
Strong Disorder Renormalization Group

Strong Disorder Renormalization Group (SDRG) is a formal apparatus to extract global physics of strongly-
disordered systems via successive decimation of highest energy scales. SDRG was developed by Dasgupta
and Ma [MDH79] [DM80] to investigate the low-energy behavior of the random Heisenberg chain and later
extended and formalized by Bhatt and Lee[BL82], and Daniel Fisher[Fis92], who showed that the technique
gives asymptotically exact low energy results when the critical behavior is controlled by infinite randomness
fixed points.

Disorder

Disordered systems (not to be confused with disordered, like the paramagnetic, phases) are useful models
for impurities, vacancies, or dislocations in a perfect lattice. We distinguish between quenched, or frozen-in
disorder, and annealed disorder, which fluctuates during the duration of an experiment. Annealed disorder is
typically easier to deal with, since these impurities can be assumed to be in thermal equilibrium with the rest
of the system, and the partition function can then be averaged out over those degrees of freedom for a statistical
mechanical description. Quenched disorder, however, presents more difficulties and often needs to be handled
using techniques from SDRG.

The prototypical example for a disordered lattice is the modified Ising chain Hamiltonian with a non-uniform
exchange interaction, viz

H =
∑
i

BiŜi +
∑
<ij>

JijŜiŜj (1)

The disordered Ising chain can model two kinds of disordered systems.

In an instance where the couplings Jij are the only disordered terms in the Hamiltonian, and the cou-
plings are fortuitously all positive, the disorder still prefers the ferromagnetic phase at sufficiently low
temperatures, and the paramagnetic phase, at sufficiently high temperatures. The effect of the disorder
is simply to change the local tendancy towards ferromagnetism, or the “local critical temperature”. Such
disorders are labelled Random-Tc disorders, or random mass disorders.
In an instance where the disorder results from a random magnetic field Bi acting on each spin, the spin-flip
symmetry is broken locally, and we label these as random-field disorders.

More intricate realizations of disorder are possible. Random anisotropy disorder results from the disorder
breaking the rotational invariance in a Heisenberg chain. A disordered spin-glass system results from the
interaction picking up random signs causing the system to end up in a frustrated state[FH91].

Harris[Har74] studied the condition for a critical point to be ‘clean’ against random-mass disorders, and
came up with the Harris criterion dν > 2, where d is the dimensionality of the lattice, and ν is the correlation
length critical exponent. If the Harris criterion is satisfied, a random-mass disordered system looks less and
less random at larger length scales, and the randomness vanishes asymptotically at criticality, leading to a clean
phase transition.

In a random-field disordered Ising ferromagnet, the random field breaks the spin flip symmetry, and
individual sites may prefer to align with the local field or their neighbouring spins depending on the relative



strength of Bi and J . Imry and Ma[IM75] developed a heuristic argument to state a criteria for the stability of
the ferromagnetic phase against domain formations caused by local field fluctuations. Demanding the energy
cost to build up a domain wall to be more than compensated with the decrease in energy by the entire domain
flipping to align with the rest of the lattice, we arrive at an estimate

√
WLd/2 < JLd−1 (2)

where L is the length of the domain, W is the variance of the random field, and d is the dimension of the lattice.
Hence, there is a critical dimension, here d = 2, above which domain formation is always unfavorable and the
ferromagnetic phase is stable against random-field disorders. This was proved rigorously by Aizenman and
Wehr[AW89].

Disordered transverse Ising chain

The paradigmatic example for SDRG is that of a disordered one-dimensional transverse Ising chain, with
the Hamiltonian

H = −
∑
i

Jiσ
z
i σ

z
i+1 −

∑
i

Biσ
x
i (3)

We assume the Ji’s and the Bi’s to be broadly distributed positive valued quantities. Each of the coupling
constants and field strengths define the energy scale associated with anti-aligning adjacent spins or flipping a
spin. The renormalization trick is to successively decimate the highest energy levels and replace them with
effective interactions to eventually obtain an effective low-energy Hamiltonian. There are two possibilities here:

1. The largest energy scale is a field, say Bi. This essentially locks the spin σi along the positive x-direction.
We can then replace σi by an effective interaction J̃i between σi−1 and σi+1. Consider the three-site
Hamiltonian

Hi = −Biσ
x
i − Ji−1σ

z
i−1σ

z
i − Jiσ

z
i σ

z
i+1 (4)

To lowest order in perturbation theory, we can replace this by the effective term H′
i = −J̃iσ

z
i−1σ

z
i+1, with

J̃i = Ji−1Ji/Bi (5)

which is smaller than both Ji−1 and Ji.
2. The largest energy scale is a coupling, say Ji. This means that in the four-dimensional subspace spanned

by σi and σi+1, there are two high-energy states |↑↓⟩ and |↓↑⟩, and two low-energy states |↑↑⟩, and |↓↓⟩.
For large enough Ji, excitations to the high-energy states can be neglected, and we can define an effective
two state operator σ̃i, with an effective field strength B̃i. To lowest order in perturbation theory, we obtain

B̃i =
Bi−1Bi

Ji
(6)

which is again smaller than either of the previous terms.

