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Abstract

I consider a classic public good provision problem when the government has
the power to tax its citizens. In this environment, participation constraints
need not be satisfied. I replace such participation constraints with a weaker
condition, which I call no-extortion, that limits the ability of the government
to extract funds from its citizens. It is well known that there does not exist any
strategy-proof, efficient, and budget-balanced mechanism. In fact, any strategy-
proof and efficient mechanism that additionally satisfies individual-rationality
or universal-participation fails to raise any revenue in large populations. How-
ever, replacing these conditions with no-extortion yields a positive result. There
exists a simple, detail-free mechanism that is strategy-proof, efficient, extortion-
free, and (asymptotically) budget-balanced in large populations. Furthermore,
among all strategy-proof, efficient, and extortion-free mechanisms, this mecha-
nism is undominated and uniquely maximizes ex-post revenue (minimizing any
potential, though unlikely, budget deficit).

1 Introduction

Consider a large group of individuals who would like to decide whether a costly
non-excludable public good is worth providing to the community. That is, they
wish to answer the question: is the sum of each individual’s value for the public
good at least as high as the cost of providing it? Each individual knows only her
own value, so in order to compute the community’s total valuation, everyone must
be willing to truthfully reveal their private information. Mechanism design provides
a rigorous framework to analyze such problems. A mechanism is a mapping from
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all individuals’ reports of their private information to social outcomes, and it is
feasible (or incentive-compatible) if it is an equilibrium for each individual to report
their private information truthfully. In this paper, I focus on the robust solution
concept of strategy-proofness, which says that truthful reporting is a dominant-
strategy equilibrium.

A social outcome consists of a selection from a set of social alternatives, in this case a
binary decision to provide or not provide the public good, along with a specification
of payments for each individual in the community. In principle, a mechanism in
this setting cannot feasibly result in a budget imbalance, i.e. payments can never
sum to less (budget deficit) or more (budget surplus) than the implementation cost
of the chosen alternative. In the case of a deficit, it is not physically possible to
implement the chosen alternative without raising the funds to do so, which, barring
donations from a third-party, must come from within the community. In the case
of a surplus, while it is physically possible to “burn” the money or donate it to
a third-party, this is likely not acceptable in practice, and hence the funds must
ultimately be redistributed back to the community. But such taxes and rebates
are, in principle, a part of each individual’s transfer payment, closing the system
and eliminating the possibility of budget imbalance in the first place. That being
said, this paper will take the view that a government can finance small deficits and
redistribute small surpluses with imperceptible changes to its tax policy. That is,
we will accept violations of budget-balance in either direction as feasible, as long as
they are “small”, with the understanding that the resulting budget-balancing taxes
or rebates will be sufficiently insignificant and indirect so that individuals do not
perceive them as part of their transfer payments.! I refer to this as approzimate
budget-balance.

It is common in mechanism design to also require some form of participation con-
straint. This captures the idea that, while it may be a dominant strategy for an
individual to report truthfully conditional on participating in the mechanism, they
may have good reason to avoid participating in the first place. A key argument of
this paper is that, in the context of a public good provision problem with a govern-
ment that has the power to tax its citizens, such participation constraints are not
necessary. Consider an individual who refuses to “participate”. This individual will
still derive value from the choice (made in her stead) to provide or not provide the
public good, since public goods are by assumption not excludable.? She will also be

!Practically, this can be understood as a government savings account capable of absorbing
small deficits and surpluses. Over time, any accumulated surplus will be repaid to the community
through tax cuts, while any accumulated deficit will be replenished through tax increases. If these
tax adjustments are small, we assume individuals do not perceive them as part of the original
mechanism.

2Many public goods may be excludable in principle but not in practice. For example, in principle
it is possible to build a fence around a park and hire a security guard to attend the entrance gate.
However, in practice this may be prohibitively expensive and may also detract from the citizens’



unable to avoid her transfer payment, since by assumption the government has the
power to tax.?

But this is not to say that constraints in this style have no use here. While I have
argued that they should not be interpreted as providing incentives to “participate”,
these constraints can often be interpreted as providing conditions for “fairness”. For
example, ex-post individual-rationality (EPIR) provides an especially strong notion
of fairness—that each individual is happier after the mechanism concludes than be-
fore it began. As we will see, such a strong notion of fairness will be impossible to
satisfy alongside other crucial properties. Hence, I define a weaker fairness condi-
tion that seems quite natural in the context of public goods provision—that each
individual can only be asked to pay more than her value of the chosen alternative
if this amount does not exceed her fair share \; of its implementation cost.* This
captures the idea that individuals are willing to pay up to their value of the good,
but also find it acceptable if they are asked to contribute up to their fair share of
its implementation cost. I call this condition no-extortion.

As alluded to in the first paragraph, the final property we seek is efficiency. That is,
we will focus on decision rules that provide the public good if and only if the sum
of values is at least as high as the cost of providing it. These are known as efficient
decision rules.

In summary, we seek a mechanism that is strategy-proof, approximately budget-
balanced, extortion-free, and efficient. Such a mechanism does exist, and I provide
one in particular that is simple, intuitive, and detail-free.® I call this the cost-sharing
pivot mechanism, and show that, while it is not the only mechanism that satisfies
these four properties, it is undominated® and uniquely minimizes any budget deficit
among such mechanisms. Intuitively, the cost-sharing pivot is simply a standard
pivot mechanism in which the transfers for player i are increased by her share of the
implementation cost of what would have been provided without her.

section 2 reviews the literature on the public good provision problem and the difficul-

experience of the park itself. For analysis of excludable public goods, see Deb, Ghosh and Seo
(2002) and Massé et al. (2015).

3 Alternatively, we might say that participation constraints are still necessary, but not in their
standard form. In particular, an individual can move to another community, avoiding any public
goods and taxes from her original community. But, given that we will bound how much the
government can tax its citizens via a fairness constraint, this is likely to be sufficiently costly so as
to never bind.

4What constitutes “fair” is agreed upon prior to the mechanism. A simple example is equal
shares A\; = 1/n, but we may also use exogenous data to inform more sophisticated notions of
fairness, e.g. equal shares of one’s wealth.

A mechanism is detail-free if it does not need to be calibrated by knowledge of player value
distributions or player beliefs.

SThere is no other strategy-proof, approximately budget-balanced, extortion-free, and efficient
mechanism that always gets closer to budget balance.



ties it presents. section 3 introduces the general model and defines the cost-sharing
pivot mechanism. section 4 states the main results, and section 5 concludes.

2 The Public Good Provision Problem

The mechanism design approach to the public good provision problem can be un-
derstood as a search for mechanisms with sufficiently desirable properties. At first
pass, many would agree that the following four axioms come to mind: strategy-
proofness, efficiency, ex-post individual-rationality, and ex-post budget-balance. A
mechanism is strategy-proof (SP) if it is a dominant-strategy for every participant
to report truthfully, efficient (E) if the good is provided if and only if the sum of
values exceeds its implementation cost, ex-post individually-rational (EPIR) if every
participant is better off after the mechanism concludes than before it began, and
ex-post budget-balanced (EPBB) if the transfer payments always sum to exactly
the implementation cost. However, this leads to an immediate dead end, as no such
mechanism exists. In particular, Green and Laffont (1979) show that no mechanism
can satisfy SP, E, and EPBB.

