Net Influences from Polling Officers

Kensuke Maeba

Northwestern University

July 28th, 2021

Election Officers Are Not Neutral in India

"Election officers" = public employees deployed to polling stations for election duty

Beteille (2009)

- Qualitative study about school teachers as polling officers
- Self-reported that they could fake votes at the polling stations
- Support for "teacher-friendly" candidates

Neggers (2018)

- Estimate the effects of the identity of polling officers
- Muslim/Yadav officers (MY) on their supporting party (RJD)
- $\uparrow 5\%$ Votes for RJD if MY officers at polling stations than Non-MY ones
- $\uparrow 2.5 \mathrm{pp}$ vote share margin between RJD and the opposing party

Net Influences on Election

From the previous literature

- 1. Polling officers have influences on voting at polling stations
- 2. Motives vary by polling officers

RQ 1: What are the net influences from polling officers on elections?

- "Net" = Aggregated within and across polling officers
- Influences may internally and externally conflict

RQ 2: Are there distinct patterns in the distribution of influences?

- Across candidates, polling officers, geographic areas
- A proxy for corruption

We estimate net influences using India's national parliamentary elections in 2019

- Construct a discrete choice model with influences as unobservables
- Utility = candidate characteristics + influences + preference shock
- Identify influences as the residual vote share variation

Empirical Challenges

- Endogenous sorting of polling officers to polling stations
- Other unobservables as confounders

Empirical Approach

Sorting by polling officers

- A natural experiment that polling officers assigned randomly to polling stations
- Orthogonal to underlying local political environment
- Verified by data we receive from a district in Tamil Nadu

Other confounders

- Similar to unobserved product characteristics: voter's unobserved valuation
- A control function based on the assignment of local party workers
- Include locality FEs

- $1. \ {\rm Research \ context}$
- 2. Voting model
- 3. Next steps

Disclaimer

- The project is at a very preliminary stage
- No estimation results

Random Assignment of Polling Officers

In 2008, the ECI announced the random drafting of polling officers

• To prevent collusion among polling officers and candidates

In each district, the drafting is done in three step randomization by the DEO

- 1. Select officers with reservation from government employees
- 2. Split officers into teams $(4 \sim 5 \text{ members per team})$
- 3. Assign teams to polling stations

Remarks on Assignment Process

Two rules to guarantee the proper mix of polling officers

- No two members from the same department
- No officers assigned to polling stations in a subdistrict where they work/live/vote
- The DEO should certify those to the ECI

Each step is done by the software distributed from the state election officers

• Observers are present at the 2nd and 3rd step

Final assignment is announced before polling officers leave for duty

Research Context: Pudukkottai District in TN

- Population (2011 census): 1,600,000 ($\geq 80\%$ living in rural areas)
- 4 parliamentary constituencies in the 2019 election
 - $-\,$ 6 subdistricts, each of which has about 200 polling stations
- We obtain the final list of polling officer assignment
 - Subdistricts to work/live/vote, department, designation
 - Names and gender
 - Observe reserved teams

Supplementary Data

- Vote share data in 2009, 2014, 2019
 - Available at polling station level
- Candidate affidavit data in 2019
- Electoral roll data in 2019 (under construction)
 - Complete list of voters registered at each polling station
 - Name, age, gender, father/husband name

Check Randomization

We test whether the drafting process generated exogenous assignment

1. Balance check between assigned and non-assigned officers

$$Y_i = \beta_0 + \beta_1 \text{Assigned}_i + \varepsilon_i$$

2. Correlation between assigned teams and pre-election characteristics

$$Y_{as} = \gamma_a + X'_{as}\beta + \varepsilon_{as},$$

where γ_a is a subdistrict fixed effect.

