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Hybrid atomistic simulation of fluid uptake in a deformable solid
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Fluid imbibition via diffusion in a deformable solid results in solid stresses that may, in turn, alter subsequent
fluid uptake. To examine this interplay between diffusional and elastic fields, we employed a hybrid Monte
Carlo–molecular dynamics scheme to model the coupling of a fluid reservoir to a deformable solid, and then
simulated the resulting fluid permeation into the solid. By monitoring the instantaneous structure factor and solid
dimensions, we were able to determine the compositional strain associated with imbibition, and the diffusion
coefficient in the Fickian regime was obtained from the time dependence of the fluid uptake. Finally, for large,
mobile fluid atoms, a non-Fickian regime was highlighted and possible mechanisms for this behavior were
identified.
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I. INTRODUCTION

The behavior of a matrix under fluid infiltration is of
significance for designing new materials in various applica-
tions ranging from analytical separations to drug delivery. For
a compliant matrix, the distortion that attends fluid uptake
can lead, for example, to swelling in polymeric systems and
concomitant non-Fickian diffusive behavior [1–3]. For the
particular case in which the fluid permeates a porous solid
and generates stresses that couple with the fluid concentration
field, the resulting poroelastic response can alter the kinetic and
structural response of the system [4,5]. While the conceptual
framework for poroelasticity was developed in the early work
of Biot [6], the field remains active given the technological
relevance of this phenomenon.

Several approaches exist for modeling fluid imbibition in
a system. For example, Gelb and Hopkins [7] used molecular
dynamics simulation to study the dynamics of fluid flow into
empty cylindrical pores in which the pore-wall atoms were
immobile. Ahadian et al. subsequently simulated imbibition
of a simple fluid into a nanochannel using atomistic simulation
to investigate the wall-fluid interaction [8]. More recently,
Joly [9] employed molecular dynamics (MD) simulation to
examine water uptake by a carbon nanotube, and Stukan
et al. [10] also used MD to investigate the role of nanopore
roughness on fluid imbibition. As in the work of Gelb and
Hopkins [7], the atoms comprising the pore walls were static.
At longer length scales, a phase-field model was developed to
investigate fluid infiltration in a weakly anisotropic, poroelastic
solid. It was found that imbibition depended on the strength of
the anisotropy and the relative orientation of the propagating
fluid front [11,12].

Given the inherent computational demands of simulating
fluid imbibition at the atomic scale, most such simulations
of this process take the matrix atoms to be immobile. This
assumption is often justified, especially for fluid atoms having
small radii, in situations where elastic energy considerations
are relatively unimportant. The modeling of elastic deforma-
tion that attends fluid uptakes necessitates, however, the incor-
poration of matrix stresses via the inclusion of matrix-atom
coordinates. As an illustration of a simple system that exhibits
coupling between diffusional and elastic fields, we explore in
this paper the impact of elastic deformation, as described by a

compositional strain, on fluid uptake in a face-centered cubic
solid that is in contact with a reservoir. Our aim is to explore
the consequences of this coupling on the elastic response of the
solid and the diffusional transport of the permeating fluid. For
this purpose, we have tailored a hybrid Monte Carlo–molecular
dynamics scheme to model fluid uptake in the solid from a
reservoir that is maintained at a constant chemical potential for
the fluid species. In particular, a grand-canonical Monte Carlo
(GCMC) simulation is employed to maintain a fixed chemical
potential in a reservoir of fluid atoms that is in contact with
a solid. The trajectories of both fluid and solid atoms in the
solid are obtained using MD simulation. By monitoring the
fluid uptake, as well as the instantaneous structure factor and
lattice parameter for the solid, we develop a description of
fluid permeation in a deformable medium.

This paper is organized as follows. In Sec. II we provide
some background material for this work, including a discus-
sion of compositional strain in this context. In Sec. III, the
simulation procedure is outlined, while in Sec. IV we present
our simulation results. Section V contains a summary and dis-
cussion of our findings, and Sec. VI contains some conclusions.

II. BACKGROUND

A. Fluid uptake

Our analysis of fluid uptake, M(t), at time t begins with a
comparison to ideal, Fickian imbibition, defined here as uptake
following the standard diffusion equation with a constant
diffusion coefficient, D.