From here, we may proceed to relax certain axioms, hoping that a slightly less ideal,
but still satisfactory, mechanism will be unveiled. There are two ways to justify
such relaxations. The first is to argue that an existing axiom is unnecessary for a
certain context of interest, and that we can hence remove or weaken it “for free”
(my justification for weakening EPIR). The second is to argue that we may relax
an axiom from holding exactly to holding “approximately” (my justification for
weakening EPBB).

Although this paper is interested in strategy-proof and detail-free implementation,
let me begin by mentioning two classic papers that do not impose such robust-
ness. d’Aspremont and Gérard-Varet (1979) show that it is possible to achieve
Bayesian incentive-compatibility (BIC), E, and EPBB, while Myerson and Satterth-
waite (1983) show that it is not possible to achieve BIC, E, EPBB, and interim
individual-rationality (IIR). The latter is an alternative way to see the impossibility
of our first-pass axioms.

Now, let us consider relaxing E in hopes that it can be made to hold approximately.
Kuzmics and Steg (2017) show that the welfare-maximizing mechanism among all
SP, EPIR, and ex-post budget-surplus (EPBS)7 mechanisms is a “split-the-cost”
mechanism, in which each player has a fixed cost share, the good is provided if and
only if all players’ values exceed their own cost share, and each player pays her
cost share if the good is provided and zero otherwise. Notice that this mechanism
is in fact EPBB, but is not approximately efficient—its performance substantially

7A mechanism is EPBS if it never runs a deficit.



deteriorates with n. In fact, Mailath and Postlewaite (1990) show that this asymp-
totic inefficiency holds for any BIC, IIR, and ex-ante budget-balanced (EABB)®
mechanism.

Next, consider weakening EPBB to EPBS. I show that no mechanism can satisfy
SP, E, EPIR, and EPBS (Corollary 1 in Appendix A). Define no-arbitrage (NA)
as collecting no payments from players with weakly positive values for the good
when the good is not provided. This is a minimal standard of fairness, preventing a
government from extracting meaningless funds (since no project is provided) from
citizens who are not getting their preferred outcome. I show that no mechanism can
satisfy SP, E, NA, and EPBS either (Proposition 2 in Appendix A).

Finally, consider relaxing EPBB in hopes that it can be made to hold approximately.
The revenue-maximizing mechanism among all SP, E, and EPIR mechanisms fails
to raise any revenue in large populations when the good is provided.” However,
weakening EPIR to no-extortion (NE) yields a positive result—the main result of
this paper. The revenue-maximizing mechanism among all SP, E, and NE mech-
anisms is the cost-sharing pivot, which is approximately EPBB. In particular, the
probability that it is not EPBB and the expected distance from EPBB go to zero
as the population size goes to infinity.

3 The Cost-Sharing Pivot Mechanism

Let Y be an arbitrary set of social alternatives and C' : Y — R represent the imple-
mentation costs of each alternative.!’ Let I = {1,...,n} be a set of individuals and
O; be an arbitrary type space for each i. Define X =Y x R” to be the set of final
outcomes, which combines a social alternative with a vector of transfers. Each indi-
vidual ¢ has preferences over X represented by the quasilinear utility function

ui(z,0) = vi(y, 0;) — ti,

where 0; € ©; is i’s privately known type and ¢; is the amount 7 is asked to pay. No-
tice that 7’s value for each alternative v; does not depend on the private information
of i’s opponents. This is known as a private values assumption.

8A mechanism is EABB if it is budget-balanced in expectation, given some belief over value
profiles.

9With non-negative values, the revenue-maximizing mechanism among all SP, E and EPIR
mechanisms is a pivot mechanism, which raises asymptotically zero revenue. With no lower bound
on values, the revenue-maximizing mechanism raises less revenue still.

OFormally, I model implementation costs using an additional player ¢ = 0 called the “imple-
menter” who bears the full implementation cost and is otherwise (commonly known to be) indiffer-
ent between all y € Y, so that uo(x,00) = —C(y) for all 6y € Oq. For clarity, I remove this “player”
from the set I and explicitly write the (negative) implementation costs in place of her value.



A direct revelation mechanism asks each individual to report their type and selects
a final outcome as a function of these reports. We seek a direct revelation mech-
anism that chooses a value-maximizing social alternative given the reports (along
with some transfers) and for which it is a dominant strategy for each individual to
report truthfully. This focus on direct revelation mechanisms, instead of general
mechanisms in which reports can be arbitrary, is without loss of generality due to
the revelation principle (Gibbard, 1973).

In this environment, a direct revelation mechanism f (henceforth mechanism) can be
represented as a pair f = («a,7), where o : © — Y is a decision rule and 7 : © — R"
is a transfer rule. Define the efficient decision rule by

a(f) € arg max Zvi(y,ez’) - C(y)

US St

and the efficient decision rule without ¢ by a—;(0—;) € argmax ey >, v;(y,0;) —
Cy)-

Definition 1. A mechanism f = («,7) is a cost-sharing pivot mechanism given
cost shares )\ if the decision rule is efficient and the transfer rule satisfies

J#i J#i

Ti(0) = (Z vi(a—i(0-:),0;) — C(ai(9i))) - (Z v;(a(0),0;) — C(Oé(9))>
+ Ai(a—i(0-:))C(a—i(0-:))

where > . Aj(y) =1 and Ai(y) > 0 for all i and y.

The A;(y) are interpreted as i’s “fair share” of the implementation costs for alter-
native y. A simple notion of fair share would be equal shares, i.e. A\;(y) = % for all
y, but the mechanism does not rely on such symmetry. Indeed, if exogenous data
like wealth levels w; are available, an appealing notion of fair share might be equal

shares of one’s wealth, i.e. \i(y) = w;/ ) ; w; for all y.

Intuition for the cost-sharing pivot is probably best understood through its connec-
tion to the class of VCG mechanisms and, in particular, the pivot mechanism.

Definition 2. A mechanism f = (a,7) is a VCG mechanism if the decision rule is
efficient and the transfer rule satisfies

7i(0) = — | D vi(al9),6;) — C(a(9)) | + gi(6-)
J#i

for any function g; : ©_; — R, which we will call the VCG constant (it is constant
in i’s report).



These mechanisms, due to Vickrey (1961), Clarke (1971), and Groves (1973), clev-
erly set each individual’s ex-post payoff u;(a(6),8) equal to the total social value
of a(f). Since the decision rule is efficient, this perfectly aligns each individual’s
objective to the mechanism’s, and so it must be a weakly dominant strategy for
each individual to report truthfully (strategy-proofness). Furthermore, we may add
any term to i’s transfer that does not depend on i’s report (the VCG constant)
without altering these incentives, which completes the class of VCG mechanisms.
Remarkably, Green and Laffont (1977) and Holmstrom (1979) show that, as long
as the space of admissible values is sufficiently rich, these are the only mechanisms
that are strategy-proof and efficient.

Definition 3. A mechanism f = («, 7) is a pivot mechanism if f is a VCG mecha-
nism with VCG constant

gi(0-i) = Y vj(a-i(0-0),0;) — Cla—i(0-3)).
i#i

The pivot mechanism is perhaps the most intuitive of the VCG mechanisms. Its
transfers are set so that pivotal players (those whose presence changes the deci-
sion) compensate the other players for this change, while non-pivotal players pay
nothing. This is achieved by adding a constant to i’s VCG transfer equal to the
total value to 7’s opponents of the social alternative that would have been chosen
without i. The pivot mechanism has several desirable properties in environments
with costless alternatives (i.e. when C(y) = 0 for all y). In particular, it never runs
a budget-deficit and is asymptotically budget-balanced (Green and Laffont, 1979;
Rob, 1982).!" One adaptation of the pivot mechanism that retains these properties
in environments with costly alternatives is the following.