Assigned vs Non-assigned Officers

	Assigned	Non-assigned	Difference	p-val
= 1 if female officer	0.569	0.561	0.008	0.604
= 1 if work in Pudukkottai	0.993	0.989	0.003	0.260
= 1 if live in Pudukkottai	0.745	0.740	0.005	0.704
= 1 if vote in Pudukkottai	0.690	0.686	0.004	0.782
= 1 if Hindus	0.700	0.708	-0.008	0.595
= 1 if Muslim	0.051	0.054	-0.003	0.714
Obs.	6191	1232		

Correlation with Pre-election Variables

	ln(total votes)	$\ln(\text{votes for UPA})$	ln(votes for NDA)
Number of female officers	0.00531	0.00308	0.00972
	(0.00767)	(0.0100)	(0.0105)
Number of local working officers	0.00796	-0.0255	0.0314
-	(0.0358)	(0.0547)	(0.0443)
Number of local living officers	-0.0252	-0.0341	-0.0304
	(0.0169)	(0.0219)	(0.0218)
Number of local voting officers	0.00697	0.00656	0.0115
	(0.0152)	(0.0201)	(0.0198)
Number of Hindu officers	-0.0110	-0.0132	-0.00871
	(0.00839)	(0.0115)	(0.0109)
Number of Muslim officers	0.0144	0.00358	0.0282
	(0.0184)	(0.0235)	(0.0226)
Obs.	1536	1536	1536
Pr(Jointly no diff.)	0.148	0.157	0.267

Correlation with previous election results

Note: Robust standard errors in parentheses.

Subdistrict-team-size FEs are included.

*** p<0.01 ** p<0.05 * p<0.1

Voting Model: Overview

Goal: Estimate net influences on voters using vote share data

- Potentially various motives for influences
- Agnostic view of underlying mechanisms

Identification: Residual vote share variation

- Construct a discrete choice model (a la Berry, Levinsohn and Pakes (1995))
- Add a control function for unobserved preferences (a la Olley and Pakes (1996))
- Influences \equiv Model prediction data

Voting Model: Utility Function

Index: voter i voting at polling station s for candidate k

Consider a discrete choice model where each voter casts a ballot to one candidate

$$U_{isk} = \underbrace{u(x_i, w_k) + \text{BLA}_{sk}}_{\text{Observed}} + \underbrace{\xi_{sk} + \eta_{sk} + \varepsilon_{isk}}_{\text{Unobserved}}.$$

- x_i : a vector of demographics of the voter
- w_k : a vector of the candidate characteristics
- BLA_{sk}: local party workers
- ξ_{sk} : unobserved local political environment
- η_{sk} : polling officer influences
- ε_{isk} : idiosyncratic preference shocks

Vote Share at Polling Station

Given the assumption on ε_{isk} , the probability of choosing candidate k is

$$Pr\left(k = \operatorname{argmax} U_{isk}\right) = \frac{\exp\left(u(x_i, w_k) + \operatorname{BLA}_{sk} + \xi_{sk} + \eta_{sk}\right)}{\sum_l \exp\left(u(x_i, w_l) + \operatorname{BLA}_{sl} + \xi_{sl} + \eta_{sl}\right)},$$

Vote share of candidate k at polling station s is

$$\mu_{sk} = \int Pr(k = \operatorname{argmax} U_{isk}) dF_{x,s}(x_{is}),$$

$$= \int \frac{\exp(u(x_i, w_k) + \operatorname{BLA}_{sk} + \xi_{sk} + \eta_{sk})}{\sum_l \exp(u(x_i, w_l) + \operatorname{BLA}_{sl} + \xi_{sl} + \eta_{sl})} dF_{x,s}(x_{is}),$$

We can take this to the data to obtain $\delta_{sk} \equiv u(x_s, w_k) + BLA_{sk} + \xi_{sk} + \eta_{sk}$

Separating η_{sk} from ξ_{sk}

 η_{sk} and ξ_{sk} are both unobserved

- Regress δ_{sk} on the observables does not identify η_{sk}
- Unlike consumer demand estimation, IV does not help separation

Our approach: Control function a la OP

- Assignment of local party workers likely endogenous
- If so, informative about local political environment
- Can directly control ξ_{sk}

