Background

Fig. 1 The schematic diagram of the nucleation of 2D Ising model. N=50×50. Initially, all the spins are down With the presence of weak magnetic field, nucleation may take place with rare chance. Maximum cluster size N in the lattice is used as the criteria. N<5 (region A) is when nucleation not taking place and N>200 (region B) is when nucleation having taken place. Along the transition routes, there are different configurations. Another reaction coordinate (order parameter) perimeter S is introduced in order to characterize the shape of the cluster.

Research Objectives

Study the effects of varying magnetic field on the topology of the nucleation pathways.

- 1. If the process is equilibrium or non-equilibrium.
- 2. If any favored paths exist
- 3. Interpret nucleation rates with pathway topology.

Methods

1. Transition path sampling² (TPS) - a method used to study and sample rare events (trajectories) in computer simulations. TPS codes were written by Aaron Keys³ and data were collected with some modifications on codes in order to sample (N,S).

- 2. First-order network
- Construction: 1000 trajectories with length ~20 configurations extracted are used. Every (N,S) is binned properly to get networks with fewest self-loop. All the constructions and calculations were done with python codes and Networkx package⁴.
- The probability distribution of edge weights
- The probability distribution of in and out degree of nodes
- Pagerank⁵: Measure a node's influence extending beyond their direct connections to the wider network. Basically, it represents the static probability distribution of the nodes by viewing the system as a Markov state model, i.e. $\pi = \pi P$.
- Load centrality⁶: Similar to betweenness centrality, measure the number of times a node lies on the shortest path between other nodes, to find the nodes (typical configurations) which influence the flow or serve as the bridges.

3. High-order network⁷ – a method to display the memory issues hidden in the trajectories.

- Construction: Generated with Higher-order Network⁷ (HON) automatically.
- Pagerank analysis: Rebuild the pagerank for each nodes in first order network, also done by Higher-order Network (HON).

Study of Nucleation Processes in Two-dimensional Ising Model via Network Analysis

Geyao Gu

Department of Chemistry, Northwestern University

Fig. 4 Edge weights distribution of networks (a) h=1, (b) h=1.5, (c) h=2. Scale-free property is shown in the edge weights distribution.

h	1	1.5	2
Number of nodes	506	555	650
Number of edges	8861	8375	7580
Slope	-1.227	-1.261	-1.434
R ²	0.9397	0.9829	0.9563
Shannon entropy of edge weights	8.10	8.06	8.20
Entropy of pagerank (high order)	4.50	4.17	3.66
Entropy of load centrality	5.08	5.30	5.77

fields provide similar occupations of sites, which highlights a typical pathway. However, the entropy of

- the flexibility of the nodes to chose next step will increase.

regime, it highly depends on the old memories. Once the memory starts to disappear,