
Intuitive Network Visualization Via the Convex Linear
Visualization Method

Gabriel Augustynowicz

Honors Thesis
Department of Physics and Astronomy

Northwestern University
Spring 2023

Thesis Advisor: István Kovács

Abstract

Network visualization is a powerful tool for understanding com-
plex data. However, current network visualization techniques have
limitations in how they accurately portray the intricate relationships
between entities in large, real-world networks. We present a new
method for visualizing networks, the Convex Linear Visualization,
that respects the relationship of linear combination between nodes.
We achieve this by using a relative entropy optimization method to
get positions in the embedding space for node attributes, or features,
and linearly combine those into positions for the nodes themselves.
This provides an aesthetic visualization where the position of a node
gives direct insight into shared features. We apply the method to a
real-world dataset as a demonstration.

1 Introduction and Background

Networks appear in a variety of domains, ranging from social networks to
biological systems to communication networks. In each of these, we often
find the network is incredibly complex, which presents a problem with com-
prehension of the intricate relationships between entities. The problem only
compounds as the number of nodes and links grows: real-world networks rou-
tinely have million or billions of nodes, and the edges possible between these
grow combinatorially. This calls attention to the need for clever network
representations that both enhance intelligibility and scale well with network
size.

Network embedding attempts to address this problem by mapping a net-
work into a low-dimensional vector space. Ideally, the representation main-
tains the properties of the network: topological structure, node centrality,
community structure, and connectivity patterns, to name a few [1]. This
way, the distance between two nodes can be taken as a measure of similarity
or connectedness, and so the structural characteristics of a node are encoded
in its embedding vector. In the representation, extraneous information is
reduced thanks to lower dimensionality and the dependence of embedding
vectors. This embedding can then more easily be used for further analysis of
the network, e.g. link prediction, visualization, and clustering.

Currently there are a variety of methods for developing meaningful em-
beddings. The simplest rely on matrix factorization of the adjacency matrix,
which is often accomplished using the Singular Value Decomposition (SVD)

1

[9]. There are also force-directed methods, which model attractive and repul-
sive forces between nodes and find a least-energy configuration; the physical
analogy is to the equilibrium seen in systems of springs or eletric particles
[5]. Some techniques focus on altering the embedding space, such as a hy-
perbolic geometry [4]. Other approaches include random walks (DeepWalk,
Node2Vec) and deep learning, the crux of which involves the optimization of
some objective function that rewards similar embeddings for similar nodes,
and differing embeddings for dissimilar nodes. Often these can take into
account side information, like node attributes, to supplement the network’s
inherent topological information [1] [12].

Once an embedding has been determined, a natural next step is trans-
forming it into a visualization of the embedding vectors. Visualizing networks
is key for representing data in a comprehensible and aesthetic manner, with
prioritizations like minimal overlaps between links and preservation of sym-
metry. By doing this, physicists can identity important features and patterns
of interactions in the complex systems they study, aiding analysis of otherwise
intractable information. Additionally, visualization is key to the development
and testing of models, and for its role in efficient communication of data.

Current visualization methods, however, prove insufficient to meet all the
challenges innate to complex networks. For instance, weighted networks can
have negative edges, which many current methods ignore or can’t properly
represent. Real-world networks don’t always follow the principle of trian-
gle closure, i.e. the idea that two nodes that share a neighbor should also
be neighbors; however, commonly used embeddings tend to succumb to this
principle, which can weaken potential for downstream analysis like link pre-
diction [2].

To deal with this gap in meaningful visualization of network data, we
present a new approach that builds on the work of Kovács et al. in their
2015 paper [7]. There they present an information theoretic heuristic and
algorithm for finding a representation based on treating individual nodes as
probability distributions. We implement this method and use its output to
produce a new network visualization that doesn’t impose triangle closure
and shows the similarity between nodes that share common attributes. We
call this Convex Linear Visualization. As a demonstration of the method’s
advantages, we then run it on a biological dataset of fly neuron synaptic
connections.

