Extrapolation of Treatment Effect Estimates Across Contexts and Policies: An Application to Cash Transfer Experiments

Kensuke Maeba

Northwestern University

January, 2023

Two extrapolation approaches

- Evidence-based policymaking is challenging
 - External validity not always guaranteed
 - From which evidence to extrapolate?
- 1. Extrapolation across contexts (within policies)

– Policy A in context $X \Leftarrow Policy A$ in **context Y**

2. Extrapolation across policies (within contexts)

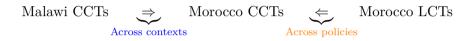
– Policy A in context X \Leftarrow **Policy B** in context X

- Do two extrapolations result in different predictions?
 - No theory & limited empirical evidence
 - Comparative analysis using **cash transfer experiments**

Cash transfer experiments

- Conditional cash transfers (CCTs) on school enrollment rates
 - Common version: conditional on regular school attendance
 - Popular anti-poverty policy (e.g. PROGRESA, Bolsa Familia, RPS)
 - Abundant empirical evidence showing **positive effects**
- Varying cost-effectiveness across programs
 - Heterogeneity in effect size Effect size by transfer amount
- Data: two RCTs in Malawi & Morocco
 - CCTs implemented in both RCTs
 - "Unconditional" cash transfers in Moroccan RCT

Overview



- Predict average effect of Moroccan CCTs on school enrollment rates
 - CCTs: cash transfers if school attendance > threshold
 - LCTs: cash transfers $\perp\!\!\!\perp$ school attendance
- Compare predictions with actual treatment effect estimate
 - Predictions via **standard** method (Data-driven vs Structural)
 - Predictions via **same** method (Structural vs Structural)
- Identify source of prediction differences through structural model

Preview of findings

- Moroccan LCTs make more accurate predictions than Malawi CCTs
 - Estimated effect = 5.7 ppt: 5.9 ppt vs 21.2 ppt
 - Statistically significant difference only for across-contexts
 - Relative performance unchanged when using same method
- (Perceived) returns to schooling explain prediction differences
 - Key parameters in schooling decisions: cost today vs return tomorrow
 - Estimated cost of schooling: similar for same policy
 - Estimated returns to schooling: similar for same context
 - Discussion on varying perceived returns to schooling across contexts

Contributions to literature

- Empirical investigation of out-of-sample predictions
 - Pritchett and Sandefur (2015); Gechter et al. (2018)
 - Prediction performance of across-policies extrapolation
 - Comparative analysis of two extrapolation approaches
- Structural estimation with RCTs in development economics
 - Todd and Wolpin (2006); Attanasio et al. (2012)
 - Identification of flexible model about schooling
- New identification of dynamic discrete choice model
 - Scott (2014); Kalouptsidi et al. (2021)
 - No rational expectations assumption
 - First application to schooling decisions

Two cash transfer experiments

- Malawi (Baird et al., 2011)
 - Treatment: CCTs
 - Target: girls at secondary school ages (13 22 years old)
 - Teenage pregnancy & marriage as main driver of dropout
- Morocco (Benhassine et al., 2015)
 - Treatment: CCTs and LCTs (Labeled Cash Transfers)
 - Target: boys and girls at primary school ages (6 15 years old)
 - $-\,$ Various reasons to drop out: school quality, financially, domestic work
 - LCTs \neq UCTs due to **endorsement effects**

Summary statistics

Treatment effect estimates on school enrollment rates

	Malawi	Mor	0000
	CCTs	CCTs	LCTs
Treatment	0.0369^{*}	0.0567^{***}	0.0726***
	(0.0200)	(0.0106)	(0.0107)
Control mean	0.896***	0.894^{***}	0.893***
	(0.0154)	(0.00951)	(0.00833)
Obs.	1490	4982	3018

*** p<0.01 ** p<0.05 * p<0.1

- Estimated effects greater (not statistically)
 - $-\,$ for LCTs within contexts
 - for Morocco within policies

Across-context: linear projection

- Heterogeneous treatment effect approach
 - 1. Estimate linear regression with Malawi CCTs data

$$d_i = W'_i \beta^{\text{HTE}} + \beta_0^{\text{HTE}} \text{Treatment}_i + \sum_{k=1}^K \gamma_k^{\text{HTE}} \text{Treatment}_i \times w_{ik} + \omega_i$$

