scenario 2: Complexion transition

In this scenario, a fraction of the boundaries undergoes a

complexion transition as a function of temperature. A com-

plexion transition is similar in many respects to a phase tran-

sition. However, since a phase is homogeneous according to

the strict Gibbsian definition, we employ the term complex-

ion to describe interfacial material of finite thickness in equi-

librium with an abutting phase whose existence requires the

presence of the abutting phase. Moreover, this interfacial ma-

terial need not have the same structure or composition as that

of the abutting phase. As discussed above, such complexion

transitions involve structural and chemical changes at a

boundary, and therefore have implications for boundary

kinetics.2

Previous studies have led to the identification of a se-

ries of complexion types and the realization that property

changes, such as changes in GB mobility or embrittle-

ment,37 are associated with complexion transitions.38 In this

case, it is assumed that changes in GB diffusion attend these

structural and chemical changes at interfaces. For simplic-

ity, we again consider two distinct GB types having the pa-

rameter set summarized in Table II. For temperatures below

Tt, this set corresponds to that for case 1 of scenario 1. To

model a complexion transition, it is assumed that a transi-

tion occurs at a temperature Tt¼ 700 K, and that there is an

associated change in the diffusional prefactor corresponding

to one of the grain boundaries. This model is consistent

with the observations of Dillon et al.39 that GB mobilities

in doped and undoped alumina exhibit distinct kinetic

regimes that are associated with different complexions.

Moreover, an Arrhenius analysis of the temperature depend-

ence of the mobilities for these regimes showed that, while

their activation energies were quite similar, each had a dif-

ferent kinetic prefactor.

Figure 9 displays the dependence of Def f ðTÞ on inverse

temperature as obtained from numerical solution of the

steady-state diffusion equation and, in addition, as calculated

using both the Kirkpatrick and the Hart effective medium

theories. As is evident from the figure, the Hart approach

FIG. 8. (a) The dependence of the logarithm of the effective diffusivity,

Def f ðTÞ=D0B, on inverse temperature, QB/kBT, for case 2 (scenario 1) as

determined by the solution of the steady-state diffusion equation (circles).

Also shown are the results of the hybrid effective medium theory (solid line)

and the conventional Maxwell-Garnett approach (dashed line). (b) The asso-

ciated effective activation energy Qeff/QB as a function of temperature, T
(circles). Also shown is the GB contribution to Qeff, calculated using the

Hart approach (solid line), and the bulk contribution to Qeff (dotted line).

TABLE II. A summary of the kinetic parameters for scenario 2. The total

volume fraction of boundary sites is 0.105 with approximately 40% of the

boundaries being type 1. The complexion transition temperature is

Tt¼ 700 K.

GB 1 GB 2

QGB/QB 0.3 0.7

D0GB/D0B 0.0005 5.0 (T<Tt), 50.0 (T�Tt)

FIG. 9. The dependence of the logarithm of the effective diffusivity,

Def f ðTÞ=D0B, on inverse temperature, QB/kBT, as obtained from numerical

solution of the steady-state diffusion equation (circles) and, in addition, as

calculated using both the Kirkpatrick (dashed line) and the Hart (solid line)

effective medium theories.
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again captures the diffusive response over a wide range of

temperatures. Moreover, there is a jump in the value of Deff

due to a change in a GB diffusional prefactor at Tt. This

jump in the effective diffusivity translates into an increase in

Qeff at the same temperature. Thus, one must be careful in

the interpretation of such plots to determine whether a

change in Qeff is due to a change in activation barriers or, as

in this scenario, a change in attempt frequencies (i.e., prefac-

tors). More generally, one would expect that different bound-

ary types would have one or more different complexion

transition temperatures, and so the sharp jump evident in

Fig. 9 would be replaced by a smoother transition.

