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Abstract

We study a new artificial Fibonacci quasicrystal constructed of transmission-line resonators.

We develop the mathematical formalism for describing such a quasicrystal and then use it

to perform numerical calculations for two types of quasicrystals. One type, with varying

impedances, displays the self-similarity that is characteristic of a quasicrystal. However, in

the other type, where the wave speeds vary while impedances are constant, most typical

properties of quasicrystals are destroyed. To understand why the usual quasicrystal prop-

erties do not persist, we extend the Kohmoto-Kadanoff-Tang (KKT) renormalization-group

method. Finally, we present an invariant associated with this renormalization-group method.
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Chapter 1

Introduction

1.1 What is a Quasicrystal?

Crystals are highly-ordered materials in which the constituents are arranged periodically.

This results in periodic eigenmodes of phonons and electrons that extend across the entire

crystal. In contrast, disordered solids have constituents that are arranged randomly and

have localized high-frequency phonon eigenmodes and high-energy electronic wave functions.

This, then, raises the question: Is there a kind of material in between a crystal and a

disordered solid? The answer is yes. Quasicrystalline lattices are geometric configurations of

building blocks that are ordered but do not repeat periodically and can exhibit symmetries

and other properties that are prohibited in conventional crystals. While quasicrystals do not

have translational symmetry, they can display new rotational symmetries (Figure 1.1). For

example, ordinary crystals cannot have five-fold rotational symmetry for the same reason that

a bathroom floor cannot be completely covered with only pentagonal tiles. But fascinatingly

enough, quasicrystals can in fact have five-fold rotational symmetry [2]. Quasicrystals have

a host of other intriguing mathematical characteristics that include sets of energy levels

that are neither discrete nor continuous as well as wave functions with fractal properties

[3]. In recent work, physicists have also established a connection between quasicrystals
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Figure 1.1: Penrose tiling. The Penrose tiling is an example of a two-dimensional quasicrystal
with five-fold rotational symmetry [1].

and topological properties of quantum Hall systems [4, 5]. A new platform of investigating

quasicrystals that is driving modern research is artificial quasicrystal systems, including

realizations in ultra-cold atoms in optical lattices [6] and photonic waveguide arrays [7]. In

this thesis, we study a new artificial quasicrystal system constructed of transmission-line

resonators. For this system, we consider two types of quasicrystals. One type displays the

usual self-similarity of a quasicrystal, but in the other type, most of the typical properties

of quasicrystals turn out to be absent.

Like in a crystal, there is a set of rules for the arrangement of the constituents of a

quasicrystal, resulting in the highly ordered and symmetric structure of the material. In this

thesis, we focus on the Fibonacci quasicrystal, a one-dimensional quasicrystal composed of

two basic units, which we will call L and S. To generate the pattern of L’s and S’s that form

the Fibonacci quasicrystal, we start with a single-element list of either L or S and then use

the substitution rules L→ LS and S → L to generate a new list. We can iteratively continue
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this process, and the resulting pattern of L’s and S’s define a Fibonacci quasicrystal:

Step 1: S

Step 2: L

Step 3: LS

Step 4: LSL

Step 5: LSLLS

Step 6: LSLLSLSL

Step 7: LSLLSLSLLSLLS

...

This type of quasicrystal is called a Fibonacci quasicrystal because the chain in the nth step

may be constructed by adding the (n− 2)th iteration to the end of the (n− 1)th iteration.

This is similar to the Fibonacci sequences of numbers since the nth Fibonacci number Fn

is given by Fn = Fn−1 + Fn−2. Moreover, the number of elements in each iteration of the

Fibonacci quasicrystal chain follows the Fibonacci sequence.

1.2 Properties of Quasicrystals

A physical example of a Fibonacci quasicrystal is a one-dimensional chain of coupled oscilla-

tors with identical springs in which two types of masses vary according to the pattern of L’s

and S’s. In general, the matrix equation to solve for the eigenmodes and eigenfrequencies is
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a generalized eigenvalue problem of the form

ω2



m1

m2

m3

. . .

mN





x1

x2

x3
...

xN


= k



2 −1

−1 2 −1

−1
. . . . . .