Definition 4. A mechanism f = (a,7) is a pivot mechanism with fized payment
plan if the decision rule is efficient and the transfer rule satisfies

Ti(0) = Z [vj(a—i(0-:),0;) — Aj(a—i(0-;))C(a—i(0-;))]
i

= > [wi(el8),65) = X (e(8))C((6))] + Ni((6))C(x(8)),

j#i
where >, Aj(y) =1, Ai(y) > 0 for all i and y, and

a-i(0-;) € argmax Y [v;(y,6;) — X;(y)C(y)] .
Y

A bit of staring reveals that this is, in fact, equivalent to a standard pivot mech-
anism in a modified environment where each outcome is interpreted as including a

" Creen and Laffont (1979) and Rob (1982) show asymptotic budget-balance for binary decision
problems, but their results can easily be generalized to environments with finitely many alternatives.



fixed division of implementation costs for each player. Thus, types in this modified
environment ; take into account that i will be forced to pay \i(y)C(y) if y is im-
plemented, so that v;(y, 6;) = vi(y, ;) — X\i(y)C(y). This is a standard approach to
modeling implementation costs in the literature'? and has the obvious and power-
ful benefit that the mathematical analysis between environments with costless and
costly alternatives is identical. Indeed, Green and Laffont (1979, p. 31) even con-
tend that “there is no real alternative to this approach”, since “the financing decision

cannot be effected simultaneously with the elicitation of preferences.”

While it is true that the choice of payment plan must be arbitrary in an efficient
mechanism,'® T do not believe that implicitly embedding cost shares inside the al-
ternatives themselves is the only effective modeling approach. First, doing so imme-
diately removes the costs from the framework, making it harder to think carefully
about designing solutions around them. Indeed, this paper is built upon a careful
examination of axioms encompassing explicit costs. Second, not all axioms carry
the same interpretation with intrinsic values as with “net values” (values net of
one’s cost share). This can lead to results that do not carry over from environments
with costless alternatives to those with costly alternatives and embedded payment
plans.

Consider the pivot mechanism and a condition known as universal participation
(UP). Suppose that a player may abstain from the mechanism and avoid transfer
payments, but will face the outcome of the mechanism regardless. Then UP guar-
antees that no player can profitably abstain. The pivot mechanism satisfies UP.
However, this interpretation does not extend to the pivot mechanism with fixed
payment plan, in which players can profitably abstain in order to avoid paying their
share of the implementation cost. Suppose instead that a player’s abstention voids
only additional payments made on top of her share of the selected outcome’s im-
plementation cost, which she must pay regardless. Only under this qualitatively
different interpretation does the pivot mechanism with fixed payment plan guaran-
tee that no player can profitably abstain. In other words, the interpretation of UP
changes when replacing intrinsic values with “net values”, so care must be taken
when drawing parallels between these environments.

The cost-sharing pivot mechanism is an alternative way to adapt the pivot to envi-
ronments with costly alternatives—one that arises naturally when keeping costs an
explicit part of the model. Instead of embedding cost shares within the alternatives
and applying the standard pivot, this mechanism adds a “cost-sharing” constant to
i’s pivot transfer equal to ¢’s fair share of the implementation cost of the social alter-

128ee for instance Green and Laffont (1979), Moulin (1986), Deb, Ghosh and Seo (2002), Bier-
brauer and Hellwig (2016), and Drexl and Kleiner (2018). In fact, Definition 4 is precisely Clarke’s
(1971) original public goods provision mechanism.

13With quasilinear non-altruistic preferences, payment plans are inherently zero-sum, so any
efficient decision rule will remain agnostic with respect to the distribution of payments.



native that would have been chosen without her. In the next section, we will see that
this mechanism satisfies several desirable properties. In particular, the cost-sharing
pivot satisfies no-extortion (a natural fairness condition), while the pivot with fixed
payment plan does not. Indeed, the pivot with fixed payment plan does not even
satisfy no-arbitrage, i.e. it sometimes collects payments from players with a zero or
positive value for the good when the good is not provided.

4 Binary Decision Environments

We shall now consider in detail the simplest case of a public good provision problem—
the case of a binary decision. Let Y = {0,1}, where y = 0 represents keeping the
status quo and y = 1 the construction of a public project. It is then convenient to
normalize an individual’s type to be her value of the project over the status quo
and to normalize the implementation cost of the status quo and public project to
be zero and ¢, respectively. Hence,

—_—
vy, 0:) = by and C(y):{g ifZ:o

We will also make one important assumption.

Assumption 1 (Non-Negativity). For each individual 7, the set of admissible values

0, € {[O,bi] : by > 0} U [0, OO)

Assumption 1 rules out the possibility of individuals strictly preferring the status
quo to the public project. This may happen, for example, if the construction of
a bridge dramatically increases traffic and noise for nearby residents. It turns out
that this assumption is crucial to obtain positive results when imposing reasonable
fairness conditions. In particular, we will be unable to satisfy both fairness and
asymptotic budget-balance if negative values are admissible. See Appendix B for a
full discussion.

Given Assumption 1, we may restrict ourselves to the non-trivial case that ¢ > 0.14
Denote a binary decision environment with these assumptions and normalizations

by € = (X,C, 1,{O;}icr, {uiticr) € Ep, .
We will now consider the following three axioms.
Definition 5. A mechanism f is strategy-proof if for all i,

1 Any project with ¢ < 0 would always be provided. Without Assumption 1, this is without loss
of generality.




Definition 6. A mechanism f = (a,7) is efficient if

a(f) € argmax Zvi(y, 0;) — C(y).
veY  er

Definition 7. A mechanism f = («,7) is extortion-free given cost shares X if for
all 7,
7:(0) < max {v;(«(0),0;), \iC(a(0))} V0,

where A; > 0, and } ; A; = 1.

A mechanism is strategy-proof if it is a dominant strategy for each individual to
report her type truthfully. A mechanism is efficient if, given truthful reports, the
chosen social alternative is utilitarian. A mechanism is extortion-free if each indi-
vidual can only be asked to pay more than her value of the chosen alternative if this
amount does not exceed her fair share A; of its implementation cost, where what
constitutes “fair” is agreed upon prior to the mechanism. Again, we might consider
using equal shares \; = 1 for all 4, or base the shares on exogenously available data

n
z2=(21,..,2n).

Mathematically, there is a very close connection between no-extortion and ex-post
individual-rationality (EPIR). Given our normalization of each individual’s value of
the status quo to zero, EPIR requires that for all 4,

7(0) < vi(a(0),0;) V0.

This says that each individual must never be worse off after the mechanism concludes
than before it began. No-extortion says that an individual may be worse off when
the mechanism concludes, but, if this is the case, she cannot be asked to pay more
than her fair share of the implementation cost of the chosen alternative.

