Plii

Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals

Igor Kadota and Eytan Modiano

ACM MobiHoc, July 3, 2019

Outline

- Age of Information
- Network Model
- Scheduling Policies and Performance Guarantees
 - Stationary Randomized Policy
 - Max-Weight Policy
- Numerical Results
- Final Remarks & Current Work: from theory to practice (short video)

Network Model

Packet arrivals **Unreliable** transmissions from each stream on a **shared** medium $h_1(t)$ $z_1(t)$ $h_2(t)$ $z_2(t)$ BS $h_N(t)$ $z_N(t)$

Scheduling Policy at the Base Station attempts to minimize the average Aol in the network.

Literature

	Packet Arrivals			Channel Reliability			Queueing Discipline		
Papers	Active	Arbitr. Given	Stoch.	Reliable	Known	Unreliab.	FIFO	LIFO	Other
Bedewy 19		Х		Х					Х
Sun 18		Х		Х					Х
Hsu 18			Х	Х					Х
Joo 17			Х	Х			Х		
Lu 18			Х		Х			Х	
Kaul 17	Х					Х		Х	
Kadota INF 18	Х					Х		Х	
Kadota ToN 18	Х					Х		Х	
Talak 18	Х					Х		Х	
Talak 18 sec. IV			Х			Х	Х		
This work			X			X	X	Х	X

Literature

	Packet Arrivals			Channel Reliability			Queueing Discipline		
Papers	Active	Arbitr. Given	Stoch.	Reliable	Known	Unreliab.	FIFO	LIFO	Other
Bedewy 19		X		X					Х
Sun 18		X		X					Х
Hsu 18			X	X					Х
Joo 17			X	X			Х		
Lu 18			x		x			Х	
Kaul 17								Х	
Kadota INF 18	Х					Х		Х	
Kadota ToN 18	Х					Х		Х	
Talak 18	X					X		Х	
Talak 18 sec. IV			Х			X	Х		
This work			X			X	X	Х	X

Network Model - Two Streams Example

Network Model - Two Streams Example

Network Model - Two Streams Example

Network Model

Values of N, λ_i , w_i , p_i are **fixed and known**. Values of $h_i(t)$ and $z_i(t)$ are known by the BS.

Network Model - Scheduling Policy π

During slot t:

- 1) A **new packet arrives** to the queue of stream i w.p. λ_i , $\forall i \in \{1, ..., N\}$ $[a_i(t) = 1]$
- 2) BS runs the transmission scheduling policy π and selects a single stream i $[u_i(t) = 1]$
- 3) HoL packet of stream i is successfully **delivered** to destination i w.p. p_i $[d_i(t) = 1]$

Network Model - Objective Function

• Expected Weighted Sum AoI when policy π is employed:

$$\mathbb{E}[J^{\pi}] = \lim_{T \to \infty} \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} w_i \mathbb{E}[h_i^{\pi}(t)], \text{ where }$$

where $h_i^{\pi}(t)$ is the AoI of stream i at the beginning of slot t and w_i is the positive weight.

• Aol-optimal policy achieves: $\mathbb{E}[J^*] = \min_{\pi \in \Pi} \mathbb{E}[J^{\pi}]$

- **Policy R**: in each slot t, select stream *i* with probability $\mu_i \in (0,1]$
- Sequence of transmission schedules from stream *i* is a renewal process

- **Policy R**: in each slot t, select stream *i* with probability $\mu_i \in (0,1]$
- Sequence of transmission schedules from stream *i* is a renewal process
- Evolution of AoI is NOT STOCHASTICALLY RENEWED after every packet delivery
- Expression for time-average $\mathbb{E}[h_i^R(t)]$?

- **Policy R**: in each slot t, select stream *i* with probability $\mu_i \in (0,1]$
- Under policy **R**, $(h_i(t), z_i(t))$ evolves as a 2-dim MC with countably-infinite state space

- **Policy R**: in each slot t, select stream *i* with probability $\mu_i \in (0,1]$
- Under policy **R**, $(h_i(t), z_i(t))$ evolves as a 2-dim MC with countably-infinite state space
- Analyzing this MC, we obtain:

$$\mathbb{P}(h) = \lambda_i p_i \mu_i \left[\sum_{n=0}^{h-1} (1-\lambda_i)^{h-1-n} (1-p_i \mu_i)^n \right]$$
$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\boldsymbol{h}_i^{\boldsymbol{R}}(t) \right] = \frac{1}{p_i \mu_i} + \frac{1}{\lambda_i} - 1$$

• Network with parameters (N, p_i, λ_i, w_i) and LIFO queues:

$$\begin{split} & Optimal \ Randomized \ policy \ for \ Single \ packet \ queues \\ & \mathbb{E}\left[J^{R^S}\right] = \min_{R \in \Pi_R} \left\{ \frac{1}{N} \sum_{i=1}^N w_i \left(\frac{1}{\lambda_i} - 1 + \frac{1}{p_i \mu_i} \right) \right\} \\ & \text{ s.t. } \sum_{i=1}^N \mu_i \le 1 ; \end{split}$$