. . . . . . −1

−1 2





x1

x2

x3
...

xN


(1.1)

where xn is the displacement from equilibrium of point mass mn, k is the spring constant of

each spring, N is the number of masses, and ω is an eigenfrequency. (We have imposed hard-

wall boundary conditions.) The two types of masses vary in the pattern of the Fibonacci

quasicrystal. As an example, we examine the eigenfrequency spectrum and some eigenvectors

for the case in which m2/m1 = 4 and N = 1597.

If all eigenfrequencies are ordered in a list from least to greatest, then the eigenmode

number is defined as the position of the given eigenfrequency in this list. The eigenfrequency

spectrum displays self-similarity, as depicted in Figure 1.2. The right figure shows that the

top “band” of the left figure actually looks like the top three “bands” in the same figure.

Hence, these “bands” are not actually bands at all since they are not continuous.
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Figure 1.2: Eigenfrequency spectrum. The left plot depicts all eigenfrequencies (in units
of
√
k/m1) ordered from least to greatest. The right plot shows the eigenfrequencies from

eigenmode number 1200 to eigenmode number 1597, the eigenfrequencies in the top “band”
of the left figure. By comparing the two plots, we see the self-similarity of the eigenfrequency
spectrum.

Some of the high-frequency eigenmodes are shown in Figure 1.3. While their correspond-

ing eigenvalues appear to be the same from numerical calculations, this eigenvalue is not

degenerate. There is a change of coordinates that makes solving Eq. (1.1) equivalent to

computing the eigenvectors and eigenvalues of a tridiagonal real-symmetric matrix. Such a

matrix cannot have any degeneracies due to a theorem in linear algebra [8].

The high-frequency modes have some localized portions, but they are not completely

localized modes like in a disordered chain. In addition, all these high-frequency eigenmodes

have some fractal structure as well. To make this characteristic more apparent, Figure 1.4

shows a portion of the highest frequency mode that looks similar to the full plot of the

eigenmode.

The lower-frequency eigenmodes are delocalized and do not display this self-similarity.

The eigenmodes of the lowest possible eigenfrequencies in the spectrum look like sinusoidal

waves, just as they do for both crystals and disordered chains.
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Figure 1.3: The third and fourth highest frequency eigenmodes, respectively. Both have
eigenfrequency close to 3.14968. Red points correspond to the lighter masses in the chain
while blue points correspond to the heavier masses.
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Figure 1.4: Highest frequency eigenmode, which has eigenfrequency ω = 3.14968. The top
plot depicts the full eigenmode while the bottom plot shows from mass position 320 to 650.
The similarity of these images indicates that this eigenmode has a self-similar structure.
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Figure 1.5: Eigenmode with eigenfrequency 0.078804. This low-frequency eigenmode is
delocalized and does not display self-similarity.
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Figure 1.6: Eigenmode with eigenfrequency 0.00014587. This eigenmode has the ninth lowest
eigenfrequency and looks like a sinusoidal wave.
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Chapter 2

Transmission-Line Resonators

2.1 Equations of Motion and Boundary Conditions

Recently, there have been many efforts to build new simulations of quantum matter in

circuit quantum electrodynamics (circuit QED) lattices due to their flexibility in fabrication

and their easy accessibility to non-equilibrium physics [9]. In this thesis, we are interested

in studying the physics of Fibonacci quasicrystals realized by transmission-line resonators,

which are elements of circuit QED lattices. Before discussing the Fibonacci quasicrystalline

transmission line, we must present the background for modeling transmission lines in general.

