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Two extrapolation approaches

• Evidence-based policymaking is challenging
– External validity not always guaranteed
– From which evidence to extrapolate?

1. Extrapolation across contexts (within policies)
– Policy A in context X ⇐ Policy A in context Y

2. Extrapolation across policies (within contexts)
– Policy A in context X ⇐ Policy B in context X

• Do two extrapolations result in different predictions?
– No theory & limited empirical evidence
– Comparative analysis using cash transfer experiments



Cash transfer experiments

• Conditional cash transfers (CCTs) on school enrollment rates
– Common version: conditional on regular school attendance
– Popular anti-poverty policy (e.g. PROGRESA, Bolsa Familia, RPS)
– Abundant empirical evidence showing positive effects

• Varying cost-effectiveness across programs
– Heterogeneity in effect size Effect size by transfer amount

• Data: two RCTs in Malawi & Morocco
– CCTs implemented in both RCTs
– “Unconditional” cash transfers in Moroccan RCT



Overview

Malawi CCTs ⇒︸︷︷︸
Across contexts

Morocco CCTs ⇐︸︷︷︸
Across policies

Morocco LCTs

• Predict average effect of Moroccan CCTs on school enrollment rates
– CCTs: cash transfers if school attendance > threshold
– LCTs: cash transfers ⊥⊥ school attendance

• Compare predictions with actual treatment effect estimate
– Predictions via standard method (Data-driven vs Structural)
– Predictions via same method (Structural vs Structural)

• Identify source of prediction differences through structural model



Preview of findings

• Moroccan LCTs make more accurate predictions than Malawi CCTs
– Estimated effect = 5.7 ppt: 5.9 ppt vs 21.2 ppt
– Statistically significant difference only for across-contexts
– Relative performance unchanged when using same method

• (Perceived) returns to schooling explain prediction differences
– Key parameters in schooling decisions: cost today vs return tomorrow
– Estimated cost of schooling: similar for same policy
– Estimated returns to schooling: similar for same context
– Discussion on varying perceived returns to schooling across contexts



Contributions to literature

• Empirical investigation of out-of-sample predictions
– Pritchett and Sandefur (2015); Gechter et al. (2018)
– Prediction performance of across-policies extrapolation
– Comparative analysis of two extrapolation approaches

• Structural estimation with RCTs in development economics
– Todd and Wolpin (2006); Attanasio et al. (2012)
– Identification of flexible model about schooling

• New identification of dynamic discrete choice model
– Scott (2014); Kalouptsidi et al. (2021)
– No rational expectations assumption
– First application to schooling decisions



Two cash transfer experiments

• Malawi (Baird et al., 2011)
– Treatment: CCTs
– Target: girls at secondary school ages (13 - 22 years old)
– Teenage pregnancy & marriage as main driver of dropout

• Morocco (Benhassine et al., 2015)
– Treatment: CCTs and LCTs (Labeled Cash Transfers)
– Target: boys and girls at primary school ages (6 - 15 years old)
– Various reasons to drop out: school quality, financially, domestic work
– LCTs 6= UCTs due to endorsement effects

Summary statistics



Treatment effect estimates on school enrollment rates

Malawi Morocco

CCTs CCTs LCTs
Treatment 0.0369∗ 0.0567∗∗∗ 0.0726∗∗∗

(0.0200) (0.0106) (0.0107)

Control mean 0.896∗∗∗ 0.894∗∗∗ 0.893∗∗∗
(0.0154) (0.00951) (0.00833)

Obs. 1490 4982 3018
*** p<0.01 ** p<0.05 * p<0.1

• Estimated effects greater (not statistically)
– for LCTs within contexts
– for Morocco within policies

Why LCTs more effective? Back



Across-context: linear projection

• Heterogeneous treatment effect approach
1. Estimate linear regression with Malawi CCTs data

di =W ′iβ
HTE +βHTE

0 Treatmenti+
K∑
k=1

γHTE
k Treatmenti×wik+ωi

2. Predict di in Moroccan CCTs data using estimated linear model
3. Estimate treatment effect via OLS

d̂i = αHTE
0 +αHTE

1 Treatmenti+Stratumi+νHTE
i

• Wi = (age, education, per-capita income, school costs, transfer amount)

• Key assumption: cond. on Wi, potential outcomes ⊥⊥ contexts
Propensity score weighting