2

2 Results

2.1 Conditions on SVD Embedding

The singular value decomposition (SVD) of a matrix is a powerful linear
algebraic tool that finds use in many applications. Its properties make it
ideal for signal processing and pattern recognition, for instance, and in the
realm of network science it can provide an optimal low-rank embedding.
However, in these and other applications we are also interested in taking
functions of these matrices, and one may potentially only apply the SVD
after a complex operation has been performed on a matrix.

The question naturally arises, then, if for a matrix A and a function f ,
there is some simple relation between the SVD of A and the SVD of f(A).
In general, the answer is no. Even a simple function like f(A) = A−1 proves
this: the singular values of f(A) are the inverses of the singular values of A,
and the rest of the decomposition has no correspondence.

However, in some special cases, a relation can be proved. We present a
result in the realm of embedding via SVD matrix factorization.

Theorem: Assume A ∈ Rn×n is a real symmetric n-by-n matrix with
SVD given by A = UΣV T . Let f be a continuous, monotonic increasing, and
non-negative function with f(0) = 0; furthermore, f is either even or odd. If
f has a Taylor series given by p(x), then the best rank-k approximation to
the matrix f(A) is given by

[f(A)]k =

{
U [f(Σ)]kV

T f odd

U [f(Σ)]kU
T f even

(1)

where [B]k denotes the best rank-k approximation to matrix B given by the
truncated SVD.

This theorem gives conditions for the interchange of functions and rank-
reduction in network analysis. Both steps are crucial in the analysis of net-
works. Low-rank representations are used to capture the most essential char-
acteristics of a network while reducing computational and storage load, or
filtering out input noise. Meanwhile, power series of matrices are used for
processes such as similarity calculation between nodes, link prediction, or
continuous-time evolution of a network. The commuting of these two steps
can expedite more complex calculations and highlight important structural
properties.

3

2.2 Convex Linear Visualization

We present here a new network visualization method, the Convex Cluster
Visualization. The motivation for this method arises from the need to better
display and understand single cell sequencing data for cells. Visualizing the
complex relationships between cells at different stages of development can be
challenging due to the high-dimensional and noisy nature of the data. Ex-
isting methods can distinguish cells of different types with variable success,
but often struggle to meaningfully capture the relationships between cells in
intermediate stages of development. Our method brings new insight by rep-
resenting mixed or intermediate nodes based on their feature profiles, which
could reveal previously unrecognized developmental trajectories in cells, or
subtler relationships between mapped nodes in the general case.

We consider here a network given by a symmetric n × n adjacency ma-
trix A with positive entries aij ≥ 0. We treat each node as having certain
attributes or ”features,” with nodes connected if they share a feature. Call
the nodes of the network {v1, . . . , vn}.

The intuitive idea behind our approach is to develop a method of network
visualization where node positions are relevant to which features are shared
between nodes. In the representation, if node C is connected to nodes A and
B, then its embedding should be in between the embeddings of A and B in
proportion to how similar it is to either, i.e. how many shared features they
have.

To achieve this, we first make use of the EntOpt algorithm, explained in
the Methods section and originally presented in [7]. Each node is considered
to be a Gaussian distribution centered on some point in our embedding space
R2. By using this approach, we apply the heuristic of treating each point of
space as a feature inherent to the node; the value of each node’s distribution
at a point informs the strength of that feature attribute for said node.

We take S = ATA to be our similarity matrix, which counts how many
times a pair of features appears together. This will in generality be weighted.
Using the EntOpt algorithm on S gives us what we call the ”feature positions”
of the network, {x⃗1, . . . , x⃗n}. We can think of this as assigning an embedding
for each feature, instead of the usual paradigm of doing so initially for each
node.

Using these feature positions, our method can calculate meaningful node
positions that represent similarity to each other based on common features.
The straightforward way to do this is as a linear combination of feature

4

positions. We row-normalize A with the absolute-value norm: define matrix
Ã with entries ãij =

aij∑n
i=1 aik

. This row normalization scales the adjacency

matrix, whose elements represent how strongly a node possesses a feature,
such that each node’s (row’s) feature weights sum to 1 but the proportion of
expression is the same.