- 2. Predict d_i in Moroccan CCTs data using estimated linear model
- 3. Estimate treatment effect via OLS

$$\hat{d}_i = \alpha_0^{\text{HTE}} + \alpha_1^{\text{HTE}} \text{Treatment}_i + \text{Stratum}_i + \nu_i^{\text{HTE}}$$

- $W_i = (age, education, per-capita income, school costs, transfer amount)$
- Key assumption: cond. on W_i , potential outcomes $\perp \perp$ contexts

Propensity score weighting

Across-policies: dynamic model of schooling

- Child i makes binary schooling decisions over finite time horizon
 - Schooling $(d_i = 1)$: pay school costs (s_i) , add 1 year of education
 - Non-schooling $(d_i = 0)$: consume (per-capita) income (y_i)
 - Flow utility function: $u(c) = \theta \ln(c_i)$
- At terminal period T, child receives lump-sum returns

- Returns are a function of education: $R_i = R(e_{i,T}) = R\left(e_{i,t} + \sum_{\tau=t}^{T-1} d_{i,\tau}\right)$

- Cash transfers (z_i) relax budget constraints exogenously
 - Budget constraint: $c_i = y_i d_i \times s_i$
 - CCTs lower school costs: $s_i = s_i z_i$ if *i* in treatment group
 - LCTs increase income: $y_i = y_i + z_i$ if *i* in treatment group

▶ Formal representation

Prediction with $\theta \& R(e_{i,T})$

• Predict prob. of schooling under Moroccan CCTs

$$\hat{P}\left(d=1|e_{i,2}, y_{i,2}, s_{i,2}\right) = \frac{\exp\left(\hat{\theta}\ln\left(\frac{y_{i,2}-s_{i,2}}{y_{i,2}}\right) + \beta\widehat{\Delta R}\left(e_{i,2}\right)\right)}{1 + \exp\left(\hat{\theta}\ln\left(\frac{y_{i,2}-s_{i,2}}{y_{i,2}}\right) + \beta\widehat{\Delta R}\left(e_{i,2}\right)\right)}$$

• Estimate treatment effect via OLS

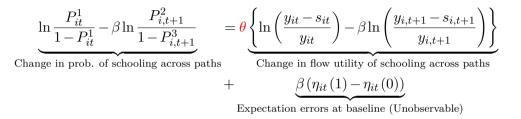
$$\hat{P}(d=1|e_{i,2}, y_{i,2}, s_{i,2}) = \delta_1 + \delta_2 \operatorname{Treatment}_i + \operatorname{Stratum}_i + \nu_i$$

Structural estimation: sketch

- 1. Compute probability of schooling in all possible state values
 - Frequency estimator or **parametric to smooth across states**
- 2. Consider two hypothetical paths for each individual
 - (Baseline, Midline) = (Schooling, Non-schooling), (Non-schooling, Schooling)
 - Same years of education in next period after Midline
 - Continuation values after Midline fixed
- 3. Compare changes in probability of schooling across these paths
 - Differences only in flow utilities between Baseline and Midline
 - Δ in prob $\Leftrightarrow \Delta$ in flow utility, shifted by cash transfers
 - Size of Δ in flow utility different across CCTs and LCTs

 \blacktriangleright Formal derivation

Identification of θ using cash transfers



- Endogeneity: **expectation errors correlated with income levels** - e.g.) information friction, ability to forecast
- **Treatment assignment** as an IV
 - Relevance: cash transfers (only) shift school costs (\downarrow) or income (\uparrow)
 - Exclusion: assignment \perp baseline expectation

Identification of R(e;x)

- Identification of terminal payoffs depends on time horizon
- Set terminal period at one period after Midline (T = 3)
- Expand prob. of schooling at Midline (t=2)

$$\underbrace{\ln \frac{P_{i,2}^1}{1 - P_{i,2}^1}}_{\text{Odds of schooling}} = \underbrace{\theta \ln \left(\frac{y_{i,2} - s_{i,2}}{y_{i,2}}\right)}_{\text{Flow utility of schooling}} + \beta \underbrace{\left(\frac{R\left(e_{i,2} + 1; x_{i,2}\right) - R\left(e_{i,2}; x_{i,2}\right)}{\equiv \Delta R\left(e_{i,2}; x_{i,2}\right)}\right)}_{\equiv \Delta R\left(e_{i,2}; x_{i,2}\right)}$$