Across-policies: dynamic model of schooling

• Child i makes binary schooling decisions over finite time horizon
– Schooling (di = 1): pay school costs (si), add 1 year of education
– Non-schooling (di = 0): consume (per-capita) income (yi)
– Flow utility function: u(c) = θ ln(ci)

• At terminal period T , child receives lump-sum returns
– Returns are a function of education: Ri =R (ei,T ) =R

(
ei,t+

∑T−1
τ=t di,τ

)
• Cash transfers (zi) relax budget constraints exogenously

– Budget constraint: ci = yi−di×si
– CCTs lower school costs: si = si−zi if i in treatment group
– LCTs increase income: yi = yi+zi if i in treatment group

Formal representation



Prediction with θ & R
(
ei,T

)

• Predict prob. of schooling under Moroccan CCTs

P̂ (d= 1|ei,2,yi,2,si,2) =
exp

(
θ̂ ln

(
yi,2−si,2
yi,2

)
+β∆̂R (ei,2)

)
1 + exp

(
θ̂ ln

(
yi,2−si,2
yi,2

)
+β∆̂R (ei,2)

)
• Estimate treatment effect via OLS

P̂ (d= 1|ei,2,yi,2,si,2) = δ1 + δ2Treatmenti+Stratumi+νi



Structural estimation: sketch

1. Compute probability of schooling in all possible state values
– Frequency estimator or parametric to smooth across states

2. Consider two hypothetical paths for each individual
– (Baseline, Midline) = (Schooling, Non-schooling), (Non-schooling, Schooling)
– Same years of education in next period after Midline
– Continuation values after Midline fixed

3. Compare changes in probability of schooling across these paths
– Differences only in flow utilities between Baseline and Midline
– ∆ in prob ⇔ ∆ in flow utility, shifted by cash transfers
– Size of ∆ in flow utility different across CCTs and LCTs

Formal derivation



Identification of θ using cash transfers

ln P 1
it

1−P 1
it

−β ln
P 2
i,t+1

1−P 3
i,t+1︸ ︷︷ ︸

Change in prob. of schooling across paths

= θ

{
ln
(
yit−sit
yit

)
−β ln

(
yi,t+1−si,t+1

yi,t+1

)}
︸ ︷︷ ︸
Change in flow utility of schooling across paths

+ β (ηit (1)−ηit (0))︸ ︷︷ ︸
Expectation errors at baseline (Unobservable)

• Endogeneity: expectation errors correlated with income levels
– e.g.) information friction, ability to forecast

• Treatment assignment as an IV
– Relevance: cash transfers (only) shift school costs (↓) or income (↑)
– Exclusion: assignment ⊥⊥ baseline expectation



Identification of R (e;x)

• Identification of terminal payoffs depends on time horizon

• Set terminal period at one period after Midline (T = 3)

• Expand prob. of schooling at Midline (t= 2)

ln
P 1
i,2

1−P 1
i,2︸ ︷︷ ︸

Odds of schooling

= θ ln
(
yi,2−si,2
yi,2

)
︸ ︷︷ ︸

Flow utility of schooling

+β (R (ei,2 + 1;xi,2)−R (ei,2;xi,2))︸ ︷︷ ︸
≡∆R(ei,2;xi,2)

• ∆R (ei,2;xi,2) : Perceived relative returns to schooling
– Schooling unexplained by contemporaneous effects of cash transfers
– Consequences of schooling decisions after RCTs
– Heterogenous across state values



Across-contexts (reduced-form) vs Across-policies (structural)

Target Across-contexts Across-policies
Treatment 0.0567∗∗∗ 0.212∗∗∗ 0.0590∗∗∗

(0.0106) (0.00442) (0.00545)

Control mean 0.894∗∗∗ 1.127∗∗∗ 0.941∗∗∗
(0.00951) (0.00373) (0.00531)

Obs. 4982 4982 4982
= Target TE 0.000 0.674
= Target control mean 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Across-contexts: significantly overpredict
• Across-policies: numerically and statistically accurate
Linear vs Reweighting



Across-contexts (structural) vs Across-policies (structural)

Target Across-contexts Across-policies
Treatment 0.0567∗∗∗ 0.0431∗∗∗ 0.0590∗∗∗

(0.0106) (0.00465) (0.00545)

Control mean 0.894∗∗∗ 0.702∗∗∗ 0.941∗∗∗
(0.00951) (0.00390) (0.00531)

Obs. 4982 4982 4982
= Target TE 0.004 0.674
= Target control mean 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Across-contexts: slightly but statistically significantly underpredict
How to extrapolate ∆R(e;x) Why improvement via structural method?