Consider a spatially uniform, solid slab confined to the
region −� � z � � having a diffusant concentration, c (z,t),
that is in contact with a diffusant (fluid) reservoir at its
boundaries, z = ±�. For the case in which c (z,t = 0) = 0
in the slab and c (z = ±�,t) = c0, one finds that [13]

MF (t)

M∞
= 1 −

∞∑
n=0

8

(2n + 1)2π2
exp

(−D(2n + 1)2π2t

4�2

)
,

(1)

where M∞ is the uptake at saturation (i.e., t = ∞) and the
superscript “F” denotes Fickian behavior (i.e., following from
the standard diffusion equation).
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Thus, systems characterized by the uptake function given
by Eq. (1) are, by our definition, Fickian in nature, and we are
especially interested here in characterizing any deviations from
this behavior observed in our simulations. Such deviations
may occur for various reasons, including, for example, stress
generation in the matrix and time-dependent structural changes
(e.g., in polymers) [14,15]. In the context of this work, it
is expected that the permeation of relatively large diffusant
atoms in an elastic solid will generate stresses that will impede
further diffusion. A link between the spatiotemporal evolution
of c (z,t) and generated self-stresses is described below.

B. Compositional strain

The diffusion of fluid atoms through the void space in a
crystalline solid leads to self-stress, and therefore local strains,
that depend on c (z,t). If the reference state of the system is
associated with a uniform concentration c̄, then, in a cubic
system, one can specify the components of the compositional
strain tensor as εc

ij = η (c − c̄) δij [16]. For small strain, the
corresponding stress is proportional to the elastic strain and
so, in the absence of an external stress,

σij = Cijkl

(
εkl − εc

kl

)
, (2)

where σij are the components of the stress tensor and Cijkl are
the components of the elastic constant tensor.

For a cubic solid one can readily obtain the pressure, P , in
terms of the compositional strain. Taking the trace of both sides
of Eq. (2) and noting that P = −(1/3)σii (with the summation
convention), one finds that

P = B [3η (c − c̄) − εii] , (3)

where B is the bulk modulus. For cases in which the pressure in
the reference state is nonzero, B = B0 + P

3 . Equation (3) can
be used to determine the compositional strain in a simulation
from a knowledge of the bulk modulus of a material and its
dimensional changes resulting from the permeation of a fluid.
One aim of this paper is to relate M (t) to η.

III. SIMULATION METHODOLOGY

A hybrid Monte Carlo–molecular dynamics scheme was
employed here to model the coupling of a fluid reservoir
to a deformable solid. From a number of such approaches
developed in recent years [17–20], we selected a methodology
for this study that is an extension of an earlier scheme that is
well suited to the study of fluid uptake [17]. Our simulations are
based on a layered geometry wherein, initially, a face-centered
cubic (fcc) solid slab comprising Ns atoms of radius Rs is in
contact with a fluid “reservoir” [21] containing Nf atoms of
radius Rf , as shown in Fig. 1(a). The system is subject to
periodic boundary conditions in each principal direction. The
chemical potential of the reservoir, μres, is held fixed using
GCMC (see below), and so the number of fluid atoms in the
reservoir fluctuates during the course of a simulation.

The interactions in this binary system are governed by a
modified Lennard-Jones potential developed by Broughton

FIG. 1. (Color online) (a) A schematic of the simulation cell used
to simulate fluid uptake from a reservoir into a deformable solid. (b)
A snapshot showing fluid atoms dissolved in the solid.

and Gilmer [22]. The interatomic potential is given by

Uαβ (r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6 ]
+ C1, r � 2.3σαβ

= C2

(
σαβ

r

)12

+ C3

(
σαβ

r

)6

+ C4

( r

σ αβ

)2
+ C5,

2.3σαβ < r < 2.5σαβ

= 0, r � 2.5σαβ, (4)

where εαβ and σαβ are the usual energy and length parameters,
respectively, and α and β denote atom types (i.e., solid or
fluid) [23]. The energy and length parameters were calculated
using the Lorentz-Berthelot mixing rules, σαβ = 0.5(σαα +
σββ),εαβ = √

εααεββ . To express our results in reduced units,
we take εss = ε = 1 and σ ss = σ = 1 where s (f ) denotes
solid (fluid) atoms. The other potential parameters are given,
in units of ε, by C1 = 0.016132, C2 = 3136.6, C3 = −68.069,
C4 = −0.083312, and C5 = 0.74689.