It is crucial to the usefulness of this prescription that the new terms added upon decimation be smaller than
the terms we removed, so that every iteration actually takes us to a lower energy scale. A broad distribution in
fields and couplings is essential as well, so that we are guaranteed that the terms adjacent to the largest term are
statistically small enough to be treated perturbatively. This prescription is then run iteratively to bring down the
highest energy scale Ω = Max{Ji, Bi}.

2



Renormalization Flow equations

Let us now mathematically formulate the SDRG flow equation derived from this process. Since the fields
and couplings are random variables, we will talk in terms of probability distributions. Let P (J,Ω) and R(B,Ω)

be the probability distributions of Ji and Bi respectively as a function of the current energy scale Ω. We also
assume a knowledge of the bare values of these distributions, PI(J) and RI(B), from the un-renormalized
Hamiltonian.

To derive the flow equation, consider decreasing the scale Ω by an amount dΩ. As a result,

−dP (J,Ω) = dΩR(Ω,Ω)

[
−2P (J,Ω) +

∫
dJ1

∫
dJ2P (J1,Ω)P (J2,Ω)δ

(
J − J1J2

Ω

)]
+ dΩ [R(Ω,Ω) + P (Ω,Ω)]P (J,Ω)

(7)

The expression above demands some elaboration.
The terms in the first line are due to decimation of the strong fields. The terms in the second line
compensate for the decimation to restore the normalization of the probability distributions.
The occurance of a decimation depends on the existence of a field variable between energies Ω and
Ω− dΩ. The probability of there being such terms is given by the product dΩR(Ω,Ω).
Each decimation removes two couplings from the Hamiltonian−2P (J,Ω), and introduces a new coupling,
according to the relation 5, which is denoted by the integral.
Each instance of decimation thus reduces the number of field variables and the number of couplings by
one, and hence the additive terms in the second line.

The flow equation for the field can also be written analogously, and we obtain the differential equations

−∂P

∂Ω
= [PΩ −RΩ]P +RΩ

∫
dJ1

∫
dJ2 P (J1,Ω)P (J2,Ω)δ

(
J − J1J2

Ω

)
,

−∂R

∂Ω
= [RΩ − PΩ]R+ PΩ

∫
dB1

∫
dB2 R(B1,Ω)R(B2,Ω)δ

(
B − B1B2

Ω

) (8)

where P and PΩ stand for P (J,Ω) and P (Ω,Ω) respectively, and so on. The solutions of these integro-
differential equations give us the SDRG flows.

A complete solution to the flow equations was provided by Fisher[Fis94][Fis95], which starts with shifting
to logarithmic variables

Γ = ln

(
ΩI

Ω

)
, ζ = ln

(
Ω

J

)
, and β = ln

(
Ω

B

)
(9)

where ΩI is the initial value of the cutoff. The new probability distributions are related to the distributions of
the old variables as P (J,Ω) = P̄ (ζ,Γ)/J , and R(B,Ω) = R̄(β,Γ)/B. In terms of the new distributions,

∂P

∂Γ
=

∂P

∂ζ
+ [P0 −R0]P +R0

∫ ζ

0
dζ1P (ζ1,Γ)P (ζ − ζ1,Γ),

∂R

∂Γ
=

∂R

∂β
+ [R0 − P0]R+ P0

∫ β

0
dβ1R(β1,Γ)R(β − β1,Γ)

(10)

where P and P0 stand for P (ζ,Γ) and P (0,Γ) respectively, and so on, and the bars have been omitted for
brevity.

Although a general solution of these equations presents considerable challenges, a simple ansatz can be
plugged in to obtain a fixed point. Consider the exponentials

P (ζ,Γ) = p0(Γ) exp(−p0(Γ)ζ), and R(β,Γ) = r0(Γ) exp(−r0(Γ)β) (11)

These turn out to be valid solutions provided the inverse widths p0 and r0 satisfy the coupled differential
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equations
dp0
dΓ

= −r0p0,

dr0
dΓ

= −r0p0

(12)

The resulting solution can be shown to be a global attractor of the SDRG flow.

Further Reading

1. References for this article [Voj13][RA13] [Sac11]
2. Griffiths-McCoy Singularity
3. Infinite disorder critical point
4. Percolation networks
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