Comparison of θ and ∆R (e;x)

• Comparative analysis at model parameter level
– Structural model estimated for each intervention (including Moroccan CCTs)
– Comparison of parameter estimates across interventions
– Identification of varying DGP if model is true Check model fit

• Two parameters that determine schooling decisions
– Flow utility cost of schooling: θ ln(y−d×s)
– Perceived relative returns to schooling: ∆R (e;x)



Comparison of θ

Malawi Morocco

CCTs CCTs LCTs
θ 1.008∗∗∗ 2.670∗∗∗ 38.90∗∗∗

(0.256) (0.454) (11.30)
Obs. 1479 4981 3016
1st stage F statistics 113.011 3843.510 25.483
= target θ 0.000 0.001

Note: I report the Kleiberge-Paap F statistics for weak identifica-
tion. *** p<0.01 ** p<0.05 * p<0.1

• Numerically closer estimates if same policy
Compare elasticity Replace with estimated values



Comparison of ∆R (e;x)
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• Estimate of ∆R (e;x): downward sloping due to increasing opportunity costs
• ∆R (e;x) from Moroccan LCTs: parallel to target values
• ∆R (e;x) from Malawi CCTs: opposite direction



Why extrapolation of ∆R (e;x) from Malawi CCTs wrong?
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• Increase during primary education
• Start decreasing at which school dropout becomes more realistic
• Naive extrapolation: use increasing part to predict in target context



What explains variation in perceived returns across contexts?

• Perceived relative returns to schooling are key for prediction accuracy
– Negative correlation bet. estimates and extrapolation across contexts

• To what extent differences in ∆R (e;x) explained by observables?
1. Normalize years of education of Malawi sample
2. Restrict sample by age and sex



Normalization of years of education
Target Across-contexts

Treatment 0.0567∗∗∗ 0.0431∗∗∗ 0.0150∗∗∗ 0.0147∗∗∗
(0.0106) (0.00465) (0.000788) (0.00265)

Control mean 0.894∗∗∗ 0.702∗∗∗ 0.903∗∗∗ 0.875∗∗∗
(0.00951) (0.00390) (0.000674) (0.00221)

Obs. 4982 4982 4982 4982
Normalization X X
Sample restriction X
= Target TE 0.004 0.000 0.000
= Target control mean 0.000 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Extrapolation using decreasing part of ∆R (e;x)
• Treatment effect still underpredicted (while overall prediction improved)
RF with normalization



Heterogeneity by sex of Moroccan sample

Target Across-contexts

Boys Girls Boys Girls
Treatment 0.0479∗∗∗ 0.0681∗∗∗ 0.0151∗∗∗ 0.0148∗∗∗

(0.0130) (0.0144) (0.00109) (0.00129)

Control mean 0.912∗∗∗ 0.871∗∗∗ 0.902∗∗∗ 0.903∗∗∗
(0.0115) (0.0129) (0.000913) (0.00112)

Obs. 2666 2313 2666 2313
= Target TE 0.000 0.000
= Target control mean 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Prediction separately by sex of Moroccan sample
• No additional improvement



Heterogeneity by age for Malawi Sample

Target Across-contexts

Boys Girls Boys Girls
Treatment 0.0479∗∗∗ 0.0681∗∗∗ 0.00376∗∗∗ 0.00402∗∗∗

(0.0130) (0.0144) (0.000254) (0.000318)

Control mean 0.912∗∗∗ 0.871∗∗∗ 0.980∗∗∗ 0.980∗∗∗
(0.0115) (0.0129) (0.000211) (0.000270)

Obs. 2666 2313 2666 2313
= Target TE 0.000 0.000
= Target control mean 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Prediction based on young Malawi sample (age < 17)
• No additional improvement



Plausible explanations for no improvement

1. Two Moroccan cash transfers are more alike than two CCTs ATE estimates

– Endorsement effects Within-intervention variation

– Confusion about conditionality of Moroccan CCTs Under perfect knowledge

2. Outside options are different across contexts
– ∆R (e;x) represents returns relative to outside options
– Suggestive evidence by looking at primary reasons for school dropout