- $\Delta R(e_{i,2}; x_{i,2})$: Perceived relative returns to schooling
 - Schooling unexplained by contemporaneous effects of cash transfers
 - Consequences of schooling decisions after RCTs
 - Heterogenous across state values

Across-contexts (reduced-form) vs Across-policies (structural)

	Target	Across-contexts	Across-policies
Treatment	0.0567^{***}	0.212^{***}	0.0590^{***}
	(0.0106)	(0.00442)	(0.00545)
Control mean	0.894^{***}	1.127^{***}	0.941***
	(0.00951)	(0.00373)	(0.00531)
Obs.	4982	4982	4982
= Target TE		0.000	0.674
= Target control mean		0.000	0.000

- Across-contexts: significantly overpredict
- Across-policies: numerically and statistically accurate

• Linear vs Reweighting

Across-contexts (structural) vs Across-policies (structural)

	Target	Across-contexts	Across-policies
Treatment	0.0567^{***}	0.0431^{***}	0.0590^{***}
	(0.0106)	(0.00465)	(0.00545)
Control mean	0.894^{***}	0.702***	0.941^{***}
	(0.00951)	(0.00390)	(0.00531)
Obs.	4982	4982	4982
= Target TE		0.004	0.674
= Target control mean		0.000	0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Across-contexts: slightly but statistically significantly underpredict

• How to extrapolate $\Delta R(e; x)$ • Why improvement via structural method?

Comparison of θ and $\Delta R(e; x)$

- Comparative analysis at model parameter level
 - Structural model estimated for each intervention (including Moroccan CCTs)
 - Comparison of parameter estimates across interventions
 - Identification of varying DGP if model is true Check model fit
- Two parameters that determine schooling decisions
 - Flow utility cost of schooling: $\theta \ln(y d \times s)$
 - Perceived relative returns to schooling: $\Delta R(e;x)$

Comparison of θ

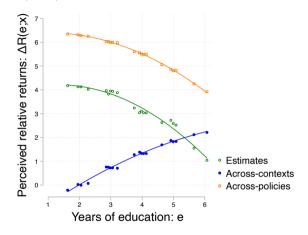
	Malawi	Morocco	
	CCTs	CCTs	LCTs
θ	1.008^{***}	2.670^{***}	38.90^{***}
	(0.256)	(0.454)	(11.30)
Obs.	1479	4981	3016
1st stage F statistics	113.011	3843.510	25.483
$= target \theta$	0.000		0.001

Note: I report the Kleiberge-Paap F statistics for weak identification. *** p<0.01 ** p<0.05 * p<0.1

• Numerically closer estimates if same policy

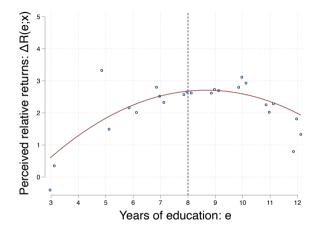
Compare elasticity Replace with estimated values

Comparison of $\Delta R(e;x)$



- Estimate of $\Delta R(e;x)$: downward sloping due to increasing opportunity costs
- $\Delta R(e;x)$ from Moroccan LCTs: parallel to target values
- $\Delta R(e;x)$ from Malawi CCTs: opposite direction

Why extrapolation of $\Delta R(e; x)$ from Malawi CCTs wrong?



- Increase during primary education
- Start decreasing at which school dropout becomes more realistic
- Naive extrapolation: use increasing part to predict in target context

What explains variation in perceived returns across contexts?

- Perceived relative returns to schooling are key for prediction accuracy
 - Negative correlation bet. estimates and extrapolation across contexts
- To what extent differences in $\Delta R(e; x)$ explained by observables?
 - 1. Normalize years of education of Malawi sample
 - 2. Restrict sample by age and sex

Normalization of years of education

	Target	A	cross-context	ts
Treatment	0.0567^{***}	0.0431^{***}	0.0150^{***}	0.0147^{***}
	(0.0106)	(0.00465)	(0.000788)	(0.00265)
Control mean	0.894^{***}	0.702***	0.903***	0.875^{***}
	(0.00951)	(0.00390)	(0.000674)	(0.00221)
Obs.	4982	4982	4982	4982
Normalization			\checkmark	\checkmark
Sample restriction				\checkmark
= Target TE		0.004	0.000	0.000
= Target control mean		0.000	0.000	0.000