3. Scenario 3: Continuous distribution of activation
energies

In this scenario, the activation energy for a given bound-

ary is drawn from the distribution of activation energies

given in Eq. (7). To draw from this distribution, one gener-

ates a uniform deviate and, from the logarithm of this devi-

ate, obtains the desired exponentially distributed random

variable.16 The diffusivities obtained in this manner are then

randomly assigned to the grain boundaries in the system. For

this distribution of activation energies, we performed several

simulations for different values of DQ at a fixed value of

j¼ 3.0 eV�1. This value of j was determined from the slope

of the plot in Fig. 3, assuming that a typical value for the

maximum c is about 1.0 J/m2. The results from the aforemen-

tioned simulations are displayed in Fig. 10, which shows

lnðDef f =D0BÞ as a function of QB/kBT for several different

values of r ¼ jDQ. Also shown are the predictions of effec-

tive medium theory, obtained by using the Kirkpatrick

approach (Eq. (12)) to calculate DGB for use in Eq. (11). As

can be seen from the figure, effective medium theory repro-

duces much of the simulation data, especially at small r.

This agreement for small r is intuitively reasonable since the

effective medium approximation should work best for a sin-

gle activation energy or, in general, for a very narrow range

of activation energies.

V. DISCUSSION AND CONCLUSIONS

In this work, we employed both analytical and numeri-

cal methods to examine the impact of GB variability (i.e., a

spectrum of boundary activation energies) on diffusion in a

polycrystal. In particular, we calculated an effective diffusiv-

ity, Deff, and associated activation energy, Qeff, as a function

of temperature for different microstructures using simplified,

multi-state models and models based on an experimentally

obtained GB energy distribution. The main conclusions of

this study are as follows:

(1) The variability in polycrystalline GB character leads, via

the Borisov relation, to a probability density for GB acti-

vation energies and an associated effective diffusivity

that can be characterized by a few parameters.

(2) From the effective diffusivity, one can obtain a tempera-

ture dependent effective activation energy by differentia-

tion. An analysis of this activation energy can be used to

identify different diffusive regimes and associated transi-

tion temperatures.

(3) Effective medium theory can be generalized to incorpo-

rate both bulk and multiple GB diffusivities. This theory

describes the effective diffusivity in many polycrystal-

line systems over a wide range of temperatures.

(4) Complexion transitions affect the spectrum of GB activa-

tion energies, and one can assess their impact on GB dif-

fusion using the numerical procedure described above.

Several extensions of this work are currently underway.

First, it is of interest to determine how microstructural descrip-

tors, such as grain size and shape, affect Deff. With regard to

grain size, stereological arguments can be used to estimate the

fraction of GB sites. For example, for a Poisson Voronoi struc-

ture, the average GB perimeter per grain is 4=
ffiffiffi
q
p

, where q is

the areal grain density.40 Thus, it is straightforward to estimate

the fraction of boundary sites for a fixed number of grains.

Second, as indicated above, the assignment of activation ener-

gies to boundaries in this work was, for simplicity, taken to be

random. In reality, one would expect GB properties to be spa-

tially correlated, and it would therefore be of interest to exam-

ine quantitatively how spatial correlations influence Deff. This

may be accomplished by introducing a correlation length in

the distribution of GB diffusivities that would extend no more

than one or two average grain diameters. Third, it has been

assumed here that the kinetic attributes of a given boundary

are spatially uniform and isotropic. This assumption is clearly

an idealization as real boundaries will exhibit some nonuni-

formity and anisotropy in properties. For example, to model a

spatially diffuse boundary, one can incorporate a position de-

pendent boundary diffusivity that varies from its maximum

near the center of the boundary to a bulk value at a given dis-

tance from the center. In the case of a three-dimensional

model of anisotropic, boundary pipe diffusion, it is also possi-

ble to assign different diffusivities in a boundary region for

transport parallel and perpendicular to the boundary. Finally,

in many studies of GB diffusion in polycrystals, the grains

coarsen during the course of an experiment, especially at high

temperatures. The introduction of grain coarsening in our

model represents a significant future challenge.

FIG. 10. The logarithm of Deff/D0B as a function of QB/kBT for various val-

ues of r for a continuous distribution of GB activation energies. The solid

lines represent the simulation results and the dashed lines are calculated

using effective medium theory.
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