Varying outside options across contexts

Malawi CCTs
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• Primary reasons for dropout differ across contexts
• Differential consequences of non-schooling



Conclusion

• When across-contexts extrapolation does not work, what can we do?
– Status-quo approach in out-of-sample predictions
– Empirical evidence on limitation of across-contexts extrapolation

• This paper sheds light on potentials of across-policies extrapolation
– Similar policy that resembles how target policy works
– Cash transfers w/o regular school attendance for CCTs
– Proof-of-concept analysis but relevant beyond CCTs

• Across-policies dominates across-contexts due to perceived returns to schooling
– Perceived returns to schooling more context-dependent
– Suggestive explanations: endorsement effects & outside options



Extensions

1. Can we generalize empirical findings in this paper?
– Three ways to generalize: contexts, policies, and methods
– Conditions for better predictions via across-policies extrapolation

2. What features are must-have for accurate predictions?
– WTP for precise estimates of policy effects (e.g. Hjort et al. 2021)
– Policy designs useful for future predictions
– Any unintended consequences of such designs?

3. Can we aggregate evidence from multiple policies?
– Recent development on aggregation for same policies (Meager, 2019, 2022)
– e.g.) Better predictions by using Malawi CCTs and Moroccan LCTs?



Thank you very much! Feel free to email your comments!
kensukemaeba2022@u.northwestern.edu

kensukemaeba2022@u.northwestern.edu
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Collection of CCTs effect estimates
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Summary statistics at baseline

Malawi Morocco

Control CCTs Control CCTs LCTs
= 1 if enrollment 1.000 1.000 0.909 0.921 0.920∗
Years of education 8.046 7.960 2.755 2.776∗ 2.764
Per-capita income (in 100 USD) 1.173 1.571 5.368 5.335 5.345
School costs (in 100 USD) 0.123 0.124 0.213 0.212 0.212
Cash transfers (in 100 USD) NA 1.006 NA 1.054 1.057
=1 if girls 1.000 1.000 0.448 0.471∗ 0.486∗∗
Age 14.964 14.740 9.889 9.910 9.912
Obs. 1145 412 1276 3706 1740
Joint F-test 0.153 0.250 0.106

Back



Discussion on LCTs vs CCTs in Morocco

• Why LCTs and CCTs comparable?
1. Endorsement effect driving cash transfer effects
2. CCTs misperceived as unconditional

• Why LCTs more effective than CCTs?
– LCTs compliers: children not confident about regular school attendance

• Do Moroccan CCTs differ from Malawi CCTs?
– Endorsement effect attached to Malawi CCTs
– Conditionality correctly understood in Malawi CCTs

Back



Across-context: Reweighting

• Propensity score weighting (Stuart et al., 2011)
1. Pool Malawi and Moroccan data
2. Estimate propensity score of being in Malawi data via logit

1{i ∈Malawi CCTs}=W ′iβ
PSW +βPSW

0 Treatmenti+ui

3. Estimate ATE with Malawi data reweighted by inverse of propensity score

di = αPSW
0 +αPSW

1 Treatmenti+Stratumi+νPSW
i .

• Wi = (age, education, per-capita income, school costs, transfer amount)

• Key assumption: cond. on Wi, potential outcomes ⊥⊥ contexts
Back



max
{diτ}T−1

τ=t

E

[
T−1∑
τ=t

βτ−t {θ ln(ciτ ) +εiτ (diτ )}+βT−tR (ei,T ;xi,T ) |Ωiτ

]
s.t. ciτ = yiτ −diτsiτ

eiτ = ei,τ−1 +di,τ−1

• State variables How to construct

– eit : Years of education
– yit : Per-capita income
– sit : School costs
– εit : Preference shocks
– Ω = {e,y,s,ε}

• Parametric assumptions
– Discount factor: β = 0.95
– Preference shocks: ε∼ Type 1 extreme value, i.i.d across (t, i,d)

Back



Variables construction

• Directly observe in data: (eit,dit,zit)

• Per-capita income: yit
– Income is unobserved or measured with errors
– Use annual household expenditures
– Divide by household size adjusted by OECD equivalence scale
– If in LCTs, add cash transfer amount

• School costs: sit
– School costs that parents have to pay upfront
– Use annual expenditures on school related stuff
– Take median for schooling children in control group for each grade
– If in CCTs, subtract cash transfer amount