- Extrapolation using decreasing part of $\Delta R(e;x)$
- Treatment effect still underpredicted (while overall prediction improved)

Heterogeneity by sex of Moroccan sample

	Tai	rget	Across-contexts		
	Boys	Girls	Boys	Girls	
Treatment	0.0479^{***}	0.0681^{***}	0.0151^{***}	0.0148***	
	(0.0130)	(0.0144)	(0.00109)	(0.00129)	
Control mean	0.912^{***}	0.871^{***}	0.902***	0.903***	
	(0.0115)	(0.0129)	(0.000913)	(0.00112)	
Obs.	2666	2313	2666	2313	
= Target TE			0.000	0.000	
= Target control mean			0.000	0.000	

- Prediction separately by sex of Moroccan sample
- No additional improvement

Heterogeneity by age for Malawi Sample

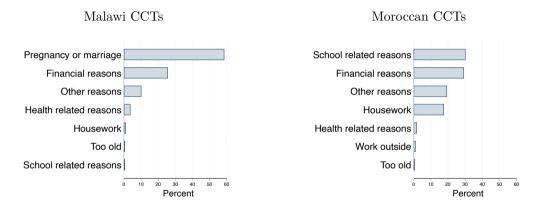
	Tai	rget	Across-contexts		
	Boys	Girls	Boys	Girls	
Treatment	0.0479^{***}	0.0681^{***}	0.00376^{***}	0.00402^{***}	
	(0.0130)	(0.0144)	(0.000254)	(0.000318)	
Control mean	0.912^{***}	0.871^{***}	0.980***	0.980***	
	(0.0115)	(0.0129)	(0.000211)	(0.000270)	
Obs.	2666	2313	2666	2313	
= Target TE			0.000	0.000	
= Target control mean			0.000	0.000	

- Prediction based on young Malawi sample (age < 17)
- No additional improvement

Plausible explanations for no improvement

- 1. Two Moroccan cash transfers are more alike than two CCTs ATE estimates
 - Endorsement effects Within-intervention variation
 - Confusion about conditionality of Moroccan CCTs Under perfect knowledge
- 2. Outside options are different across contexts
 - $-\Delta R(e;x)$ represents returns relative to outside options
 - Suggestive evidence by looking at primary reasons for school dropout

Varying outside options across contexts



- Primary reasons for dropout differ across contexts
- Differential consequences of non-schooling

Conclusion

- When across-contexts extrapolation does not work, what can we do?
 - Status-quo approach in out-of-sample predictions
 - Empirical evidence on limitation of across-contexts extrapolation
- This paper sheds light on potentials of across-policies extrapolation
 - Similar policy that resembles how target policy works
 - Cash transfers w/o regular school attendance for CCTs
 - Proof-of-concept analysis but relevant beyond CCTs
- Across-policies dominates across-contexts due to perceived returns to schooling
 - Perceived returns to schooling more context-dependent
 - Suggestive explanations: endorsement effects & outside options

Extensions

- 1. Can we generalize empirical findings in this paper?
 - Three ways to generalize: contexts, policies, and methods
 - Conditions for better predictions via across-policies extrapolation
- 2. What features are must-have for accurate predictions?
 - WTP for precise estimates of policy effects (e.g. Hjort et al. 2021)
 - Policy designs useful for future predictions
 - Any unintended consequences of such designs?
- 3. Can we aggregate evidence from multiple policies?
 - Recent development on aggregation for same policies (Meager, 2019, 2022)
 - e.g.) Better predictions by using Malawi CCTs and Moroccan LCTs?