Assignment of BLAs

BLAs as party workers at the polling station level

- Help election officers scrutinize electoral rolls by their local familiarity
- Help voters on the election day to figure out to whom vote for
- Check who don't vote and encourage their turnout

Between-polling-station variation in effective number of BLAs

- Officially, BLAs should be a voter of the assigned station
- In data, same names appear multiple times
- Variation in effective number of BLAs across party and polling stations

Suggestive Evidence on Strategic Assignment

	BLA:UP	BLA:UP	BLA:ND	BLA:ND
$\ln(\text{Vote:own})$	0.0663^{***}	0.0845^{***}	0.108^{***}	0.102^{***}
	(0.0175)	(0.0279)	(0.0254)	(0.0287)
$\ln(\text{Vote cast})$		-0.0298		0.0267
		(0.0390)		(0.0638)
Obs.	1537	1537	1537	1537

Correlation with votes at polling station level

Note: Robust standard errors are in parentheses.

Parliamentary constituency FEs are included.

*** p<0.01 ** p<0.05 * p<0.1

Control Function for ξ_{sk}

Assumptions

- Assignment is based on $(x_s, \xi_{sk}, \mathrm{VS}_{sk}^{t-1})$
- Complementarity between BLA_{sk} and ξ_{sk} Then we have

$$BLA_{sk} = h\left(x_s, \xi_{sk}, VS_{sk}^{t-1}\right)$$

$$\Rightarrow \xi_{sk} = h^{-1}\left(x_s, VS_{sk}^{t-1}, BLA_{sk}\right)$$

Identification of η_{sk}

With the control function, our model is now

$$\begin{aligned} \delta_{sk} &= u(x_s, w_k) + \mathrm{BLA}_{sk} + \xi_{sk} + \eta_{sk} \\ &= u(x_s, w_k) + \mathrm{BLA}_{sk} + h^{-1} \left(x_s, \mathrm{VS}_{sk}^{t-1}, \mathrm{BLA}_{sk} \right) + \eta_{sk} \\ &= \phi \left(x_s, w_k, \mathrm{BLA}_{sk}, \mathrm{VS}_{sk}^{t-1} \right) + \eta_{sk}, \end{aligned}$$

where $\phi(\cdot)$ is an unknown function. Thus, influences are identified as

$$\eta_{sk} = \delta_{sk} - \phi \left(x_s, w_k, \text{BLA}_{sk}, \text{VS}_{sk}^{t-1} \right).$$

We (implicitly) assume $E\left[\eta_{sk}|x_s, w_k, \text{BLA}_{sk}, \text{VS}_{sk}^{t-1}\right] = 0$, which should hold because of the random assignment.

Next Steps

Short-run

- Demonstrate our empirical approach using our data
- More data on polling officer list (previous election, different districts)

Long-run

- Expand analysis across India (as long as polling officers are randomly assigned)
- Descriptive exercise using influences as a proxy for corruption

Limitations

- 1. Only applicable to parties with positive number of BLAs
 - In our data, this restricts to the two major political alliances
- 2. Hard to establish robustness
 - The residual can be unreasonably large
 - Model misspecification, measurement errors, etc.
- 3. Level of influences are not identified
 - Not separable if all voters prefer one candidate
 - Hard to think about counterfactuals removing "influences"

Conclusion

- We study the influences of election officers on voters in India
- We construct a discrete choice model with polling officer influences
- We show identification of influences by leveraging the random assignment of polling officers and the endogenous assignment of local party workers

References I

- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. "Automobile Prices in Market Equilibrium." *Econometrica*, 63(4): 841.
- **Beteille, Tara.** 2009. Absenteeism, Transfers and Patronage: The Political Economy of Teacher Labor Markets in India. Citeseer.
- Neggers, Yusuf. 2018. "Enfranchising Your Own? Experimental Evidence on Bureaucrat Diversity and Election Bias in India." *American Economic Review*, 108(6): 1288–1321.
- **Olley, G. Steven, and Ariel Pakes.** 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry." *Econometrica*, 64(6): 1263.