EPIR is commonly interpreted as giving individuals a dominant-strategy to “partici-
pate”. However, in a public good provision environment, this interpretation requires
that either 1) the public good will not be provided if even a single individual does
not participate, or 2) the public good is excludable, so that an individual who does
not participate cannot consume the public good when it is provided. The first is not
compelling, and the second violates the definition of a (pure) public good. Instead,
in this context EPIR should be interpreted simply as a strong fairness condition
(no one is made worse off by the mechanism). Through this lens, no-extortion is
a weaker fairness condition that embodies an individual’s willingness to contribute
her “fair share”.

In public good environments where the government does not have the power to tax,
participation constraints are more effectively captured by the concept of universal
participation (UP) a la Green and Laffont (1979) (or equivalently no-free-ride a la
Moulin (1986)). UP requires that for all 4,

7i(0) < vi(a(0),60;) — vi(a_i(0—;),0;) VO

10



where, as before, a_;(0_;) is the efficient decision without i. This embodies the idea
that if 7 refuses to participate she will avoid any transfer payments the mechanism
would have otherwise imposed, but the mechanism will still operate in her stead
and, given the public nature of the decision, she will still “consume” whatever is
implemented. In particular, if the public good is provided, she too will benefit.

One might then consider defining no-extortion relative to universal participation
by

7:(0) < max {v;(a(8),0;) — vi(a—;i(0—;),6;), \iC((0))} V0.
As a fairness condition, I believe this is less compelling and harder to interpret

than Definition 7, but fortunately there is nothing to consider given the following
proposition.'?

Proposition 1. Given any environment & € Eg,, a mechanism f satisfies strategy-
proofness and (EPIR-based) no-extortion if and only if it satisfies strategy-proofness
and UP-based no-extortion.

Proof. Suppose f = (a,7) is strategy-proof. Then it is well-known that 7;(#) can
only depend on 6; through «(0), i.e. given #_; all reports 6; which leave the allocation
a(é,-, 6_;) unchanged must produce the same transfers. First, suppose a_;(f_;) = 0.
Then we immediately have

max {v;(a(0),6;) — vi(a—;(0-;),0;), \iC(a(0))} = max {v;(«(0),6;), \;C(a(0))}
since v;(0,6;) = 0. Now, suppose a_;(f_;) = 1. Then

7’2(9) S max {’Ui<06(9), 91) — ’UZ‘(Oé_i(e_i), 91), )\10(04((9))} Vo
< 7;,(0) <max{0, \jc} VO
e Tz(e) < \;c Vo
and
7i(#) < max {vi((0),0:), AiC((0))} VO
<~ 7',(9) < max {91, )\ic} Vo
< 7'1(9) < \;c Vo

where the last line follows since «(6;,0_;) = 1 for every 6; € ©;, so strategy-proofness
requires that 7;(6) not depend on 6;. [

This brings us to our first main result.

5Notice that setting A; = 0 in Proposition 1 implies the equivalence of EPIR and UP given
strategy-proofness in these environments as well.

11



Theorem 1. Given any environment £ € Ep, , the unique ex-post revenue-maximizing
mechanism f = («,T) among all strategy-proof, efficient, and extortion-free mecha-
nisms is the cost-sharing pivot.

Proof. Given any environment £ € Ep,, a mechanism f is strategy-proof and ef-
ficient if and only if it is a VCG mechanism by Holmstrém (1979). Denote VCG
transfers by

7i(0) = > vi(ai(0-4),6;) — Cla—i(6-:) — [ D vi(a(),6;) — C(a(®)) | +hi(6-)
i#i i

for any function h; : ©_; — R. No extortion requires that for all 7,

max {v;(a(0),0;), \iC(a(8))} > 1:(6) VO

= max {vi(a(0),0:), MC(a(0)} — | 3 vj(ai(0-),05) — Cla—i(0-)

+{ S vi(al0).6) — Clal8)) | = hi(o-) V8
J#

In order to maximize ex-post revenue subject to no extortion, we would like to set
h;(0_;) to the minimum of the LHS with respect to 6; for each 6_;, i.e.

hz(ﬁ_l) = min { max {Q}Z‘(OJ(Q), 91), )\10(04((9))} — Z vj(a_i(e_i), QJ) - C(a_z(e_z))

0;€0; —
J#i

+ | D vi(al9),6) — C(a(9)) }

JF

To solve this, let us look for a minimizer. Since the middle term does not depend
on 6;, we can solve

areg Héin max {v;(a(0),60;), \iC(a(0))} + Z vj((0),0;) — C(a(h))
€0 j#i

First, suppose a—;(0—;) = 0 and let z =c— 3>, ,,0; > 0. If ; € [0, 2), the good is
not provided and the objective function is zero. If 6; € [z, 00), the good is provided
and the objective function is non-negative and (weakly) increasing in 6;.

Now, suppose a_;(0_;) = 1. If 8; € [0,00), the good is provided and the objective
function is non-negative and (weakly) increasing in 6;.

12



Hence, 6; = 0 is a minimizer. Plugging this into our objective function,

hi(60_;)

min { max {v;((6), 6;), MC(a(0)} — | D vj(a—i(6-:),8;) — Cla—i(6-4))
' Ji

+ [ D vi(a(0),05) — C(a(0)) }

J#i

= max {vi(a_i(6-),0), MC(a—s(0-))} — | D _vj(a—i(6-4),6;) — Cla—s(6-))
J#i

+ Zvj(a_,-(Q_i), ;) — Cla—;(0-;))
i
= )\10(04—1(6—1))

Theorem 1 tells us two things. The first is that the cost-sharing pivot mechanism
indeed satisfies our three axioms. But there are several such mechanisms. The sec-
ond is that, among these mechanisms, the cost-sharing pivot minimizes the budget-
deficit. However, while minimizing a positive budget-deficit is desirable, minimizing
a negative budget-deficit (i.e. maximizing a positive budget surplus) is not. In other
words, our primary goal is not to maximize ex-post revenue, but rather to achieve
or come close to achieving ex-post budget-balance.

Definition 8. A mechanism f = («, 7) is ez-post budget-balanced (EPBB) if

n

> " 7i(0) — Cla()) = 0.

i=1

This says that, after collecting transfers and paying implementation costs, there is
no remaining surplus or deficit.

Hence, at this stage we should have two main concerns. While the cost-sharing
pivot does raise the most revenue among all mechanisms that satisfy our axioms,
we haven’t said anything about how much revenue this is. It may be that the cost-
sharing pivot raises too little revenue (in which case we would conclude there exists
no satisfactory mechanism). On the other hand, the cost-sharing pivot may raise
too much revenue. That is, there may exist another mechanism that satisfies the
axioms and gets closer to EPBB than the cost-sharing pivot. The following theorems
address both concerns.

13



Before we state them, let me point out that these theorems do not depend on our
non-negativity assumption. Hence, let us define Ep to be the set of environments
that replace Assumption 1 with the weaker Assumption 2.

Assumption 2. For each individual i, the set of admissible values

©; € {[ai, bi] : bj > a;} U{(—00,b;] : b; > —oc0} U {[a;,0) : a; < oo} U (—00,00).

Theorem 2. Let 0; be a sequence of i.i.d. random variables for which E[Qf] < 00.
Then given any environment £ € Ep, the probability of ex-post budget-balance in
any cost-sharing pivot mechanism goes to one as n goes to infinity holding the per
person cost ¢ = ¢/n constant, i.e.