Thank you very much! Feel free to email your comments! kensukemaeba2022@u.northwestern.edu

References I

- Attanasio, Orazio P., Costas Meghir, and Ana Santiago. 2012. "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA." *The Review of Economic Studies* 79 (1): 37–66. 10.1093/restud/rdr015.
- Baird, Sarah, Francisco HG Ferreira, Berk Özler, and Michael Woolcock. 2014. "Conditional, Unconditional and Everything in between: A Systematic Review of the Effects of Cash Transfer Programmes on Schooling Outcomes." *Journal of Development Effectiveness* 6 (1): 1–43.
- Baird, Sarah, Craig McIntosh, and Berk Özler. 2011. "Cash or Condition? Evidence from a Cash Transfer Experiment." *The Quarterly journal of economics* 126 (4): 1709–1753.
- Benhassine, Najy, Florencia Devoto, Esther Duflo, Pascaline Dupas, and Victor Pouliquen. 2015. "Turning a Shove into a Nudge? A "Labeled Cash Transfer" for Education." American Economic Journal: Economic Policy 7 (3): 86–125. 10.1257/pol.20130225.

References II

- Gechter, Michael, Cyrus Samii, Rajeev Dehejia, and Cristian Pop-Eleches. 2018. "Evaluating Ex Ante Counterfactual Predictions Using Ex Post Causal Inference." arXiv preprint arXiv:1806.07016.
- Hjort, Jonas, Diana Moreira, Gautam Rao, and Juan Francisco Santini. 2021. "How Research Affects Policy: Experimental Evidence from 2,150 Brazilian Municipalities." *American Economic Review* 111 (5): 1442–1480. 10.1257/aer.20190830.
- Kalouptsidi, Myrto, Paul T. Scott, and Eduardo Souza-Rodrigues. 2021.
 "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models." *Journal of Econometrics* 222 (1): 778–804.
 10.1016/j.jeconom.2020.03.016.
- Meager, Rachael. 2019. "Understanding the Average Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Experiments." American Economic Journal: Applied Economics 11 (1): 57–91. 10.1257/app.20170299.

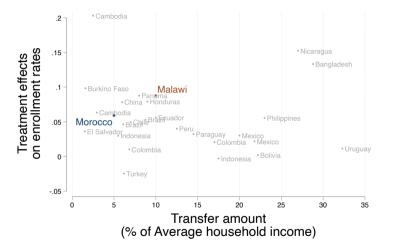
References III

- Meager, Rachael. 2022. "Aggregating Distributional Treatment Effects: A Bayesian Hierarchical Analysis of the Microcredit Literature." American Economic Review 112 (6): 1818–1847. 10.1257/aer.20181811.
- Pritchett, Lant, and Justin Sandefur. 2015. "Learning from Experiments When Context Matters." *American Economic Review* 105 (5): 471–475. 10.1257/aer.p20151016.
- Scott, Paul. 2014. "Dynamic Discrete Choice Estimation of Agricultural Land Use."
- Stuart, Elizabeth A., Stephen R. Cole, Catherine P. Bradshaw, and Philip J. Leaf. 2011. "The Use of Propensity Scores to Assess the Generalizability of Results from Randomized Trials: Use of Propensity Scores to Assess Generalizability." Journal of the Royal Statistical Society: Series A (Statistics in Society) 174 (2): 369–386. 10.1111/j.1467-985X.2010.00673.x.

References IV

Todd, Petra E, and Kenneth I Wolpin. 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility." American Economic Review 96 (5): 1384–1417. 10.1257/aer.96.5.1384.

Collection of CCTs effect estimates



Source: Baird et al. (2014)

Back

Summary statistics at baseline

	Malawi		Morocco		
	Control	CCTs	Control	CCTs	LCTs
= 1 if enrollment	1.000	1.000	0.909	0.921	0.920^{*}
Years of education	8.046	7.960	2.755	2.776^{*}	2.764
Per-capita income (in 100 USD)	1.173	1.571	5.368	5.335	5.345
School costs (in 100 USD)	0.123	0.124	0.213	0.212	0.212
Cash transfers (in 100 USD)	NA	1.006	NA	1.054	1.057
=1 if girls	1.000	1.000	0.448	0.471^{*}	0.486^{**}
Age	14.964	14.740	9.889	9.910	9.912
Obs.	1145	412	1276	3706	1740
Joint F-test		0.153		0.250	0.106

▶ Back

Discussion on LCTs vs CCTs in Morocco

- Why LCTs and CCTs comparable?
 - 1. Endorsement effect driving cash transfer effects
 - 2. CCTs misperceived as unconditional
- Why LCTs more effective than CCTs?
 - LCTs compliers: children not confident about regular school attendance
- Do Moroccan CCTs differ from Malawi CCTs?
 - Endorsement effect attached to Malawi CCTs
 - Conditionality correctly understood in Malawi CCTs