Consider a superconducting (lossless) transmission-line resonator with capacitance c(x) per

unit length and inductance `(x) per unit length. The transmission-line resonator is coupled

by capacitors with capacitances CL and CR on the left and right to the circuits L and R,

respectively. The generalized flux φ(x, t) is defined as

φ(x, t) =

∫ t

−∞
V (x, t′) dt′ (2.1)

where V (x, t) is the voltage at position x along the transmission line at time t. The system

may be modeled as the continuum limit of N coupled LC circuits, with the jth circuit

having capacitance cj dx and inductance `j dx. The total length of the transmission line is
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...
L R

0 x L0
CL CR

cdx

`dx

φL φRφ1 φ2 φ3 φN−1 φN

Figure 2.1: Circuit diagram of a discretized transmission-line resonator. A transmission-line
resonator of length L0, capacitance per unit length c, and inductance per unit length ` may
be discretized into a chain of coupled LC circuits, with the jth circuit having capacitance
cj dx and inductance `j dx. The coordinate x labels the position along the transmission
line. The transmission line is coupled to φL of the circuit to the left through a capacitor of
capacitance CL and to φR of the circuit to the right through a capacitor of capacitance CR.
(Figure from Andy C.Y. Li.)

L0 = N dx. In the discretized form, the full system Lagrangian is given by

L = L′L + L′R +
CL

2

(
φ̇1 − φ̇L

)2
+
CR

2

(
φ̇N − φ̇R

)2
+

N∑
j=1

cj dx

2
φ̇2
j −

N∑
j=2

1

2`j dx
(φj − φj−1)

2

(2.2)

where L′L and L′R are the Lagrangians of the left and right circuits respectively. We write

this Lagrangian as the sum of four terms:

L = LL + LR + Lcoup + LTL (2.3)

where LL = L′L + CLφ̇
2
L/2 and LR = L′R + CRφ̇

2
R/2 are the Lagrangians for the left and

right circuits, respectively, with the addition terms due to capacitive coupling with the

transmission line. The term Lcoup = −CLφ̇Lφ̇1−CRφ̇N φ̇R refers to the coupling between the

transmission line and the circuits. The last term, the Lagrangian of the transmission line, is
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the most important:

LTL =
CL

2
φ̇2
1 +

CR

2
φ̇2
N +

N∑
j=1

cj dx

2
φ̇2
j −

N∑
j=2

1

2`j

(
φj − φj−1

dx

)2

dx . (2.4)

In the continuum limit, we have N → ∞ and dx → 0, but N dx = L0 is constant so that

the sums become integrals. In addition, the discrete functions for flux, capacitance per unit

length, and inductance per unit length turn into continuous functions of distance along the

transmission line: φj(t) → φ(x, t), cj → c(x), and `j → `(x). The Lagrangian for the

transmission line is now

LTL =
CL

2

(
∂φ

∂t

∣∣∣∣
x=0

)2

+
CR

2

(
∂φ

∂t

∣∣∣∣
x=L0

)2

+

∫ L0

0

c(x)

2

(
∂φ

∂t

)2

dx−
∫ L0

0

1

2`(x)

(
∂φ

∂x

)2

dx .

(2.5)

By using calculus of variations to impose that the action S =
∫
L dt is stationary, we obtain

an equation of motion in addition to boundary conditions for the ends of the transmission

line:

c(x)
∂2φ

∂t2
=

∂

∂x

(
1

`(x)

∂φ

∂x

)
, (2.6)

∂φ

∂x

∣∣∣∣
x=0

= `(0)CL
∂2φ

∂t2

∣∣∣∣
x=0

, (2.7)

∂φ

∂x

∣∣∣∣
x=L0

= −`(L0)CR
∂2φ

∂t2

∣∣∣∣
x=L0

. (2.8)

To solve for the eigenmodes, we use separation of variables with

φ(x, t) = ϕ(x)e−iωt (2.9)

where ω is an eigenfrequency. The equation of motion and boundary conditions are then

given by

d

dx

(
1

`(x)

dϕ(x)

dx

)
= −c(x)ω2ϕ(x), (2.10)
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dϕ

dx

∣∣∣∣
x=0

= −`(0)CLω
2ϕ(0), (2.11)

dϕ

dx

∣∣∣∣
x=L0

= `(L0)CRω
2ϕ(L0). (2.12)

Note that if c(x) and `(x) were independent of position, then Eq. (2.6) would become a wave

equation, and Eq. (2.10) would have sinusoidal solutions. We will make use of this point in

Section 2.2.