• **Theorem:** the optimal scheduling probabilities are: $\mu_i \sim \sqrt{w_i/p_i}$, $\forall i$ and the performance of the optimal policy is such that:

$$\mathbb{E}[J^*] \le \mathbb{E}\left[J^{\mathbb{R}^S}\right] \le 4 \mathbb{E}[J^*]$$

• Network with parameters (N, p_i, λ_i, w_i) and **FIFO queues**:

Optimal Randomized policy for FIFO queues

$$\mathbb{E}\left[J^{R^{F}}\right] = \min_{R \in \Pi_{R}} \left\{ \sum_{i=1}^{N} \frac{w_{i}}{N} \left[\frac{1}{p_{i}\mu_{i}} + \frac{1}{\lambda_{i}} + \left[\frac{\lambda_{i}}{p_{i}\mu_{i}} \right]^{2} \frac{1 - p_{i}\mu_{i}}{p_{i}\mu_{i} - \lambda_{i}} \right] \right\}$$
s.t. $\sum_{i=1}^{N} \mu_{i} \leq 1$;
 $p_{i}\mu_{i} > \lambda_{i}, \forall i$.

• **Theorem:** the optimal scheduling probabilities are given by Algorithm 2 which uses the *bisection method* to find the set of μ_i^* . [details are omitted]

Max-Weight Policy for any queueing discipline

- Lyapunov Function: L(t) high value at undesirable states
- Lyapunov Drift: $\Delta(t) = \mathbb{E}\{L(t+1) L(t)\}$
- Max-Weight policy attempts to minimize $\Delta(t)$ at every slot t

Max-Weight Policy for any queueing discipline

• Lyapunov Function: $L(t) = \frac{1}{N} \sum_{i=1}^{N} \beta_i h_i(t)$, where $\beta_i > 0$ is a constant

- Lyapunov Drift: $\Delta(t) = \mathbb{E}\{L(t+1) L(t) | \mathbf{h}_i(t), \mathbf{z}_i(t)\}$
- Substituting the expression for the evolution of $h_i(t + 1)$ into the drift:

$$\Delta(t) = -\frac{1}{N} \sum_{i=1}^{N} \beta_i \boldsymbol{p}_i \left(\boldsymbol{h}_i(t) - \boldsymbol{z}_i(t)\right) \mathbb{E}[\boldsymbol{u}_i(t) | \boldsymbol{h}_i(t), \boldsymbol{z}_i(t)] + \frac{1}{N} \sum_{i=1}^{N} \beta_i$$

• **MW policy:** in slot t, schedule stream $(u_i(t) = 1)$ with highest value of:

 $\beta_i p_i (h_i(t) - z_i(t))$

Max-Weight Policy for any queueing discipline

• **MW policy:** in slot t, schedule stream $(u_i(t) = 1)$ with highest value of:

 $\beta_i \boldsymbol{p_i} \left(\boldsymbol{h_i}(t) - \boldsymbol{z_i}(t) \right)$

- For different queueing disciplines substitute the corresponding $z_i(t)$
- $p_i(h_i(t) z_i(t))$ represents the expected AoI reduction from selecting i
- **Theorem:** consider a network employing LIFO queues. The performance of MW policy when $\beta_i = \sqrt{w_i/p_i}$, $\forall i$ is such that:

$$\mathbb{E}\left[J^{MW^{S}}\right] \leq \mathbb{E}\left[J^{R^{S}}\right]$$

Numerical Results

- Metric:
 - Expected Weighted Sum Aol : $\mathbb{E}[J^{\pi}]$
- Network setup with N = 4 streams. Stream *i* has:
 - channel reliability $p_i = i/N$
 - arrival rate $\lambda_i = \lambda \times (N + 1 i)/N$
 - weights: $w_1 = w_2 = 4$ and $w_3 = w_4 = 1$
- Arrival rate in the range $\lambda \in \{0.01, 0.02, \dots, 0.35\}$
- Each simulation runs for $T = 2 \times 10^6$ slots
- Each data point is an average over 10 simulations

Video of Testbed

Current work on the AoI scheduling problem.

Testbed implementation is not complete. There are a few missing parts/tests.

Video shows a short demo.

Network Setup:

- Two sources generating packets
 - Bernoulli arrivals
 - Single packet queue discipline
- Sources send packets to Base station according to Greedy Policy on $h_i(t)$

Final Remarks

In this presentation:

- Developed scheduling policies for wireless networks with stochastic arrivals, unreliable channels and different queueing disciplines
- Described performance guarantees
- Conclusion: Max-Weight with LIFO queues has superior performance.

Contact:

- email: <u>kadota@mit.edu</u>
- personal website: <u>www.igorkadota.com</u>

Questions? Thank you!