Across-context: Reweighting

- Propensity score weighting (Stuart et al., 2011)
 - 1. Pool Malawi and Moroccan data
 - 2. Estimate propensity score of being in Malawi data via logit

 $\mathbf{1}\left\{i \in \text{Malawi CCTs}\right\} = W_i'\beta^{\text{PSW}} + \beta_0^{\text{PSW}}\text{Treatment}_i + u_i$

3. Estimate ATE with Malawi data reweighted by inverse of propensity score

$$d_i = \alpha_0^{\text{PSW}} + \alpha_1^{\text{PSW}} \text{Treatment}_i + \text{Stratum}_i + \nu_i^{\text{PSW}}$$

- $W_i = (age, education, per-capita income, school costs, transfer amount)$
- Key assumption: cond. on W_i , potential outcomes $\perp \perp$ contexts Back

$$\max_{\{d_{i\tau}\}_{\tau=t}^{T-1}} E\left[\sum_{\tau=t}^{T-1} \beta^{\tau-t} \{\theta \ln(c_{i\tau}) + \varepsilon_{i\tau}(d_{i\tau})\} + \beta^{T-t} R(e_{i,T}; x_{i,T}) |\Omega_{i\tau}\right]$$

s.t. $c_{i\tau} = y_{i\tau} - d_{i\tau} s_{i\tau}$
 $e_{i\tau} = e_{i,\tau-1} + d_{i,\tau-1}$

- State variables How to construct
 - e_{it} : Years of education
 - y_{it} : Per-capita income
 - s_{it} : School costs
 - ε_{it} : Preference shocks
 - $\ \Omega = \{e,y,s,\varepsilon\}$
- Parametric assumptions
 - Discount factor: $\beta = 0.95$
 - Preference shocks: $\varepsilon \sim$ Type 1 extreme value, i.i.d across (t, i, d)

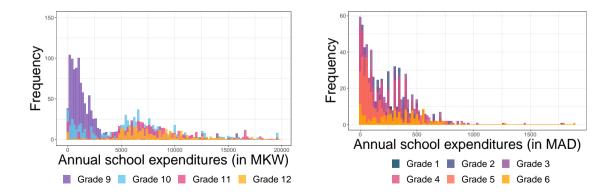
Variables construction

- Directly observe in data: (e_{it}, d_{it}, z_{it})
- Per-capita income: y_{it}
 - Income is unobserved or measured with errors
 - Use annual household expenditures
 - Divide by household size adjusted by OECD equivalence scale
 - If in LCTs, add cash transfer amount
- School costs: s_{it}
 - School costs that parents have to pay upfront
 - Use annual expenditures on school related stuff
 - Take median for schooling children in control group for each grade
 - If in CCTs, subtract cash transfer amount

Distribution of school costs

Malawi: secondary school

Morocco: primary school



Structural estimation: HM inversion

• Rewrite choice prob. at baseline using HM inversion • How to estimate CCP

$$\ln \underbrace{\frac{P(d=1|e_{it}, x_{it})}{P(d=0|e_{it}, x_{it})}}_{\text{Odds of schooling}} = \underbrace{v(e_{it}, x_{it}, 1) - v(e_{it}, x_{it}, 0)}_{\text{Differences in conditional value functions}}$$

• Expand continuation values at baseline (Scott, 2014; Kalouptsidi et al., 2021)

$$v(e_{it}, x_{it}, d) = \theta \ln (y_{it} - d \times s_{it}) + \beta E_x \left[\overline{V}(e_{i,t+1}, x_{i,t+1} : \theta) | e_{it}, x_{it}, d \right]$$
$$= \underbrace{\theta \ln (y_{it} - d \times s_{it})}_{\text{Flow utility}} + \beta \left(\underbrace{\overline{V}(e_{i,t+1}, x_{i,t+1} : \theta)}_{\text{Realized value function}} + \underbrace{\eta_{it}(d)}_{\text{Expectation errors}} \right)$$

Structural estimation: finite dependence

• Specify decisions after intervention to have $e_{i,t+2} = e_{i,t} + 1$ for everyone

$$\overline{V}(e_{i,t+1}, x_{i,t+1}:\theta) = \begin{cases} v(e_{it}+1, x_{i,t+1}, 0) + \gamma - \ln P(d=0|e_{it}+1, x_{i,t+1}) & \text{if } d_{it} = 1 \\ v(e_{it}, x_{i,t+1}, 1) + \gamma - \ln P(d=1|e_{it}, x_{i,t+1}) & \text{if } d_{it} = 0 \end{cases}$$