From here, we define the desired embedding as given by the following
linear combination: for each node vi its position will be n⃗i =

∑n
j=1 ãijx⃗j. In

essence, a node’s position is given by a weighted sum of the positions of each
of its features, with weights in proportion to the expression.

We note that this method has some very desirable characteristics:

Convexness
Suppose one row of the adjacency matrix A is a linear combination of two
others: we have, in terms of row vectors, a⃗i = αa⃗j + βa⃗k for α, β > 0. In
network terms, we interpret this to say that node i expresses all the features
of nodes j and k in proportion. Under the Convex Linear Visualization, the
calculation of node positions comes from a normalized linear combination
of feature positions; due to the choice of norm, we will find that the node
position n⃗i will be on the line induced by node positions n⃗j and n⃗k. Moreover,
this mapping is sensitive to the proportions α and β, as well as the total
feature strength of row a⃗j versus a⃗k:

n⃗i =
α∥a⃗j∥

∥αa⃗j + βa⃗k∥
n⃗j +

β∥a⃗k∥
αa⃗j + βa⃗k

n⃗k (2)

For α ∈ (0, 1) and β = 1 − α, this will be on the line directly between n⃗j

and n⃗k, which is only possible by our choice of norm and the restriction that
the entries of A be positive. This convex nature is a desired property in our
visualization: it makes sense that if a node is a direct mix of two others, it
should appear between them.

The statement extends when a⃗i is a linear combination of more than two
rows, so long as the combination coefficients sum to 1: the node position
n⃗i maps into the convex subspace between the corresponding other node
positions.

Breaks TCP
The idea behind the Triangle Closure Principle (TCP), also referred to as
network transitivity, is the interconnectedness of adjacent nodes. In many

5

complex networks, we find that there is a high propensity of triangle struc-
tures; that is, if two nodes share a neighbor, they are likely to be neighbors
themselves [2]. Many embedding methods can capture this property; how-
ever, just as important is the ability to break TCP and consider models where
nodes sharing a neighbor are unlikely to be connected (e.g. protein-protein
interaction networks, where a ”lock-and-key” understanding of protein in-
teractions hints that shared neighbors have similar structure and thus won’t
interact).

The EntOpt algorithm is unlikely to break TCP alone. However, the
linear combination of its output feature positions in the Convex Linear Visu-
alization can break TCP. Wherever a triad of nodes in the original network
satisfies triangle closure, the positions of the three nodes under our technique
will be strongly interdependent due to the linear combination taken, and so
they are likely to have similar embeddings. However, if a triad of nodes
doesn’t satisfy TCP, i.e. we have two nodes A,B with a common neighbor
C that aren’t adjacent to each other, then the positions of A and B will be
independently determined by their features, and a dissimilar embedding is
possible.

Rectangular Matrices
Although the method is presented above for symmetric n× n matrix A,

this is actually a stronger condition than necessary. A can be a rectangular
n×m matrix with positive entries aij ≥ 0. The similarity matrix S = ATA
will then be a symmetric square m × m matrix, which is a valid input for
EntOpt. The output will give m feature positions, which can then still be
linearly combined using the m normalized entries of each row of A to get n
node positions.

This interpretation is particularly helpful where we have a distinct set of
features we can attribute to each node. For instance, in a biological appli-
cation we may have a matrix A showing cell-gene correspondence. The rows
represent each cell and the columns each gene; a nonzero entry occurs in the
case that a cell presents a gene. We would first use the gene-gene similarity
matrix given by ATA to get positions for each gene, and then take a linear
combination based on gene expression to get a visualization for the cells.

6

(a) (b)

(c)

Figure 1: (a) A toy feature network for testing our method. This network
represents the connections possible between nodes of different features; e.g.
purple nodes will connect to other purple nodes, yellow nodes, and blue
nodes. (b) Embedding of a 30-node network created by using the network in
(a) as part of the Stochasitc Block Model detailed in Methods. Although only
five distinct nodes appear, this is a result of nodes of the same color feature
being mapped to the same point. This embedding gives the feature positions
from applying EntOpt on a similarity matrix. (c) Embedding of the Convex
Linear Visualization, representing the node positions. The brown node has
mixed features: it was made as a linear combination of a red node and
purple node, with coefficients 0.3 and 0.7 respectively. As a consequence, it
falls directly on the line between the red and purple clusters, demonstrating
convexness. Additionally, although both red and purple nodes connect to
blue nodes in our toy network, they themselves are not connected, and so
have dissimilar node embeddings under our visualization, which demonstrates
the deviation from TCP.