P <z”:n(9) —C(a(f)) = 0) —1 as n— oo.

i=1
Proof. See Appendix C. |

Let us refer to an outcome as “undesirable” if the government must redistribute a
surplus or a finance a deficit. Then Theorem 2 tells us that, for any beliefs about the
underlying value distribution (for which 6; are i.i.d. and E[#?] < oc), the probability
of an undesirable outcome is arbitrarily small for large populations.

However, while this tells us about the asymptotic frequency of undesirable outcomes,
it does not tell us about the asymptotic magnitude of the undesirability of such out-
comes. That is, we may worry that while undesirable outcomes become increasingly
unlikely, they also become increasingly severe. The following two theorems quell
this concern.

Theorem 3. Let (0;, z;) be a sequence of i.i.d. random vectors for which z; > z > 0,
E[0;] # ¢, and E[0?] < co. Suppose

305756R, V@z G@i, E[ZZ|01] §a\91\+ﬂ (1)

Then given any environment £ € Ep, the expected distance from ex-post budget

balance in the cost-sharing pivot mechanism with cost shares \; = anizz goes to
j=17%J

zero as n goes to infinity holding the per person cost ¢ = c¢/n constant, i.e.

E

n 7;(0) — C(a(@))“ —0 as n— oo.
i=1

Proof. See Appendix C. |
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Theorem 4. Let (0;, z;) be a sequence of i.i.d. random vectors for which z; > z > 0,
E[0;] = ¢, and E[0?] < co. Suppose

304,5 € R, Vo, € @i; E [Zz | 01] < 04‘192‘ + ﬁ

Then given any environment £ € Ep, the expected distance from ex-post budget
balance per person in the cost-sharing pivot mechanism with cost shares \; = 2712712
j=17%j

goes to zero as n goes to infinity holding the per person cost ¢ = c¢/n constant, i.e.

n

1
EE ;n(a) — C(a(9)) ] —0 as n— oo.
Proof. See Appendix C. |

Theorem 2 tells us that undesirable outcomes become increasingly unlikely, and
Theorems 3 and 4 tell us that the undesirability of such outcomes also becomes in-
creasingly small. Hence, we shall call any mechanism that satisfies all three asymp-
totically ex-post budget-balanced.

Definition: A mechanism f is asymptotically ex-post budget-balanced (AEPBB) if
Theorems 2, 3, and 4 (appropriately altered) hold for f.

Let us take a moment to unpack these last two theorems. In Theorem 2, there is no
mention of exogenous data z which may be used to inform the cost shares A. This
is because the probability of an undesirable outcome only depends on the values
6—not the cost shares.'® However, in Theorems 3 and 4, we are interested in the
magnitude of deviation from EPBB, and this does depend on the cost shares.

First, suppose equal cost shares, so that \; = % and \;c = ¢ is held fixed as we take
n to infinity. Notice that (1) is immediately satisfied (in this case z; is trivially some
constant z for all 7). Then Theorem 3 tells us that, for any belief for which 6; are
iid., E[f;] # ¢ and E[#?] < oo, the expected distance from EPBB is arbitrarily
small for large populations. On the other hand, in the knife-edge case that beliefs
have E[#;] = ¢, Theorem 4 tells us that the expected distance from EPBB per
person is arbitrarily small for large populations. In other words, if the population
were to be equally rebated to disperse any surplus or equally taxed to fund any
deficit, the expected per-person rebates/taxes would be arbitrarily small for large
populations.

To gain some intuition, notice that if no players are pivotal'”, transfers are 7;(6) =
AiC(a—i(0-;)) = \iC(a(8)) for all ¢ and so the cost-sharing pivot is EPBB. Thus,

8 Technically, the probability that there is at least one pivotal player does not depend on the
cost shares, which is an upper bound on the probability of an undesirable outcome.
"Player i is pivotal if a(6) # a—i(6—;).
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undesirable outcomes only occur when at least one player is pivotal. Theorem 2 tells
us that this probability goes to zero as n gets large. But what about i’s expected
payment conditional on being pivotal, or more particularly the expected distance
between i’s payment and her equal share ¢ conditional on being pivotal? It turns
out this conditional expected distance diverges with n, but Theorems 3 and 4 tell us
that the probability of at least one pivotal player goes to zero sufficiently quickly so
as to out-pace both the increasing population size and diverging expected distance
between a pivotal player’s payment and her equal share.

Now, let us consider cost shares that may depend on (non-trivial) exogenous data.
Suppose that we map some available data into indices z = (z1, ..., z,) such that i’s

share of the cost is precisely her relative share of z, i.e. \; = <—. Assume for
j=17%J

simplicity that we are in an environment with non-negative values.

Suppose player i is pivotal. Then her payment is c— ) | ot 6;, which is not in general
equal to her share of the cost A\;c. The probability that a player is pivotal is low,
so we can imagine most of i’s opponents j are not pivotal, in which case they will
contribute their fair share A\jc. Hence, if ¢ contributes less (more) than her share, we
may run a deficit (surplus). Moreover, if we happen to believe that higher values 6;
correlate with higher z;, then we would expect that pivotal players (who are likely
to have large 6;) have large z;, and hence large \;. If \; is very large, ¢’s share
will be near the full cost ¢, and #’s non-pivotal opponents will contribute next to
nothing. Since i’s pivotal payment ¢ — > ki ¢ is by definition strictly less than c
(and has nothing to do with her share J);), this may result in a considerable deficit.
Additionally, a larger n implies a larger expected 6; conditional on i pivotal, leading
to a larger expected A\;. A case of such extreme beliefs may reverse the positive
asymptotic results with equal cost shares. Bounding this type of correlation is
precisely the purpose of (1), which says that the expected index z; conditional on
i’s value 6; is bounded by some affine function of |0;|. It turns out this is sufficient
to recover the positive asymptotic results with equal cost shares.

To conclude this section, let us return to our two original concerns: that the cost-
sharing pivot does not raise enough revenue, and that the cost-sharing pivot raises
too much revenue (i.e. there may exist another mechanism that satisfies the axioms
and gets closer to EPBB). The first concern is clearly resolved by AEPBB and
Theorem 1. The second is resolved by AEPBB, Theorem 1, and Theorem 5.

Theorem 5. Gien an environment £ € Eg, for which the set of admissible values
is the same across individuals ©; = ©; for all i,j € I, there is no strategy-proof,
efficient, and extortion-free mechanism that gets closer to EPBB for every 0 than
the cost-sharing pivot mechanism.

Proof. Given any environment £ € Ep, , a mechanism f = (o, 7) is strategy-proof
(SP) and efficient (E) if and only if it is a VCG mechanism by Holmstrém (1979),
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pinning down the transfers up to a constant in ¢’s report. From Theorem 1, we
know that SP, E, and no-extortion (NE) place an upper bound on transfers. That
is, transfers must satisfy

0—r2(6-;) if a() =0
Ti(0) = c— 2405 — rd(0-;) if a_i(0—;) =0and a(f) =1
e — 713 (0-;) ifa_(f—;) =1land a(f) =1

where 79(0_;), r}(0_;) > 0 for all §_; € ©_;. The cost-sharing pivot mechanism sets

i i
transfers equal to their upper bound, i.e. r(6_;) = r}(6_;) = 0 for all 0_;.
Suppose the cost-sharing pivot runs a budget deficit for some 0. No other SP, E,
and NE mechanism can come closer to EPBB by Theorem 1.