• Eliminate continuation values after intervention

$$v(e_{it}+1, x_{i,t+1}, 0) = \theta \ln(y_{i,t+1}) + \beta E_x \left[\overline{V}(e_{it}+1, x_{i,t+2}:\theta) | x_{i,t+1} \right]$$
$$v(e_{it}, x_{i,t+1}, 1) = \theta \ln(y_{i,t+1} - s_{i,t+1}) + \beta E_x \left[\overline{V}(e_{it}+1, x_{i,t+2}:\theta) | x_{i,t+1} \right].$$

• Substitute back to HM inversion

Back

CCP estimation

- Estimate probability of schooling at each state value
 - Needed to construct dependent variable in 2SLS regression
- Smooth probabilities across states by using a flexible logit
 - Ideally frequency estimates for each state
 - Practically no variation for some states
- Choose MLE or GMM to replicate treatment effects at this stage

Back

Robustness to how to extrapolate across contexts

		Across-c	ontexts
	Target	HTE	PSW
Treatment	0.0567^{***}	0.212^{***}	0.00660
	(0.0106)	(0.00442)	(0.0184)
Control mean	0.894^{***}	1.127^{***}	0.895***
	(0.00951)	(0.00373)	(0.0128)
Obs.	4982	4982	1490
= Target TE		0.000	0.007
= Target control mean		0.000	0.927

Note: *** p<0.01 ** p<0.05 * p<0.1

Robustness to how to extrapolate $\Delta R(e;x)$

		Across-contexts		Across-policies	
	Target	Linear	RF	Linear	RF
Treatment	0.0567^{***}	0.0431^{***}	0.0412^{***}	0.0590^{***}	0.0577^{***}
	(0.0106)	(0.00465)	(0.00644)	(0.00545)	(0.00542)
Control mean	0.894^{***}	0.702^{***}	0.676^{***}	0.941^{***}	0.942^{***}
	(0.00951)	(0.00390)	(0.00556)	(0.00531)	(0.00529)
Obs.	4982	4982	4982	4982	4982
= Target TE		0.004	0.016	0.674	0.863
= Target control mean		0.000	0.000	0.000	0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

▶ Back

Comparison of extrapolation methods

		Across-contexts			
	Target	H	ГЕ	Р	SW
Treatment	0.0567^{***}	0.212^{***}	0.0308***	0.00660	-0.0459**
	(0.0106)	(0.00442)	(0.00421)	(0.0184)	(0.0202)
Control mean	0.894^{***}	1.127^{***}	1.111^{***}	0.895^{***}	1.000^{***}
	(0.00951)	(0.00373)	(0.00367)	(0.0128)	(0.00221)
Obs.	4982	4982	4982	1490	1490
= Target TE		0.000	0.000	0.007	0.000
= Target control mean		0.000	0.000	0.927	0.000
Normalization of s, y, z			\checkmark		\checkmark

Note: *** p<0.01 ** p<0.05 * p<0.1

- Structural: school costs & cash transfers relative to per-capita income
- Across-contexts using relative values in reduced-form not improved

 $\blacktriangleright \operatorname{Back}$

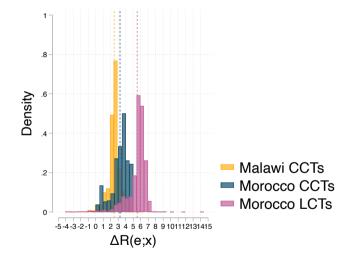
Estimates of elasticity of schooling

	Malawi	Morocco		
	CCTs	CCTs	LCTs	
$E\left[\frac{\partial P_{i,2}^1}{\partial z_{i,2}}\frac{z_{i,2}}{P_{i,2}^1}\right]$	0.185	0.332	0.142	

- $E\left[\frac{\partial P_{i,2}^1}{\partial z_{i,2}}\frac{z_{i,2}}{P_{i,2}^1}\right]$: average elasticity of schooling w.r.t cash transfers
- Across-contexts: difference in effective size of cash transfer
- Across-policies: substitution effects