A simulation begins with Ns = 180 solid atoms and
Nf = 170 or Nf = 200 fluid atoms, with masses ms = 1 and
mf = 0.5, in a simulation cell of fixed volume with dimensions
l × l × L, where l = 4.7σ and L = 11.0σ , in the x, y, and z

directions, respectively. The solid atoms constitute a fcc crystal
with a lattice parameter chosen to yield zero pressure for an
isolated crystal at the desired temperature, T , using the results
of Broughton and Gilmer [22]. These authors performed a
series of constant-volume molecular dynamics runs in which
the lattice parameter was varied from run to run to obtain zero
pressure.

As fluid atoms diffuse into the solid, the solid is strained
tetragonally, and therefore the volume of the fluid reservoir
decreases correspondingly, consistent with a fixed simulation
cell volume. A driving force for diffusion is created by
maintaining the chemical potential of the fluid atoms in the
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reservoir at a fixed value, μres. For this purpose, we adapted the
approach of Heffelfinger and van Swol [17], who combined
GCMC simulation with an isothermal molecular dynamics
simulation to fix μres while allowing for diffusional transport
on long time scales.

Our procedure, after setting up the simulation system, is as
follows. First, fluid atoms in the reservoir are equilibrated
with the conventional metropolis Monte Carlo method at
fixed Nf . Then the chemical potential of the equilibrated
reservoir, μres, is determined by using Widom’s method [24].
Next, the system is evolved for 50 steps, with each time
step being 0.005 (reduced units), using isothermal MD.
Temperature control was achieved via velocity rescaling at
every time step. Following this step, the chemical potential
of the reservoir is readjusted to μres by applying GCMC
algorithm [17], with approximately 50 attempts for atomic
insertion or deletion [25]. Widom’s method is used periodically
to verify that the chemical potential has been set correctly. This
sequence of steps is repeated until the solid is saturated with
fluid atoms. Depending upon the magnitude of Rf /Rs , typical
runs consisted of approximately 2 × 105 to 4 × 106 MDS.
Finally, to obtain statistically meaningful data, simulation

FIG. 2. (Color online) (a) The uptake function, M(t)/M∞, as a
function of the square root of time,

√
t , for Rf /Rs = 0.30. The results

were averaged over 60 independent runs with mean fractional error
of 0.074 at each recorded time step. (b) The uptake function vs scaled
time,

√
Dt/� in comparison with the corresponding Fickian uptake

function from Eq. (1) (solid line).

results were averaged over many realizations of the system
(typically 60–80 runs).

IV. RESULTS

The transport behavior of a fluid in a deformable solid
was modeled using two different atomic size ratios, namely
Rf /Rs = 0.30 and 0.414, to explore the impact of elastic
deformation on diffusion. As both ratios are much less than
one, it is expected that fluid atoms will dissolve into the
interstitial voids in the fcc structure, though preferentially
into the larger octahedral voids for the larger fluid atoms.
Figure 1(b) shows a snapshot of the atomic coordinates after
some elapsed time that highlights the dissolution of the fluid
atoms.

Consider first a system with Rf /Rs = 0.30 at temperature
T = 0.3. Figure 2(a) shows the uptake function, M (t) /M∞,
as a function of square root of simulation time,

√
t , where

time is measured in units of �t . As expected, fluid uptake
increases monotonically with time until saturation at late times.
To facilitate the interpretation of these data, the uptake curve is
replotted in Fig. 2(b) as a function of scaled time,