Distribution of school costs

Malawi: secondary school
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Structural estimation: HM inversion
• Rewrite choice prob. at baseline using HM inversion How to estimate CCP

ln P (d= 1|eit,xit)
P (d= 0|eit,xit)︸ ︷︷ ︸
Odds of schooling

= v (eit,xit,1)−v (eit,xit,0)︸ ︷︷ ︸
Differences in conditional value functions

• Expand continuation values at baseline (Scott, 2014; Kalouptsidi et al., 2021)

v (eit,xit,d) = θ ln(yit−d×sit) +βEx
[
V (ei,t+1,xi,t+1 : θ) |eit,xit,d

]
= θ ln(yit−d×sit)︸ ︷︷ ︸

Flow utility

+β

V (ei,t+1,xi,t+1 : θ)︸ ︷︷ ︸
Realized value function

+ ηit (d)︸ ︷︷ ︸
Expectation errors





Structural estimation: finite dependence

• Specify decisions after intervention to have ei,t+2 = ei,t+ 1 for everyone

V (ei,t+1,xi,t+1 : θ) =
{
v (eit+ 1,xi,t+1,0) +γ− lnP (d= 0|eit+ 1,xi,t+1) if dit = 1
v (eit,xi,t+1,1) +γ− lnP (d= 1|eit,xi,t+1) if dit = 0

• Eliminate continuation values after intervention

v (eit+ 1,xi,t+1,0) = θ ln(yi,t+1) +βEx
[
V (eit+ 1,xi,t+2 : θ) |xi,t+1

]
v (eit,xi,t+1,1) = θ ln(yi,t+1−si,t+1) +βEx

[
V (eit+ 1,xi,t+2 : θ) |xi,t+1

]
.

• Substitute back to HM inversion
Back



CCP estimation

• Estimate probability of schooling at each state value
– Needed to construct dependent variable in 2SLS regression

• Smooth probabilities across states by using a flexible logit
– Ideally frequency estimates for each state
– Practically no variation for some states

• Choose MLE or GMM to replicate treatment effects at this stage
Back



Robustness to how to extrapolate across contexts

Across-contexts

Target HTE PSW
Treatment 0.0567∗∗∗ 0.212∗∗∗ 0.00660

(0.0106) (0.00442) (0.0184)

Control mean 0.894∗∗∗ 1.127∗∗∗ 0.895∗∗∗
(0.00951) (0.00373) (0.0128)

Obs. 4982 4982 1490
= Target TE 0.000 0.007
= Target control mean 0.000 0.927

Note: *** p<0.01 ** p<0.05 * p<0.1

Back



Robustness to how to extrapolate ∆R (e;x)

Across-contexts Across-policies

Target Linear RF Linear RF
Treatment 0.0567∗∗∗ 0.0431∗∗∗ 0.0412∗∗∗ 0.0590∗∗∗ 0.0577∗∗∗

(0.0106) (0.00465) (0.00644) (0.00545) (0.00542)

Control mean 0.894∗∗∗ 0.702∗∗∗ 0.676∗∗∗ 0.941∗∗∗ 0.942∗∗∗
(0.00951) (0.00390) (0.00556) (0.00531) (0.00529)

Obs. 4982 4982 4982 4982 4982
= Target TE 0.004 0.016 0.674 0.863
= Target control mean 0.000 0.000 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

Back



Comparison of extrapolation methods
Across-contexts

Target HTE PSW
Treatment 0.0567∗∗∗ 0.212∗∗∗ 0.0308∗∗∗ 0.00660 -0.0459∗∗

(0.0106) (0.00442) (0.00421) (0.0184) (0.0202)

Control mean 0.894∗∗∗ 1.127∗∗∗ 1.111∗∗∗ 0.895∗∗∗ 1.000∗∗∗
(0.00951) (0.00373) (0.00367) (0.0128) (0.00221)

Obs. 4982 4982 4982 1490 1490
= Target TE 0.000 0.000 0.007 0.000
= Target control mean 0.000 0.000 0.927 0.000
Normalization of s,y,z X X

Note: *** p<0.01 ** p<0.05 * p<0.1

• Structural: school costs & cash transfers relative to per-capita income
• Across-contexts using relative values in reduced-form not improved
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Estimates of elasticity of schooling