Suppose the cost-sharing pivot runs a budget surplus for some 6. This implies that
the good is provided and at least one player is pivotal. We seek to find at least
one player whose transfer we can reduce by some rebate rf (é_,) > 0 that brings us
strictly closer to EPBB for é, such that the cost-sharing pivot is not strictly closer
to EPBB for any (6;,0_;).

Suppose we choose a pivotal player j to rebate r?(é,j) > 0. If §; = 0, the good
would not be provided, and we would run a strict budget deficit (since j is paying
less than her fair share [zero] and all others are paying their fair share [zero|, which

is the max we can extract from them), while the cost-sharing pivot is EPBB for
(0, 9*]')'

Suppose we choose a non-pivotal player ¢ to rebate rzl(éﬂ) > 0. If §; > max;; éj
(which is admissible by assumption), all players would be non-pivotal, since

vk, Zﬁch — Zﬁj—m]iaxﬁkZC = ZGJ-ZC,
ik j=1 i

which is true since 7 is non-pivotal. Thus, we would run a strict budget deficit (since
i is paying less than her fair share of ¢ and all others are paying their fair share,
which is the max we can extract from them), while the cost-sharing pivot is EPBB
for (9“ é_z)

The cost-sharing pivot is not the only mechanism that satisfies strategy-proofness,
efficiency, no-extortion, and AEPBB. We can construct mechanisms that deviate
from the cost-sharing pivot by increasingly small amounts, e.g. by providing rebates
that vanish in magnitude and/or probability with n. For example, consider a mech-
anism providing a one dollar rebate to individual ¢ if all of ¢’s opponents report
zero. No matter the probability with which we believe the zero type is drawn, the
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probability that any i receives a rebate goes to zero as n goes to infinity.'® However,
Theorem 5 tells us that there is no mechanism that brings us closer to EPBB for
all 6 than the cost-sharing pivot mechanism. In other words, there is no mechanism
that always outperforms it.

Thus, we can justify the choice of the cost-sharing pivot in three steps. Denote the
set of all mechanisms that are strategy-proof, efficient, extortion-free, and AEPBB
by F. First, the cost-sharing pivot is simple and intuitive. Any alternative mecha-
nism in F' inevitably adds additional layers of complexity. Second, the cost-sharing
pivot is undominated, in that there is no mechanism in F' that outperforms it for
all 4. Third, the cost-sharing pivot minimizes the ex-post budget-deficit among all
mechanisms in F. Thus, if we feel more strongly about deficits than surpluses, the
cost sharing pivot is a natural choice.

5 Conclusion

We have shown that there exists a satisfactory (SP, E, NE, and AEPBB) mechanism
for the provision of a costly public good in environments where individuals can be
assumed to have non-negative values for the good and the government has the power
to tax.' Moreover, one such mechanism, the cost-sharing pivot, is simple, detail-
free, undominated, and uniquely minimizes any potential budget deficit.

One way to understand the cost-sharing pivot is as a slight adjustment to the so-
called “naive cost-sharing mechanism”, in which the good is provided if and only if
it is efficient to do so and the players split the cost according to fixed shares A if and
only if it is provided. This mechanism gives highly perverse incentives, regardless
of the population size: if i’s value 6; is greater than her cost share \;c, it is weakly
dominant to report an infinitely large value; if her value is less than her cost share,
it is weakly dominant to report zero.

The cost-sharing pivot mechanism modifies these transfers by requiring special pay-
ments from pivotal players. Namely, if i’s report sways the decision from not-
providing to providing, she pays the minimum value required to sway the decision
c—> ;i 05 instead of her cost share Ajc. The mechanisms are otherwise identical.
But notice that the probability that a player actually makes this special payment
goes to zero with n. Hence, this “threat” removes infinitely perverse incentives,
even though the probability that it is actually carried out goes to zero. The cost-
sharing pivot can thus be seen as a tweak to the naive cost-sharing mechanism that

SLet p= P(§; =0) < 1. Then P(Fi € I,Vj #i,0; =0) < 3" P(Vj#4i,0;, =0)=np" ' —
0 as n — oo.

19We have also identified the serious, and possibly unexpected, challenges of costly public goods
provision when negative values are admissible.
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repairs its gross manipulability while sacrificing little of its otherwise exceptional
properties.?°

A No-Arbitrage and EPBS

Definition 9. A mechanism f = («, 7) satisfies no-arbitrage if for all 7,
V0 :«a(f) =0 and 6, >0, 7;(6)<0.
Definition 10. A player i is potentially pivotal(+) against 0_; if
a_i(0—;)=0, 30,€0;: a@)=0, and 30,€0,; : a(f)=1.

Lemma 1. Given an environment £ € Ep, the unique ex-post revenue-mazimizing mech-
anism f among all SP, E, and NA mechanisms is a VCG mechanism with pivot transfers
for potentially pivotal(+) players. That is, if player i is potentially pivotal(+) against 0_;,
then

7i(0) = > vi(aci(0-:),0;) — Clai(0-5) — | D vi(a(6),0;) — C(a(6))

JFi J#i

Proof. Given any environment £ € Eg, a mechanism f is strategy-proof and efficient if and
only if it is a VCG mechanism by Holmstrom (1979). Denote VCG transfers by

7(0) = > _vi(a_i(0-:),0;) — Cla_i(6-5)) — | D v;(a(6),6;) — C(a(0)) | + hi(0-,)
J#i J#i
for any function h; : ©_; — R. Suppose 7 is potentially pivotal(+) against 6_;. Then NA
requires

n(&):Zvj(O,Qj)—C(O)— Zvj(0,0j)—C(O) +h1(97l) SO V9120 s.t. 04(9):0
J#i J#i
> hi(0—;) <0 V6,

where the last line follows since h; cannot depend on 6; directly. Hence, the unique ex-post
revenue maximizing mechanism among all SP, E, and NA mechanisms sets h;(0_;) = 0
whenever 7 is potentially pivotal(+) against 6_;.

Notice that the 6; > 0 requirement of NA turns out not to matter. [ |

Lemma 2. Given any environment £ € Ep such that for some § > 0 and € € (0, 2],

[e — 6, 5=5] € ©; for all i, there exists a 0 such that each player i is potentially pivotal(+)

20Without the glaring incentive problem (which would destroy these other properties), the naive
cost-sharing mechanism is E; NE, and EPBB. The cost-sharing pivot is SP, E, NE, and AEPBB.
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and the good is provided. Moreover, in such a case, a VCG mechanism with pivot transfers
for potentially pivotal(+) players will result in a strict budget deficit,

Z 7:(0) < c.
iel

Proof. Part I: We would like to show that, for any n and ¢, there exists a € such that
each player 7 is potentially pivotal(+) against 0_;, > j2i0; < ¢, and the good is provided,
dierti>c

Suppose that §; = £<== for all 7 with € € (0, £]. Then
Zej:c—€<c and Zeiznil(c—s)ZC,
J#i iel
since
n n—1 n—1 c
(c—e)>c <= (c—¢e)> ¢ <= c— c>e = —>e¢.
n—1 n n n

On the other hand, if any 6; = ¢ =6, > ,.;0; = ¢ —J < c. Hence, each i is potentially
pivotal(+) against 6_;.