√
Dt/�. The

diffusion coefficient, D, was determined by fitting the Fickian
uptake given in Eq. (1) to the data. More specifically, we
define a parameter χ2 = ∑

i[(M(ti)/M∞) − (MF (ti)/M∞)]2,
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FIG. 3. (Color online) (a) The instantaneous structure factor,
S(�k,t), vs time for the wave vectors �k = (4π/a)x̂ (◦), (4π/a)ŷ (�),
and (4π/a)ẑ (�), respectively, for Rf /Rs = 0.30. (b) The same as in
panel (a), except that Rf /Rs = 0.414.
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where the sum is over simulation times and the superscript
“F” denotes the Fickian result [Eq. (1)]. The coefficient D is
chosen to minimize χ2. For this system it was found that D =
0.154

√
εσ 2/m. For comparison, the corresponding Fickian

uptake function, MF (ti)/M∞, is also displayed in Fig. 2(b). As
is evident from the figure, the simulation data is well described
by a Fickian profile, as might be expected for particles that are
able to fit readily into interstices.

While the fluid particles can be accommodated by the voids
in the solid, there is, nevertheless, an expansion of the solid
due to the compositional strain that attends fluid permeation.
To highlight this expansion and also confirm that the solid
remains intact, one can calculate the instantaneous structure
factor, S(�k,t), for the solid atoms for a few fcc reciprocal lattice
vectors. Figure 3(a) shows S(�k,t) versus time for �k = (4π/a)x̂,
(4π/a) ŷ, and (4π/a)ẑ, where a is the lattice parameter.
The relatively large values for these quantities indicate that
the lattice remains intact, and the tetragonal strain in the z

directions splits their degeneracy. In other words, the structure
factors in Fig. 3 show that the solid lattice, while distorted due
to the presence of interstitials, remains crystalline. Moreover,
the smaller value of S(�k = (4π/a)ẑ,t) at late times indicates
that the solid is lengthening in the z direction.

A more direct measure of expansion is given in Fig. 4(a),
which shows the strain component εzz(t) as a function of
time. Clearly, εzz increases with time until saturation as the
simulation cell expands to accommodate fluid atoms. The
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FIG. 4. (Color online) (a) The tetragonal strain component,
εzz(t), vs time for Rf /Rs = 0.30 and Rf /Rs = 0.414, respectively.
(b) The same as in panel (a), except that Rf /Rs = 0.414.

FIG. 5. (Color online) (a) The uptake function, M(t)/M∞, as a
function of the square root of time,

√
t , for Rf /Rs = 0.414. The

results were averaged over 80 independent runs with mean fractional
error of 0.107 at each recorded time step. (b) The uptake function vs
scaled time,

√
Dt/� in comparison with the corresponding Fickian

uptake function from Eq. (1) (solid line).

value of the strain at saturation, εzz ≈ 0.05, can be used to
determine the associated compositional strain parameter η

using Eq. (3). At this temperature, the bulk modulus B =
45.8ε/σ 3 and so, given the calculated pressure at saturation,
one finds that η = 0.02.

Consider next a system with Rf /Rs = 0.414, again held at
temperature T = 0.3. Figure 5(a) shows the uptake function,
M(t)/M∞, as a function of square root of simulation time,

√
t ,

and Fig. 5(b) shows the uptake function and the corresponding
Fickian uptake function versus

√
Dt/�. As before, the value for

D was determined from a best fit using the χ2 parameter, and
the compositional strain parameter η = 0.04 was determined
from εzz at saturation [see Fig. 4(b)], as above, by using
Eq. (3). As is evident from the figure, the uptake function
is not accurately described by the Fickian uptake function.
The origin of this non-Fickian behavior is discussed below.

The strain is, of course, associated with diffusant atoms
distorting the local atomic environment around structural
voids. These local distortions are reflected in S(�k,t), as
displayed in Fig. 3(b), for the same high-symmetry reciprocal
lattice vectors used above. The tetragonal strain induced in the
z direction again splits the degeneracy in the structure factor,
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FIG. 6. (Color online) The partial radial distribution function,
gsf (r), vs distance, r where s and f denote the solid and fluid
species, respectively, for Rf /Rs = 0.30 (thin curve) and Rf /Rs =
0.414 (thick curve). The arrows indicate the location of octahedral
interstices. Note that the peaks corresponding to the octahedral
locations are more pronounced for Rf /Rs = 0.414.