▶ Back

Estimates of $\Delta R_i(e;x)$



• Dashed lines indicate $E[\Delta R(e;x)]$ under each experiment

Model fit

	Malawi	Morocco	
	CCTs	CCTs	LCTs
Treatment	0.0317^{***}	0.0554^{***}	0.0539^{***}
	(0.00495)	(0.00777)	(0.00954)
Control mean	0.895^{***}	0.894^{***}	0.900***
	(0.00241)	(0.00747)	(0.00889)
Obs.	1490	4982	3018
= Target TE	0.290	0.869	0.051
= Target control mean	0.721	0.981	0.476

Note: *** p<0.01 ** p<0.05 * p<0.1

• Back

Extrapolation from Malawi CCTs with true θ or $\Delta R(e; x)$

	Target	A	cross-contex	ts
Treatment	0.0567^{***}	0.0431^{***}	0.0953***	0.0367***
	(0.0106)	(0.00465)	(0.00486)	(0.00721)
Control mean	0.894^{***}	0.702^{***}	0.688^{***}	0.901***
	(0.00951)	(0.00390)	(0.00411)	(0.00689)
Obs.	4982	4982	4982	4982
Replace θ			\checkmark	
Replace $\Delta R(e;x)$				\checkmark
= Target TE		0.004	0.000	0.006
= Target control mean		0.000	0.000	0.276

Note: *** p<0.01 ** p<0.05 * p<0.1

Within-intervention variation of $\Delta R(e;x)$

	$E\left[\theta \ln\left(y-s/y\right)\right]$		$E\left[\beta\Delta R\left(e;x ight) ight]$	
	Control	Treatment	Control	Treatment
Malawi CCTs	-0.292	0.594^{***}	2.526	2.373^{*}
Morocco CCTs	-0.117	0.409^{***}	3.045	3.085
Morocco LCTs	-1.706	-1.390^{***}	5.109	5.383^{***}

*** p<0.01 ** p<0.05 * p<0.1 for difference across groups in each intervention.

- Within-intervention variation affects prediction of treatment effect
- Malawi CCTs: $\Delta R(e; x)$ smaller for treatment group
 - Children with lower perceived returns to choose schooling
- Moroccan CCTs: $\Delta R(e; x)$ larger for treatment group (if anything)
 - Same pattern for Moroccan LCTs

Reduced-form extrapolation with normalization

		Across-contexts			
	Target	Structural	HTE	PSW	
Treatment	0.0567^{***}	0.0150^{***}	0.0352^{***}	0.0655^{***}	
	(0.0106)	(0.000788)	(0.00346)	(0.0140)	
Control mean	0.894^{***}	0.903***	0.894^{***}	0.920***	
	(0.00951)	(0.000674)	(0.00302)	(0.0112)	
Obs.	4982	4982	4982	1490	
= Target TE		0.000	0.000	0.534	
= Target control mean		0.000	0.833	0.022	

Note: *** p<0.01 ** p<0.05 * p<0.1

• HTE & PSW: s/y, z/y & standardized e and age

Confusion about conditionality of Moroccan CCTs

- Moroccan CCTs sample largely misunderstood conditionality
 - -11% understood conditionality correctly
 - 14% thought CCTs were tied to school enrollment
 - More similar to Moroccan LCTs than Malawi CCTs
- If perfect understanding, across-contexts extrapolation more accurate?
- Compute counterfactual effect of Moroccan CCTs with no confusion
 - Estimate model under Moroccan CCTs with degree of confusion
 - Simulate model by assuming perfect knowledge

	Estimation		Across-contexts	Across-policies	
	Original	Counterfactual	Linear	Linear	
Treatment	0.0567^{***}	0.122^{***}	0.0431^{***}	0.0590^{***}	
	(0.0106)	(0.00836)	(0.00465)	(0.00545)	
Control mean	0.894^{***}	0.868^{***}	0.702^{***}	0.941***	
	(0.00951)	(0.00814)	(0.00390)	(0.00531)	
Obs.	4982	4982	4982	4982	
= Target TE			0.000	0.000	
= Target control mean			0.000	0.000	

Note: *** p<0.01 ** p<0.05 * p<0.1

- Treatment effect becomes bigger under perfect knowledge
- Both extrapolations are statistically different from estimate