7

2.3 Application to Datasets

2.3.1 Fly Synaptic Network

We demonstrate the method on a biological dataset comprising a fly neuron
connectome. This is compared to the visualizations that the t-SNE algorithm
would produce.

The Fly Cell Atlas is presented by [10] as a high-quality cellular sequence
of fruit fly Drosophila melanogaster at single-cell resolution. The filtered ver-
sion of the dataset used here is comprised of 1703 nodes and 269968 edges,
the former corresponding only to neurons and the latter to synaptic connec-
tions between them. The neurons are characterized by their type as Kenyon
cells, which we use as the feature classification in our embedding.

Figure 2: t-SNE embedding of the adjacency matrix of the fly synaptic data.
This embedding represent node positions.

Figure 2 is the result of the popular t-SNE (t-distributed Stochastic
Neighbor Embedding) algorithm, which is a statistical layout method for
visualizing high-dimensional data [11]. The mathematics behind t-SNE is
similar to EntOpt as described in the Methods section, as it also minimizes
the Kullback-Leibler divergence of a low-dimension embedding; however, the
distributions and distance measures it uses differ.

Figure 3 is the result of our Convex Linear Visualization. We display
both the feature positions and the node positions as a demonstration of how
this method compares to application of only EntOpt. All three methodolo-
gies (t-SNE, EntOpt, and Convex Linear Visualization) succeed in clustering
together neurons with similar feature, and even tend to place the same sets
of features closer together (e.g. the pairing of KCg-m and KCg-d). However,

8

(a) (b)

Figure 3: (a) Embedding of feature positions achieved by applying EntOpt
on the fly similarity matrix S = ATA. For the embedding, we choose to
ignore self-similarity, i.e. the diagonal entries of S. (b) The full result of our
Convex Linear Visualization, which is the weighted linear combination of the
result seen in (a). This represents the node positions.

the t-SNE visualization is sensitive to the parameters used for input: namely,
different choices of perplexity or early exaggeration, while retaining much of
the correct clustering, will assign wildly different positions. Thus t-SNE may
be suitable for identifying clusters, but not for drawing conclusions about the
relationship between nodes with mixed feature profiles. Our method, con-
versely, has no input parameters and will always return the same relationship
between nodes. Additionally, the Convex Cluster Visualization improves on
both t-SNE and EntOpt in this case by narrowing the spread of each cluster,
highlighting the localization inherent to each feature under this paradigm.

3 Methodology

3.1 SVD Embedding Theorems

In this section we present a short proof of the theorem presented in section
2.1.

Any real n×mmatrixX admits an SVD of the formX = UΣV T , where U
and V are real orthogonal matrices and Σ is a diagonal matrix whose entries
σi are called the singular values. The singular values are non-negative, and
the number of which are non-zero is equal to the rank of X. The SVD is

9

generally not unique, but if we impose the condition that the singular values
appear in decreasing order, then Σ is uniquely determined [9].

The SVD is useful for giving low-rank approximations to matrices. Given
a matrix X, denote its best rank-k approximation by [X]k. The quality of
an approximation is measured by minimizing the Frobenius norm of their

difference, ∥X − [X]k∥ =
√∑

i,j(xij − [x]ij)2. By the well-known Eckart-

Young theorem, the best rank-k approximation is given by the truncated
SVD of X:

[X]k = U [Σ]kV
T (3)

where [Σ]k contains only the k largest singular values of X [9].

Proof.
Consider the case that f is an odd function. Then its Taylor series p(x)

will also be odd.
=⇒ p(x) = c1x+ c3x

3 + . . .
We utilize that fact that if A = UΣV T , then An = UΣnV T for n odd.