Notice in this case, each player pays ¢ for a total revenue of ne.
A simple example is ©; = [0,00), n =3, ¢ =8, and § = (3,3,3). U

Part II: Suppose 6 is such that each player i is potentially pivotal(+) against §_; and the
public good is provided. The total revenue raised by a VCG mechanism with pivot transfers
for potentially pivotal(+) players is then

Y@= e=> 0

icl i€l j#i
NS,
i€l jA£i
=Ne—(N-1)) 6
icl
=(N=1)c=(N=1)> bi+c
iel
=(N-1) <0—29i> +c
iel
<c
where the last line follows since ¢ — ) ;. 6; < 0 (the good is provided). ]

Proposition 2. Given an environment £ € Ep such that for some 6 > 0 and ¢ € (0, 2],
[e — 6, £=5] € ©; for all i, there does not exist any mechanism f : © — X that satisfies SP,

E, NA, and EPBS.
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Proof. The proof follows directly from Lemmas 1 and 2. By Lemma 1, the unique ex-
post revenue-maximizing mechanism f among all SP, E, and NA mechanisms is a VCG
mechanism with pivot transfers for potentially pivotal(+) players and, by Lemma 2, when
everyone is potentially pivotal(+) and the public good is provided (which is possible for any
n and ¢), such a mechanism runs a strict ex-post budget deficit, violating EPBS. ]

Corollary 1. Given an environment £ € Ep such that for some 6 > 0 and ¢ € (0, 2],

le =0, 5=5] € ©; for all i, there does not exist any mechanism [ : © — X that satisfies SP,

E, EPIR, and EPBS.

Proof. EPIR implies NA, i.e.
W), 71(9) < ’1}2(04(9),01) — V0: 04(9) =0 and 6; > 0, 7'2(0) <0.

Hence, the result follows immediately from Proposition 2. |

B Challenges of Negative Values

Definition 11. A mechanism f = (o, 7) satisfies EPIR-no-eztortion (EPIR-NE) if
7:(0) < max {v;(a(0),0;), \;,C((0))} V0.
Definition 12. A mechanism f = («, 7) satisfies UP-no-extortion (UP-NE) if
7:(0) < max {v;(a(0),6;) — vi(a—i(0-:),0:), \iC(a(0))} V6.

Definition 13. A mechanism f = (a,7) is a plain-vanilla VCG if the decision rule is
efficient and the transfer rule satisfies

7i(0) = — | D vi(cl8),8;) — C(a(6))

J#i

The following proposition identifies the revenue-maximizing mechanism under SP, E, and
either EPIR-NE or UP-NE in binary decision environments with no lower bound on admis-
sible values. Recall that SP and EPIR-NE are equivalent to SP and UP-NE in environments
with non-negative values. However, this is not true with negative values, so we must analyze
both conditions separately.

Proposition 3. Given any binary decision environment with no lower bound on admissible
values, the revenue-mazximizing mechanism among all strategy-proof, efficient, and EPIR-
NE mechanisms is the plain-vanilla VCG, and the revenue-maximizing mechanism among
all strategy-proof, efficient, and UP-NE mechanisms is the pivot mechanism.

The proof uses the same techniques as Theorem 1 and is omitted. The following proposition
tells us that these mechanisms are not approximately EPBB and, in fact, diverge from
EPBB with n.
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Proposition 4. Let 0; be a sequence of i.i.d. random variables for which E[6;] > ¢ and
E[02] < co. Then given any environment € € Eg, the probability of ex-post budget-surplus
in a pivot mechanism goes to zero asn goes to infinity holding the per person cost¢ = c/n >0
constant, i.e.

P (in(e) —C(a(9)) > O) —0 as n— oo

Moreover, the expected distance from EPBB goes to infinity as n goes to infinity, i.e.

n

S 7(0) — C(al6)

i=1

E

‘|—>OO as n — 0Q.

Likewise for a plain-vanilla VCG.

Proof. It will suffice to show these results for the pivot mechanism, since the plain-vanilla
VCG raises strictly less revenue than the pivot.

For the first part,

P <Z 7:(0) — C(a(9)) > o)

i=1

<P (Z 0; < (nE)) + P (3 a pivotal player)
i=1
—0 as n— oo

by the LLN and the same arguments as in the proof of Theorem 2. If Y is a random variable
on the probability space (2,4, P) and B € A is an event, then let E[Y,B] = [,V dP.
Then for the second part,

> E |Xi(ne), Y _0; > (ne) and 6;+ Y _6; > (nc)
i=1 J#i Ji

=P Zﬂj > (n¢) and 6; + Zﬁj > (nc) Zn:)\i(né)

J#i J#i

=P 91+Zejz(né)|29jz(né) P _49]-2(716) con
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since the left term is a constant in n and the middle term converges to one by the LLN. W

C Asymptotic Proofs

Lemma 3. Let ¢ = c¢/n and 0; = 0; — ¢. In a cost-sharing pivot mechanism,

0 if a(0) =0 andi is not pivotal(—)
) i 0; +(c—ci) zf a(f) =0 and i is pivotal(—)
7i(0) = AiC(a(9)) = 0 ’ B f a(0) =1 and i is not pivotal(+)
=il +(c—ci) zf a(f) =1 and i is pivotal(+)

and

i s pwotal = |9 | > ZQ or Zéj < .
J#i J#i

Proof. In a cost-sharing pivot mechanism,

0 if a(#) = 0 and i is not pivotal(—)
() = >jzi0i—cte ifa(@)=0andiis pivotal(—)
mi(0) = ¢ if a(f) = 1 and i is not pivotal(+)
—(>2i0i —¢) ifa(f)=1and i is pivotal(+)
and hence
0 if a(f) = 0 and i is not pivotal(—)
>zl —¢)—ec+e if «(f) = 0 and ¢ is pivotal(—)
7i(0) = AiC(a(8)) = ¢ o if «(f) = 1 and ¢ is not pivotal(+)
_ (Zﬁéi(ﬁj c)—c+ cz> if a(f) =1 and ¢ is pivotal(+)

Moreover,

i is pivotal(+) < ZH < c¢ and ZH >c

J#i iel
= > f;<cand » ;>0
i i€l
<~ Zéj<0 and élz_zéj or Z@-E[O,E] and 912_2(93
J#i J#i J#i J#i

:>’9_z|2 Zéj or Zéj

J#i J#i

IN
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and pivotal(—) if and only if

i is pivotal(—) <= Ze-j > ¢ and ZQ% <c

i iel
<:>Zéj25 and Z§l<0
i icl
<:>Z§j25 and gi<_zéj
J#i j#i
J#i

Thus,

1 is pivotal = |§l| > Zéﬂ' or Zéj <e.
JF#i J#i

Lemma 4. Let 0; be a sequence of i.i.d. random variables and ¢ € R. If E[§?] < oo,

Cc
— 50.

‘Zjel 9]"

Proof. 1f E[0;] # 0,
p. 251), and so

>jer Y ‘/n %% |E[6;]| by the strong law of large numbers (see. Loeve

C/TL a.s.

— %%,
S jer 03]/

If E[6;] = 0,
c/o\/n 2
‘Eje[ 0j|/ovn
by Rob (1982, pp. 212-213, Proof of Lemma 2), where 0% = E[0?]. [ |

Theorem 2. Let 0; be a sequence of i.i.d. random variables for which E[0?] < co. Then
giwen any environment £ € Ep, the probability of ex-post budget-balance in any cost-sharing
pivot mechanism goes to one as n goes to infinity holding the per person cost ¢ = c/n
constant, i.e.