2.2 Chains of Resonators

We will now develop the mathematical formalism for a transmission-line resonator Fibonacci

quasicrystal. Consider a transmission line that has N sections, which we call resonators, with

the nth section of length Ln. The capacitance cn and inductance `n per unit length within

each resonator are constant, but we allow them to vary from resonator to resonator. We can

also exchange these variables for the wave speed vn = 1/
√
cn`n and characteristic impedance

zn =
√
`n/cn in each section. Independently varying wave speeds and impedances is how

we will construct our Fibonacci quasicrystal. (However, precisely how the vn and zn vary

does not concern us in this section.) The spatial dependence of the flux ϕn(xn) in the nth

resonator then obeys

d2ϕn

dx2n
= −cn`nω2ϕn(xn) (2.13)

so the solution is

ϕn(xn) = An sin

(
ωxn
vn

)
+Bn cos

(
ωxn
vn

)
(2.14)

where xn ∈ [0, Ln] is the spatial coordinate and the coefficients An and Bn are determined

by boundary conditions. The flux must be continuous across different sections, but its first

derivative is discontinuous if the inductance per unit length varies:

ϕn(Ln) = ϕn+1(0), (2.15)
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1

`n

dϕn

dxn

∣∣∣∣
xn=Ln

=
1

`n+1

dϕn+1

dxn+1

∣∣∣∣
xn+1=0

. (2.16)

The condition on the first derivative is equivalent to contintuity of the current. In addition,

there are still the boundary conditions for the ends of the transmission line, which now take

the form

dϕ1

dx1

∣∣∣∣
x1=0

= −`1CLω
2ϕ1(0), (2.17)

dϕN

dxN

∣∣∣∣
xN=LN

= `NCRω
2ϕN(LN). (2.18)

Imposing the boundary conditions in Eqs. (2.15) and (2.16) to the solution in Eq. (2.14)

yields the following matrix equation:

An+1

Bn+1

 =

 zn+1

zn
cos
(

ωLn

vn

)
− zn+1

zn
sin
(

ωLn

vn

)
sin
(

ωLn

vn

)
cos
(

ωLn

vn

)

An

Bn

 ≡Mn

An

Bn

 . (2.19)

The transfer matrix method may be employed to determine a relation between A1, B1, AN ,

and BN : AN

BN

 = MN−1MN−2 . . .M2M1

A1

B1

 . (2.20)

For simplicity, we define M ≡MN−1MN−2 . . .M2M1, which is represented as

M =

M11 M12

M21 M22

 . (2.21)
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Eq. (2.20) along with Eqs. (2.17) and (2.18) give a linear system of four equations for A1,

B1, AN , and BN . In matrix form, this system of equations can be written as



M11 M12 −1 0

M21 M22 0 −1

1 z1CLω 0 0

0 0 zNCRω sin
(

ωLN

vN

)
− cos

(
ωLN

vn

)
zNCRω cos

(
ωLN

vN

)
+ sin

(
ωLN

vN

)





A1

B1

AN

BN


= 0.

(2.22)

Because we are interested in nontrivial solutions for the An and Bn coefficients, the determi-

nant of the 4× 4 matrix above must vanish. The eigenfrequencies are thus positive solutions

to the equation

d(ω) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 −1 0

M21 M22 0 −1

1 z1CLω 0 0

0 0 zNCRω sin
(

ωLN

vN

)
− cos

(
ωLN

vn

)
zNCRω cos

(
ωLN

vN

)
+ sin

(
ωLN

vN

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(2.23)

For a given eigenfrequency, by the third line in Eq. (2.22), we have

A1 = −z1CLωB1. (2.24)

Thus, if B1 = 0, then we must also have A1 = 0, and by the transfer matrix method,