This is true by writing An = AATA . . . ATA (recall that A is symmetric) and
simplifying the products of orthogonal matrices.

f(A) ≡ p(A) ≡ c1A+ c3A
3 + . . .

= c1UΣV T + c3UΣ3V T + . . .
= U(c1Σ + c3Σ + . . .)V T

We know Σ is diagonal; suppose it takes the form

σ1 0 . . . 0
0 σ2 . . . 0
.
0 0 . . . σr

Then the middle portion c1Σ + c3Σ + . . . is calculated nicely as

c1σ1 + c3σ
3
1 + . . . 0 . . . 0

0 c1σ2 + c3σ
3
2 + 0

.
0 0 . . . c1σr + c3σ

3
r + . . .

Therefore we have f(A) = U

f(σ1) 0 . . .
0 f(σ2) . . .
. . .

 V T = Uf(Σ)V T .

By the fact that f is non-negative and monotonic, we have f(σi) ≥ 0 and
f(σi) ≥ f(σi+1). These properties mean that Uf(Σ)V T is a valid SVD of
f(A).

10

Finally we apply the Eckart-Young Theorem to state that the best rank-k
approximation of f(A) will be U [f(Σ)]kV

T = Uf([Σ]k)V
T .

The evens case proceeds almost identically, except that An = UΣnUT for
n even.

3.2 Feature Embedding Via EntOpt Algorithm

3.2.1 EntOpt

In this section we describe the Relative Entropy Optimization (EntOpt) al-
gorithm developed in [7], which we use for finding an optimal representation
of the network features before applying our Convex Linear Visualization.

The EntOpt method attempts to find a representation which is hardest to
distinguish from the original input matrix A (the adjacency matrix or a sim-
ilarity matrix) in terms of relative entropy, also known as Kullback–Leibler
divergence. This is an information theoretic measure of the extra description
length of a representation B when compared to the original input matrix [8].
The less distinguishable they are, the lower the relative entropy. The value
is given as follows:

D(A∥B) =
∑
i,j

aij ln
aijb∗∗
bija∗∗

(4)

where a∗∗ =
∑

i,j aij, b∗∗ =
∑

i,j bij are the sums of all matrix elements, used
to properly normalize the entropy and subsequent probability distributions.

To get the values of the representation matrix B, we treat each node as
a probability distribution over a d-dimensional ambient space, which for the
purposes of visualization will be R2. A natural choice of distribution is the
Gaussian

ρi(x⃗) =
h

(2π)d/2
exp(−(x⃗0 − x⃗) · (x⃗0 − x⃗)

2σ2
) (5)

where the parameters x⃗0, σ, h correspond to the mean, width, and a normal-
ization factor, respectively. The entries bij correspond to the overlap of the
Gaussians; for d = 2, this is given by

bij =
hihj

2π(σ2
i + σ2

j) exp(−
(xi−xj)2+(yi−yj)2

2(σ2
i +σ2

j)
)

(6)

11

3.2.2 Newton-Raphson

For the actual procedure of optimizing the distribution, we minimize the
entropy between the input A and the representation B as described above.
This is done via the multidimensional Newton-Raphson algorithm [7]. In
analogy to the familiar single-variable Newton’s method, the process goes as
follows:

1. Identify the node k whose gradient vector J has the largest magnitude
∥J∥2 = (∂D

∂xk
)2 + (∂D

∂yk
)2.

2. Calculate the second derivative matrix F with entries ∂2D
∂x2

k
, ∂

2D
∂y2k

, ∂2D
∂xk∂yk

.

3. Update the position of node k by −F−1J .

4. Iterate.

We intend for this to run until a global minimum of the relative entropy
D is reached. In the case that a single update to the position of node k
as prescribed would actually increase D, that step is replaced by gradient
descent with a sufficiently small step size that D decreases.