P (in(ﬁ) —Cla(h)) = 0) =1 as n— oo

i=1

Proof. Tt suffices to show that

P(in(@)C’(a(@))#O)%O as n — 00.

i=1
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Let ¢ = ¢/n, ; = 6; — ¢, and 6}, = max;|f;|. Note E[f?] < co. Then,

P (Z 7:(0) — C(a(0)) # o)

i=1
< P (3 a pivotal player)

<P }0_1- > Zéﬂ' or Zéj < ¢ for some i
J#i J#i

<P }671- > Zéj for some ¢ | + P ZO_J- < ¢ for some 1%
JFi J#i

=P }§i|+|§i| > Z§j+|§i| for some 7 | + P Zéj +‘§i’§6+‘0_¢| for some 1%
J#i J#i

<P 2|§¢|Z Zéj for some 7 | + P }@’Jréz Zéj for some 1
jerI jel

o; 0y c

=P|—_—> +P T+ —>1
‘Zjelej ‘Zjelej’

|~

‘Zjel gj

—0 as n— oo

by Lemma 3, Rob (1982, p. 211-212, Lemma 1 and 2), and Lemma 4. [ ]

If YV is a random variable on the probability space (2,4, P) and B € A is an event, then
let E[Y,B] = [pY dP.

Lemma 5. Let (0;,w;) be a sequence of i.i.d. draws from some distribution F with w; >

w > 0 and let
w; w; _
Ci = == c= - C.

Zj:l wj % Zj:l wj

where ¢ = ¢/n. If
Jda,BER, V0, €0;, E [wi ‘ 91] < a|6i| + B,

then

ac c
J#i - J#i - J#i

Proof. By assumption, there exists some «, 8 € R such that
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Hence,

Blus, 612 K] = |

[0;|>K

< / alb;| + 8 dF(6;)
[0;|>K

w;>w

160:|>K

10i =K

= al[|6;], |0;| > K]+ BP(|0;] > K)

and

Wi _
FE Ci, |91| > ZGJ =F %Ca ‘01| 2 ZGJ
J#i n fj=1"1 J#i
c
- J#i
ac pe
< ZE 10:], 10:] = Zaj +EP 10:] > Zej

J#i J#i
Lemma 6. If E[0;] # 0,

nP Zej <16 | =0 as n— oo.
i

Proof. First, it will be useful to establish the following fact. By Markov’s Inequality, if X
is a non-negative random variable, then for any constant ¢ > 0,

E|X

P(X>c¢)< []

c

Let 6? = X and &%n? = ¢, then
P (2> e2n2 <E[9i2]
(i—gn)feznz
0; E[9?
<:>nP||2€§ [’]—>0 as n — oo (2)

n e2n
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Now we may complete the proof. Let S,—1 =>_,;6;. Suppose E[f;] > 0, then

nP (>0, < 6i|

J#i

= TLP (E[Snfl] - |91| S E[Snfl] - |Sn71|)
<nP (E[Snh-1] —10i] < E[Sn—1] — Sn-1)
< nP (E[Sp-1] = [6:] < |E[Sn-1] = Sn-1l)

.

—0 as n— o

|Sn—1 — E[Sn—1]] n 10| > E[ei]) +p<

|Sn—1 — E[Sn—1]l | 0]
> FE|0;
n—1 n—17—" + [01]

n—1 n—1"
where the last line follows by Rob (1982, p. 215, Proof of Claim 2) and (2). If E[6;] < 0,

nP | > 0;] <6

J#i
= nP (~E[Sn-1) — |0i] < —E[Sn-1] — [Su-1])
<nP(=E[Sh-1] — 0i| < —E[Sp-1] 4+ Sn-1)

i n— - F n—
< nP <_E[9i]—n|0_|1 <5 1n_£S 1”)

:mg(|5n—1—E[Sn—lﬂJr 16| Z—E[@])
n—1 n—1

—0 as n— o

as before. |

Theorem 3. Let (0;,2;) be a sequence of i.i.d. random wvectors for which z; > z > 0,
E[0;] # &, and E[0?] < co. Suppose

da, 8 € R, VO; € O, E[zz|9l] §a|91\+5 (1)
Then given any environment € € Ep, the expected distance from ex-post budget balance in

the cost-sharing pivot mechanism with cost shares \; = Zfiz goes to zero as n goes to
j=17%j

infinity holding the per person cost ¢ = c¢/n constant, i.e.

n

ZTi(G)C’(a(H))HAO as n — o0o.

i=1

E

Proof. Let
w; w; _
c= = c.

Z?:l wj % Zj:l wj




where ¢ = ¢/n. Let 6; = 0; — ¢. Note E[0?] < co and El¢;] = €. Then,

E

RAGE C(a(9))H

i=1

< ZE [17:(0) = A C(a(0))]]

:Z E —Z§j+6—ci,iispivotal(+) +FE Zéj—5+ci,iispivotal(—)

i=1 | i
< Z E Zéj , i is pivotal | + E [¢;, i is pivotal] + E[¢, i is pivotal]
i=1 | |i#i
: _
SZ(E Z§]’|§Z|Z Zgj + FE ng’ Zéj <c
i=1 i i || j#i i
+E |ci, |0:] > Zéj +E |, Zéj <c
L J# Vi)
+E e |0;] > ZGJ + F |é, Zéj <e >
L J#i i
n
gZ(E 6], 16:] = D> 65| +eP | D 0| <e
i=1 i i
+2p ja, 18] = 5|+ 2p (18] = [0 | + Blep .| < e
@ i = i i

—0 as n— o0

by Lemma 3, Lemma 5, Lemma 6, Rob (1982, p. 213, Eq 3.4), and Rob (1982, p. 215,
Claim 2). ]

Theorem 4. Let (0;,2;) be a sequence of i.i.d. random vectors for which z; > z > 0,
E[0;] = ¢, and E[0?] < co. Suppose

E'O[,ﬁ eR, Vo, € @i, E[ZZ|92] < Csz‘ +5

Then given any environment € € Ep, the expected distance from ex-post budget balance per

person in the cost-sharing pivot mechanism with cost shares \; = 2,52712 goes to zero as n
j=17%7j

goes to infinity holding the per person cost ¢ = ¢/n constant, i.e.

n

ZTi(a)—C(a(G))H—)O as n — oo.

=1

1
—-F
n
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Proof. Let 0 = maxi|§i|. We now proceed exactly as in the previous theorem.

n
<L <E 0, 18] = (S| +er [ |30, <
= i i
+%E 16:], 1651 > |>_6; + 5 10: > > 05| | + Ele]P [ |> 0;| <e
« i “ i i
+eP | |0 > > 05 | +eP h;| <@ )
J#i JF#i
< E ||6:], |0:] = D 05(| +eP ;| < e
J#i JFi

ac Be N _ ~ _
+ B |6, [6:] > SOl + =P 0= 0| | +eP | D 0| <e
- VEC J#i JF#i

+eP | 0> |> 0;| | +ep 0;| <c
J#i e
—-0 as n—o0

by Lemma 3, Lemma 4, Rob (1982, p. 212, Lemma 2), and Rob (1982, p. 216, Eq. 3.6). H
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