Malawi Morocco

CCTs CCTs LCTs

E

[
∂P 1

i,2
∂zi,2

zi,2
P 1
i,2

]
0.185 0.332 0.142

• E
[
∂P 1

i,2
∂zi,2

zi,2
P 1
i,2

]
: average elasticity of schooling w.r.t cash transfers

• Across-contexts: difference in effective size of cash transfer
• Across-policies: substitution effects
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Estimates of ∆Ri (e;x)
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• Dashed lines indicate E [∆R (e;x)] under each experiment



Model fit

Malawi Morocco

CCTs CCTs LCTs
Treatment 0.0317∗∗∗ 0.0554∗∗∗ 0.0539∗∗∗

(0.00495) (0.00777) (0.00954)

Control mean 0.895∗∗∗ 0.894∗∗∗ 0.900∗∗∗
(0.00241) (0.00747) (0.00889)

Obs. 1490 4982 3018
= Target TE 0.290 0.869 0.051
= Target control mean 0.721 0.981 0.476

Note: *** p<0.01 ** p<0.05 * p<0.1
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Extrapolation from Malawi CCTs with true θ or ∆R (e;x)

Target Across-contexts
Treatment 0.0567∗∗∗ 0.0431∗∗∗ 0.0953∗∗∗ 0.0367∗∗∗

(0.0106) (0.00465) (0.00486) (0.00721)

Control mean 0.894∗∗∗ 0.702∗∗∗ 0.688∗∗∗ 0.901∗∗∗
(0.00951) (0.00390) (0.00411) (0.00689)

Obs. 4982 4982 4982 4982
Replace θ X
Replace ∆R (e;x) X
= Target TE 0.004 0.000 0.006
= Target control mean 0.000 0.000 0.276

Note: *** p<0.01 ** p<0.05 * p<0.1
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Within-intervention variation of ∆R (e;x)

E [θ ln(y−s/y)] E [β∆R (e;x)]

Control Treatment Control Treatment
Malawi CCTs -0.292 0.594∗∗∗ 2.526 2.373∗
Morocco CCTs -0.117 0.409∗∗∗ 3.045 3.085
Morocco LCTs -1.706 -1.390∗∗∗ 5.109 5.383∗∗∗

*** p<0.01 ** p<0.05 * p<0.1 for difference across groups in each interven-
tion.

• Within-intervention variation affects prediction of treatment effect
• Malawi CCTs: ∆R (e;x) smaller for treatment group

– Children with lower perceived returns to choose schooling
• Moroccan CCTs: ∆R (e;x) larger for treatment group (if anything)

– Same pattern for Moroccan LCTs
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Reduced-form extrapolation with normalization

Across-contexts

Target Structural HTE PSW
Treatment 0.0567∗∗∗ 0.0150∗∗∗ 0.0352∗∗∗ 0.0655∗∗∗

(0.0106) (0.000788) (0.00346) (0.0140)

Control mean 0.894∗∗∗ 0.903∗∗∗ 0.894∗∗∗ 0.920∗∗∗
(0.00951) (0.000674) (0.00302) (0.0112)

Obs. 4982 4982 4982 1490
= Target TE 0.000 0.000 0.534
= Target control mean 0.000 0.833 0.022

Note: *** p<0.01 ** p<0.05 * p<0.1

• HTE & PSW: s/y,z/y & standardized e and age
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Confusion about conditionality of Moroccan CCTs

• Moroccan CCTs sample largely misunderstood conditionality
– 11% understood conditionality correctly
– 14% thought CCTs were tied to school enrollment
– More similar to Moroccan LCTs than Malawi CCTs

• If perfect understanding, across-contexts extrapolation more accurate?

• Compute counterfactual effect of Moroccan CCTs with no confusion
– Estimate model under Moroccan CCTs with degree of confusion
– Simulate model by assuming perfect knowledge



Estimation Across-contexts Across-policies

Original Counterfactual Linear Linear
Treatment 0.0567∗∗∗ 0.122∗∗∗ 0.0431∗∗∗ 0.0590∗∗∗

(0.0106) (0.00836) (0.00465) (0.00545)

Control mean 0.894∗∗∗ 0.868∗∗∗ 0.702∗∗∗ 0.941∗∗∗
(0.00951) (0.00814) (0.00390) (0.00531)

Obs. 4982 4982 4982 4982
= Target TE 0.000 0.000
= Target control mean 0.000 0.000

Note: *** p<0.01 ** p<0.05 * p<0.1

• Treatment effect becomes bigger under perfect knowledge
• Both extrapolations are statistically different from estimate
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