To initialize the Newton-Raphson algorithm, one can use random values
within a reasonable range for each of the values defining the probability
distributions: node position, width, and normalization. Then an alternating
optimization of each of the three would eventually converge to ideal values.
We have outlined the procedure for minimizing D with respect to position,
but analogous steps work for finding best σ and h. In practice, however, the
position optimization is most important. Assuming that the initial positions
chosen are close enough that their distributions are likely to overlap, we
can fix reasonable values for width and normalization. We found that for
node positions within the unit square [0, 1] × [0, 1], values of σ = 0.1 and
h ∼ 10−4 sufficed. Furthermore, the results for EntOpt can be improved and
expedited by substituting random initial positions for those given by another
visualization method, preferably a force-directed layout.

3.2.3 Stochastic Block Model

For the purposes of testing both our implementation in Python of the EntOpt
algorithm and the plausibility of our Convex Linear Visualization, we created
toy networks by a Stochastic Block Model (SBM) [3]. This is a probabilistic

12

generative model for networks, which finds wide use for community detection
and network clustering.

In the SBM, the set of nodes is partitioned into communities, and edges
are assigned based on community membership. The probability of an edge
between two nodes is determined by which communities each belongs to;
there is generative control over how likely two groups of nodes are to be
connected.

To generate our toy networks for testing, we let our communities repre-
sent node features, and assign each node a feature as a method of partition.
This can be represented as a matrix X whose rows represent nodes and each
column a feature; each row of X will have a single nonzero entry corre-
sponding to the selected feature. We also choose a structure of community
connections. Treating the communities as their own graph, we can create a
weighted adjacency matrix O whose entries oij represent the desired proba-
bility that a node in community i and a node in community j will have an
edge between them [6].

The matrix product Ã = XOXT gives a matrix whose entries represent
the probability that an edge should exist between any pair of nodes. Applying
said probability gives an adjacency matrix A.

The SBM provides a probabilistic framework for hypothesis testing, model
selection, and uncertainty quantification, which was necessary to get numer-
ous nontrivial examples to test the Convex Linear Visualization. In particu-
lar, this model was advantageous for its control over cluster generation. The
partition into communities possessing only a single feature meant that the
feature positions derived from EntOpt translated very naturally when our
visualization method was applied; additionally the connectedness between
communities could be leveraged to get clear examples of how linear combi-
nations of nodes map in a convex manner.

4 Discussion and Conclusion

We have introduced a simple solution to the problem of network visualiza-
tion based on the principle of assigning an embedding position from a linear
combination of feature embeddings. Our framework extends the algorithm
of relative entropy optimization [7] with a post-processing step which adds
further meaning to the derived positions. We input a similarity matrix of the
given network and interpret the output of EntOpt as an embedding of fea-

13

tures. Subsequently, a row-normalized version of the adjacency matrix gives
the coefficients we use for linear combination of the set of feature positions,
resulting in a node embedding for each element of the network. We call this
algorithm the Convex Linear Visualization.

This method is advantageous for its properties and broad applicability.
As shown, node positions are influenced by the linear dependence of adja-
cency matrix rows. If a row is a linear combination of other rows in the
matrix, that node’s embedding can be determined as a linear combination of
the embeddings of the corresponding other nodes; furthermore, if this linear
combination is a proper mix, in the sense of combination coefficients sum-
ming to 1, then the embedding is convex, which is a very nice visual property
when displaying data or trying to infer community patterns. By using En-
tOpt for feature positions, Convex Linear Visualization is able to mitigate
the triangle closure principle for networks with more complex structure. The
theory behind our method is very simple and generalizable. It depends on no
arbitrary parameters, unlike commonly used force-directed methods or the
t-SNE algorithm; all the information for linear combination comes from the
values in the adjacency matrix itself, and our initial choice of entropy func-
tion and row normalization determines everything. The method is detailed
for square symmetric adjacency matrices, but can be used for rectangular
inputs without alteration or loss of meaning.

The method still admits some potential for improvement and further test-
ing to build upon the foundation detailed here. We have yet to test whether
the Kullback-Leibler divergence used for EntOpt can be improved upon. In-
stead of using that entropy, a heuristic making use of the Frobenius norm
L = ∥A − B∥2F =

∑
i,j(aij − bij)

2, also referred to as squared error between
the input matrix A and representation B, may offer some computational
advantages. This function has simpler partial derivatives when using the
Newton-Raphson method to solve for a minimum, and doesn’t need global
normalization in the same way relative entropy calculation does.