An = Bn = 0 for all n, rendering the solution for ϕ(x) trivial. Hence, to obtain a nontrivial

solution, we must certainly have B1 6= 0. Since we are free to choose the normalization for

the eigenmodes, we can set B1 = 1 in numerical calculations. Then we can determine A1 by

using Eq. (2.24), and the rest of the An and Bn may be computed with the transfer matrix

method.
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Chapter 3

Quasiperiodic Impedances, Constant

Speeds

We next discuss results obtained by applying the methods from the previous chapter nu-

merically. In this section, we consider N = 1000 resonators with impedances that vary in

the pattern of a Fibonacci quasicrystal. (Since 1000 is not a Fibonacci number, we sim-

ply truncate the pattern of the Fibonacci quasicrystal after 1000 units.) The two possible

impedances are z1 = 1 and z2 = 0.25. We take Ln = 1 and vn = 1 for all n as well as

CR = CL = 1.

We plot d(ω) to observe the structure of the eigenfrequencies. The functional form of

d(ω) is not relevant, but its zeros are the eigenfrequencies. While there are infinitely many of

these eigenfrequencies, we are generally concerned with the lowest ones. Self-similarity in the

structure of the eigenfrequencies is not clear from the plots, but we can observe a hierarchy

of gaps. There are smaller gaps in the spectrum in between larger gaps, which should be

present if the spectrum is self-similar. In Figure 3.1, the interval 4.6 < ω < 4.8 appears to

be a continuous band in the frequency spectrum. However, upon a closer look in Figure 3.2,

we see that there are gaps in this interval that are much smaller than the ones the appear in

Figure 3.1. We observe similar results for the interval 4.705 < ω < 4.720 in Figure 3.3. This
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is consistent with the structure of the eigenvalue spectrum of other Fibonacci quasicrystals.

1 2 3 4 5
ω

-4×10146

-2×10146

2×10146

4×10146

6×10146

d(ω)

Figure 3.1: The function d(ω) for 0 < ω < 5. The zeros of d(ω) are the eigenfrequencies.

4.65 4.70 4.75 4.80
ω

-4×1061

-2×1061

2×1061

4×1061

6×1061
d(ω)

Figure 3.2: The function d(ω) for 4.6 < ω < 4.8. This region of frequencies looks like it
contains no gaps in Figure 3.1, but the smaller gaps are visible in this plot.
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4.706 4.708 4.710 4.712 4.714 4.716 4.718 4.720
ω

-6×1014

-4×1014

-2×1014

2×1014

4×1014

6×1014

8×1014

d(ω)

Figure 3.3: The function d(ω) for 4.705 < ω < 4.720. The gaps in this plot are too small to
be visible in Figure 3.1 or Figure 3.2.

The eigenmodes are similar to those obtained in the mass-spring system. The high-

frequency modes (Figure 3.4) have a fractal structure but not the low-frequency modes,

which are much more delocalized (Figure 3.5). Modes of extremely low frequency look

sinusoidal (Figure 3.6). These results suggest that the transmission-line quasicrystal with

varying impedances have preserved the expected properties of Fibonacci quasicrystals.
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Figure 3.4: Eigenmodes for N = 1000 resonators with eigenfrequencies 4.82294, 4.79969,
and 4.60014, respectively. These eigenmodes display the self-similarity that is characteristic
of a quasicrystal.
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Figure 3.5: Eigenmode for N = 1000 resonators with eigenfrequency ω = 2.99987. Self-
similarity is not present in this delocalized lower-frequency mode.
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Figure 3.6: Eigenmode for N = 1000 resonators with eigenfrequency ω = 0.0101454. The
low-frequency eigenmode looks like a sinusoidal wave.
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Chapter 4

KKT Renormalization-Group

Analysis

We now introduce another method to compute the eigenfrequencies discovered by Kohmoto,

