Overview: When micro-rollers in a suspension move together in large numbers, some may come closer, while some goes farther way from each other creating clusters and gaps. Networks can be constructed based on the rollers' location and their analysis can give new insights to such motion.

Introduction

A colloidal particle having a magnetic core, when subjected to a rotating magnetic field will roll at one position within the liquid bulk, but near a wall because of symmetry breaking will also show translation. These particles will be referred as micro-rollers. Flow of them in large numbers is complicated because of the long-range hydrodynamic interactions of these particles.

* Flow lines with a wall

Micro-roller

Method

Before motion

After motion

Micro-rollers suspended in water is taken in a capillary chamber, which is observed under a microscope. They are subjected to magnetic field for a fixed time. The location of the rollers were detected by approximating them as Gaussian blobs using Trackpy. The network is constructed by joining two roller locations that are within a linking length L.

Micro-roller location detection with Trackpy

$2 \mu \mathrm{~m}$ particles made of a fluorescent TPM shell and a hematite core, suspended in water is used for this study.

Discussion

For $\mathrm{L}=50$, the network for the before motion, is well connected (only around 25 out of 1394 nodes are disconnected). In this L , after motion network shows a significantly different degree distribution with the presence of an exponential tail towards higher degrees. Also, after motion network shows existence of higher degrees.

For $\mathrm{L}=20$, where networks are almost disconnected and only connected when there are close clusters, there is a significant increase in the average clustering coefficient after motion. In fact, the relative change in average clustering coefficient increases with decreasing L.

Results
Networks for 3 values of L are shown here: $L=50,20,60$

$\mathrm{L}=50 \quad$ \# of edges $=3445$
Before magnetic field

L=20 \# of edges =519
\qquad

L=60 \# of edges = 4931

Ater magnetic field

$\mathrm{L}=50 \quad$ \# of edges $=3799$

Average clustering $=0.555$