∂L

∂xk

= 4
∑
j

xk − xj

σ2
k + σ2

j

bkj(akj − bkj) (7)

∂2L

∂x2
k

= 4
∑
j

[
1

σ2
k + σ2

j

bkj(akj − bkj) + (
xk − xj

σ2
k + σ2

j

)2bkj(2bkj − akj)] (8)

∂2L

∂xk∂yk
= 4

∑
j

(xk − xj)(yk − yj)

σ2
k + σ2

j

bkj(2bkj − akj) (9)

14

Equations 7 and 8 hold similarly for differentiation by yk.
Furthermore, such minimization problems subject to the constraint of

rank(B) ≤ r have analytic solutions given by the singular value decomposi-
tion, which offers a natural comparison for our fit and may help expedite cal-
culations further. Another untested prescription is the form of the similarity
matrix used to calculate feature positions for our Convex Linear Visualiza-
tion. The current model uses S = ATA as an intuitive base, but variations
like S =

√
ATA are likewise meaningful, and not so difficult to calculate —

again using the SVD. These applications of the SVD may benefit from use
of the included theorem in rank-reduction of matrix functions.

5 Acknowledgements

Portions of this work were supported via a Baker Faculty Grant issued by
Northwestern University’s Weinberg College of Arts and Sciences. The au-
thor wishes to thank the Kovács lab group, and in particular their thesis
advisor István Kovács for constant support, motivation, and patience.

6 References

References

[1] P. Cui, X. Wang, J. Pei and W. Zhu, ”A Survey on Network Embedding,”
in IEEE Transactions on Knowledge and Data Engineering, vol. 31, no.
5, pp. 833-852, 1 May 2019, doi: 10.1109/TKDE.2018.2849727.

[2] Hasan Mohammad Al and Dave Vachik S.. 2018. Triangle counting in
large networks: A review. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 8, 2 (2018), e1226.

[3] Holland Paul W., Laskey Kathryn Blackmond, Leinhardt Samuel,
”Stochastic blockmodels: First steps,” Social Networks, Volume 5, Issue
2, 1983, Pages 109-137, ISSN 0378-8733, https://doi.org/10.1016/0378-
8733(83)90021-7.

[4] Kitsak M., Voitalov I., Krioukov D., ”Link prediction with hyperbolic
geometry,” Phys. Rev. Res., 2 (2020), Article 043113

15

[5] Kobourov, Stephen G, ”Spring Embedders and Force Directed Graph
Drawing Algorithms,” arXiv, 2012; 1201.3011

[6] Kovács, I. A., Barabási, D. L., & Barabási, A.-L. ”Uncovering
the genetic blueprint of the C. elegans nervous system. Proceed-
ings of the National Academy of Sciences, 117(52), 33570–33577.
https://doi.org/10.1073/pnas.2009093117

[7] Kovács, I. A. et al. A unified data representation theory for network
visualization, ordering and coarse-graining. Sci. Rep. 5, 13786; doi:
10.1038/srep13786 (2015)

[8] S. Kullback, R. A. Leibler ”On Information and Sufficiency,” The Annals
of Mathematical Statistics, Ann. Math. Statist. 22(1), 79-86, (March,
1951)

[9] N. Kishore Kumar & J. Schneider (2016): Literature survey on low
rank approximation of matrices, Linear and Multilinear Algebra, DOI:
10.1080/03081087.2016.1267104

[10] Li, Hongjie et al., Fly Cell Atlas: A single-nucleus transcrip-
tomic atlas of the adult fruit fly. Science 375, eabk2432(2022).
DOI:10.1126/science.abk2432

[11] van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). ”Visualizing Data
Using t-SNE.” Journal of Machine Learning Research. 9: 2579–2605.

[12] Z. Zhang, P. Cui and W. Zhu, ”Deep Learning on Graphs: A Survey,”
in IEEE Transactions on Knowledge and Data Engineering, vol. 34, no.
1, pp. 249-270, 1 Jan. 2022, doi: 10.1109/TKDE.2020.2981333.

16