Kadanoff, and Tang (KKT), which they develop for a tight-binding model [10]. We apply

their method to our Fibonacci quasicrystal of resonators. In previous sections, we approx-

imated the quasicrystal’s behavior by examining systems composed of a large number of

resonators. In this section, we use a periodic approximation: an infinite transmission line

with infinitely many resonators that repeat a finite portion of the Fibonacci pattern period-

ically. Let this portion be of length Fm where Fm is the mth Fibonacci number. Thus, the

problem is periodic with period Fm. The method of KKT requires transfer matrices that

have unit determinant. In our case, we have det(Mn) = zn+1/zn [see Eq. (2.19)]. However,

we can transform the coefficients according to

Ãn

B̃n

 =
1
√
zn

An

Bn

 . (4.1)
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This scaling of the coefficients transforms the transfer matrix Mn to

M̃n =

√
zn
zn+1

Mn =


√

zn+1

zn
cos
(

ωL
vn

)
−
√

zn+1

zn
sin
(

ωL
vn

)
√

zn
zn+1

sin
(

ωL
vn

) √
zn

zn+1
cos
(

ωL
vn

)
 , (4.2)

which does in fact have unit determinant. We have assumed that the length of each resonator

is the same: Ln = L for all n. We define the transfer matrix Pl for a Fibonacci number of

steps by

Pl ≡ M̃Fl
M̃Fl−1 . . . M̃2M̃1 (4.3)

where Fl is the lth Fibonacci number. For these matrices Pl, the following recursion relation

holds due to the pattern of the Fibonacci quasicrystal:

Pl+1 = Pl−1Pl. (4.4)

The relation is valid because the Fibonacci quasicrystal of length l+1 may be constructed by

adding the pattern of the Fibonacci quasicrystal of length l−1 to the end of the quasicrystal

of length l. Eq. (4.4) implies that

Pl+1 + P−1l−2 = Pl−1Pl + Pl−1P
−1
l . (4.5)

Taking the trace of this equation, we find a recursion relation for xl ≡ tr(Pl)/2:

xl+1 = 2xlxl−1 − xl−2. (4.6)

Eq. (4.6) requires that Pl is a 2 × 2 matrix with det(Pl) = 1 for each l so that tr(Pl)I =

Pl + P−1l by the Cayleigh-Hamilton theorem. (Here, I is the identity matrix.) In addition
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to Eq. (4.6), we have the initial conditions

x2 = cos

(
ωL

v1

)
cos

(
ωL

v2

)
− 1

2

(
z1
z2

+
z2
z1

)
sin

(
ωL

v1

)
sin

(
ωL

v2

)
, (4.7)

x1 = cos

(
ωL

v1

)
, (4.8)

x0 = cos

(
ωL

v2

)
. (4.9)

These initial conditions together with Eq. (4.6) may be used to determine xm = xm(ω). If

|xm(ω)| ≤ 1, then ω is an eigenfrequency. If |xm(ω)| > 1, then ω cannot be an eigenfrequency

since the solution would be unbounded.

4.1 Closing the Gaps: Constant Impedances

Suppose the impedances are all the same across the transmission line, but the speeds vary

in the pattern of a Fibonacci quasicrystal. Then each transfer matrix takes the form

M̃n = Mn =

cos
(

ωL
vn

)
− sin

(
ωL
vn

)
sin
(

ωL
vn

)
cos
(

ωL
vn

)
 . (4.10)

Note that Mn ∈ SO(2) is a rotation matrix, so for any arbitrary product of such matrices,

the angles simply add:

Pm = MFmMFm−1 . . .M1 =

cos
(∑Fm

n=1
ωL
vn

)
− sin

(∑Fm

n=1
ωL
vn

)
sin
(∑Fm

n=1
ωL
vn

)
cos
(∑Fm

n=1
ωL
vn

)
 . (4.11)

Therefore, we have

|xm(ω)| =

∣∣∣∣∣cos

(
Fm∑
n=1

ωL

vn

)∣∣∣∣∣ ≤ 1 (4.12)
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for any value of ω. Hence, any ω > 0 is an allowed eigenfrequency. This suggests that the

system becomes gapless in this special case. To show that this conclusion agrees with our

method of determining eigenfrequencies as the zeros of d(ω) [Eq. (2.23)], we numerically

compute d(ω) for various numbers of resonators. As the number of resonators increases,

the spacing between the zeros of d(ω) decreases, as expected (see Figure 4.2). For these

calculations, we consider N = 1000 resonators, and the two possible wave speeds are v1 = 1

and v2 = 0.25. We take Ln = 1 and zn = 1 for all n as well as CR = CL = 1.