the relatively large value of S(�k = (4π/a)ẑ,t), due to the fact
that large interstitials constrain the vibrations of lattice atoms.
The spatial distribution of the fluid atoms in the available
interstices is highlighted in Fig. 6, which shows the partial
radial distribution function, gsf (r), versus distance, r , where
s (f ) denotes the solid (fluid) atoms, for both Rf /Rs = 0.30
and Rf /Rs = 0.414. In principle, diffusant atoms can reside in
either octahedral or tetrahedral interstices, though larger elastic
strains (and therefore a larger strain energy) are associated
with the tetrahedral voids. However, as noted from the figure,
the peaks corresponding to the octahedral voids (indicated
by the positions of the arrows) become more pronounced
for Rf /Rs = 0.414 as these larger voids are required to
accommodate larger atoms.

V. DISCUSSION

As noted above, the normalized uptake function for a
diffusant with Rf /Rs = 0.414 is not well described by the
corresponding Fickian uptake function given in Eq. (1). There
are at least two possible reasons for this disagreement. First,
in stressed solids, the chemical potential is a function of both
concentration and stress (i.e., μ = μ(c,σij )), and therefore the
diffusive flux is, in general, a function of the stress state of
the system. For cases in which diffusing atoms are relatively
large, the flux will depend on the resulting self-stresses and
therefore η. In some cases this stress dependence leads to a
flux that depends on the concentration throughout the system,
rather than simply on the gradient of the local concentration.
In the appendix we discuss in more detail the role of self-stress
on diffusion in our problem. It is found that, in our case, the
flux depends only on the gradient of the local concentration,
and the corresponding diffusion equation is therefore spatially
local. Thus, the dependence of the driving force for diffusion
on stress does not explain the observed behavior of the uptake
function.

Another possible reason for the observed non-Fickian
behavior is that the diffusion coefficient is a function of the
local concentration, c, as might be expected for interacting dif-
fusant atoms [26]. Such interactions arise from the interatomic

FIG. 7. (Color online) The uptake function, M(t)/M∞, as a func-
tion of the square root of the simulation time,

√
t , for Rf /Rs = 0.414.

Also shown is the uptake as calculated using Eqs. (5) and (6)
(solid line).

potential and from the elastic coupling of centers of dilatation
moving in an anisotropic medium. Thus, in our system, one
would expect diffusive motion to occur readily for c small,
but to become slower for larger c as stresses generated by the
diffusant atoms constrict interstices and migration pathways.
To examine this possibility, we consider a simple, two-step
parametrization of the diffusion coefficient, namely

D(c) = D1(η)(c) − D2(η)[c − c0(η)], 0 � c � 1, (5)

where D1, D2, and c0 are constants that depend on the
compositional strain parameter η and θ denotes the unit step
function.

For this parametrization, we solved the associated one-
dimensional diffusion equation

∂c

∂t
= ∂

∂z

(
D (c)

∂c

∂z

)
(6)

numerically using the method of lines [27] for our thin-slab
geometry. The corresponding uptake function is displayed
in Fig. 7, along with the simulation results, for the choices
D1 = 0.11

√
εσ 2/m, D2 = 0.01

√
εσ 2/m, and c0 = 0.2. This

simplified parametrization of D (c) is seen to provide a good
description of the simulation results. From these consider-
ations one can infer the behavior of these parameters as a
function of η. For example, one can see that c0 increases as η

decreases, with c0 → 1 as η → 0. In addition, it is clear that
D1 is a monotonically decreasing function of η as larger atoms
are associated with greater strain along diffusive pathways.

VI. CONCLUSIONS

A hybrid Monte Carlo–molecular dynamics scheme was
employed here to model the coupling of a fluid reservoir to
a deformable solid, and the resulting permeation of the fluid
into the solid was examined to highlight the interplay between
diffusional and elastic fields. Both Fickian and non-Fickian
regimes were identified and described in terms of the relative
size of the fluid and solid atoms. The impact of self-stresses
on solid-state diffusion were investigated by monitoring the
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fluid uptake and evolving partial structure factors and radial
distribution functions.