A gapless eigenvalue spectrum is not consistent with other systems of quasicrystals that

we have previously observed, so it is natural to ask whether any other characteristics typical

of quasicrystals are preserved for this system. From the plots in Figure 4.1, we see that

self-similarity of eigenmodes is not present. The amplitude for a given eigenmode remains

the same across all resonators precisely because Mn in Eq. (4.10) is a rotation matrix so

that
√
A2

n +B2
n =

√
A2

n+1 +B2
n+1. We can still, however, observe that the wavelength varies

across resonators in the pattern of a Fibonacci quasicrystal, which follows directly from Eq.

(2.14).
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Figure 4.1: Eigenmodes for N = 30 resonators for varied wave speeds and constant
impedances. The eigenmode depicted in the top plot has frequency 2.0001, and the eigen-
mode pictured in the bottom plot has frequency 3.99710. While these eigenmodes do not
show self-similarity, their wavelengths follow the pattern of the Fibonacci quasicrystal across
resonators.
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Figure 4.2: The function d(ω) for 13, 30, and 100 resonators, respectively. The zeros of d(ω)
are the eigenfrequencies. As the number of resonators increases, the spacing between the
eigenfrequencies decreases.
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4.2 KKT Invariant

By using the recursion relation in Eq. (4.6), KKT also found an associated invariant λ:

λ2 = −1 + x2l + x2l−1 + x2l−2 − 2xlxl−1xl−2. (4.13)

The quantity λ does not depend on l, which may be easily verified by direct substitution

using Eq. (4.6). By applying this analysis to the transmission-line system, we obtain a

general expression for the invariant due to the initial conditions:

λ2 =
1

4

(
z1
z2
− z2
z1

)2

sin

(
ωL

v1

)
sin

(
ωL

v2

)
. (4.14)

For the special case that the impedances are all constant, we find that λ = 0. If the wave

speeds are all constant but the impedances vary in the pattern of a Fibonacci quasicrystal,

then

λ =
1

2

∣∣∣∣(z1z2 − z2
z1

)
sin

(
ωL

v1

)∣∣∣∣ =

∣∣∣(z21 − z22) sin
(

ωL
v1

)∣∣∣
2z1z2

. (4.15)

This generalizes the KKT formalism and invariant to our systems of transmission-line qua-

sicrystals.
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Chapter 5

Conclusions

The work in this thesis has shown how to mathematically model a new artificial Fibonacci

quasicrystal constructed of transmission-line resonators. Numerical calculations with this

model were used to study two types of quasicrystals that can be constructed with res-

onators. In the case of varying impedances and constant speeds, we provided examples in

which the typical properties of quasicrystals are present, namely the hierarchy of gaps in the

eigenfrequency spectrum and self-similarity of high-frequency eigenmodes. In examining the

quasicrystal in which wave speeds vary while impedances are constant, we observed that the

frequency spectrum is gapless. Moreover, the eigenmodes have constant amplitude but have

wavelengths that vary according to the Fibonacci quasicrystal sequence. We were able to un-

derstand these results by extending the KKT renormalization-group method. This method

is associated with an invariant, which we computed for our quasicrystal of resonators.
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[9] A. A. Houck, J. Türeci, and Jens Koch, On-chip quantum simulation with supercon-

ducting circuits, Nat. Phys. 8, 292 (2012).

27



[10] M. Kohmoto, L. Kadanoff, and C. Tang, Localization problem in one dimension: map-

ping and escape, Phys. Rev. Lett. 50, 1870 (1983).

28