The results obtained here suggest that analogous simulation
studies of fluid uptake in porous media will be useful in
elucidating the roles of pore geometry and stress on diffusion.
Given the geometric complexity of a porous medium, it will be
of interest to characterize the interconnectivity of the porous
network and to calculate the local stresses [28] in different
regions of the system. It is expected that the swelling of
portions of this network that attend diffusion will alter the
corresponding diffusive flux. A simulational study of fluid
uptake by a porous medium is the subject of future work.
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APPENDIX

In this appendix, we examine the dependence of the
diffusive flux on the concentration field. The diffusive flux
depends on the gradient of the chemical potential of the
diffusing species and, as discussed above for a deformable
solid, this potential depends on the stress state of the system.
With the assumption that mechanical equilibrium obtains
quickly on the time scale of mass diffusion, it can be shown
that in some cases the stress is a functional of the concen-
tration field, thereby rendering diffusion spatially nonlocal
and therefore non-Fickian. One such case is that of mass
transport in an infinite, elastically anisotropic solid having
cubic symmetry [29]. Another example is that of diffusion in
an elastically isotropic plate in which one side of the plate is in
contact with a fluid, with a resulting asymmetric concentration
profile [16]. The system considered here is a thin, elastically
anisotropic plate having cubic symmetry in contact with a
fluid on two faces. We consider below the diffusive flux in this
system.

Larché and Cahn [29] have shown that the components of
the diffusive flux, �J , can be written as

Ji = −L ∂

∂xi

[μ0(c) − (η/ρ)σkk(�r)], (A1)

where L is a kinetic coefficient, μ0 is a part of the chemical
potential that depends on concentration, and ρ is the density. It
has been assumed here that the elastic constants of the system
do not depend on c.

Assuming that the elastic fields relax quickly on the time
scale of atomic diffusion, σii can be expressed in terms of c.
This may be accomplished by starting with the equations of
compatibility [30]

eikrejls

∂2εij

∂xk∂xl

= 0, (A2)

where eikr are the components of the Levi-Civita tensor, and
rewriting them in terms of the stress.

The components of the strain tensor can be written in terms
of those of the stress tensor by inverting Eq. (2) to obtain

εij = Sijklσkl + εc
ij , (A3)

where the Sijkl are the components of the compliance tensor.
For a cubic solid [31],

Sijkl = αδij δkl + β(δikδjl + δilδjk) + γ δijkl, (A4)

where δij is the Kronecker δ and δijkl = 1 if i = j = k = l

and otherwise zero. Also, for this case, εc
ij = η (c − c̄) δij . The

coefficients in Eq. (A4) can be written in terms of the elastic
constants (in Voigt notation) as

α = − C12

(C11 − C12)(C11 + 2C12)
,

β = 1

4C44
, (A5)

γ = − τ

2(C11 − C12)C44
,

where the anisotropy factor τ = C11 − C12 − 2C44 vanishes
for an isotropic solid. Upon inserting Eqs. (A3) and (A4) into
Eq. (A2) and taking a trace, one finds that

∇2

[
σkk +

(
η

α + β + γ /2

)
c

]
+

(
γ

2α + 2β + γ

)

×
[
∂2σ11

∂x2
1

+ ∂2σ22

∂x2
2

+ ∂2σ33

∂x2
3

]
= 0. (A6)

For an isotropic solid, Eq. (A6) can be simplified to read

∇2

[
σkk +

(
2Eη

1 − ν

)
c

]
= 0, (A7)

where E and ν are the Young’s modulus and Poisson’s ratio,
respectively.

We first consider the isotropic case. Following Larché and
Cahn [16], one has that

σkk +
(

2Eη

1 − ν

)
c = Sz + T , (A8)

where S and T are constants. Since the boundary conditions for
the thin slab are the same at ±�, S = 0, and so �∇σkk = −2Eη/

(1 − ν) �∇c and the flux is therefore spatially local [32].
For the case of medium with cubic anisotropy modeled

here, the stresses σ11 and σ22 are independent of x and y as the
system is translationally invariant in the xy plane. Moreover,
since σ31 = σ32 = 0, a solenoidal stress implies that σ33 is
constant and so Eq. (A6) becomes

∇2

[
σkk +

(
η

α + β + γ /2

)
c

]
= 0. (A9)

Given the discussion above, one again concludes that �∇σkk

depends only on �∇c and that the flux is spatially local.
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