

Minimizing the Age of Information in Broadcast Wireless Networks

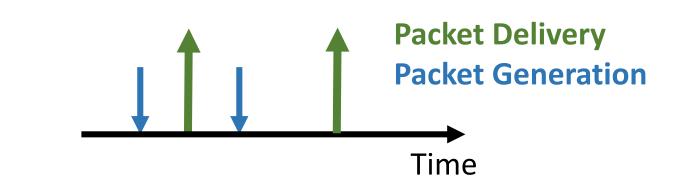
Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh and Eytan Modiano

LIDS Student Conference, February 2, 2017

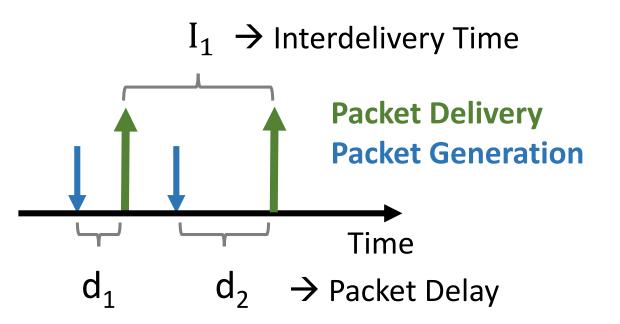
Outline

- Age of Information (AoI) and Network Model
- Symmetric Network and the Greedy Policy
- General Network and the Index Policy
- Numerical Results
- Max Throughput vs Min Aol

Example: Single Source Single Destination



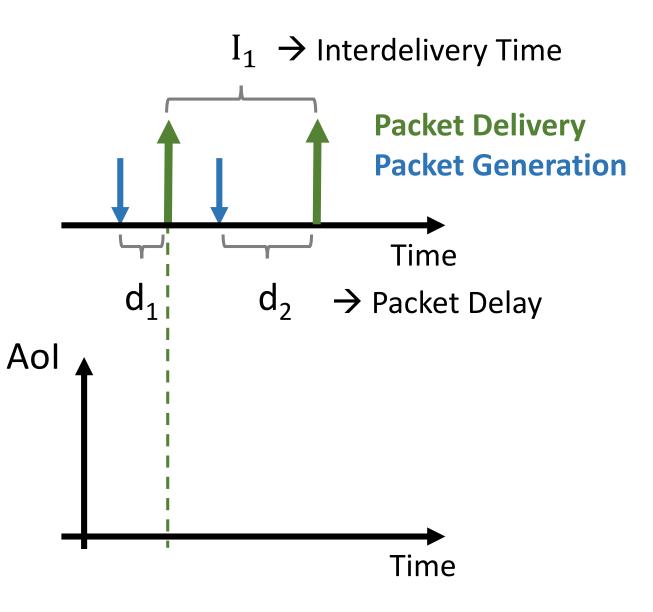
Measuring the freshness of the information



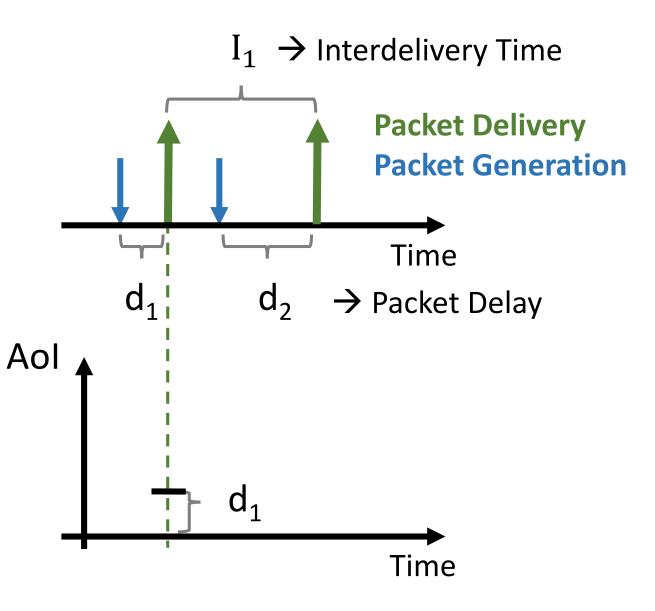
Interdelivery Time: time elapsed between consecutive packet deliveries.

Packet Delay: time elapsed from generation to delivery of a packet.

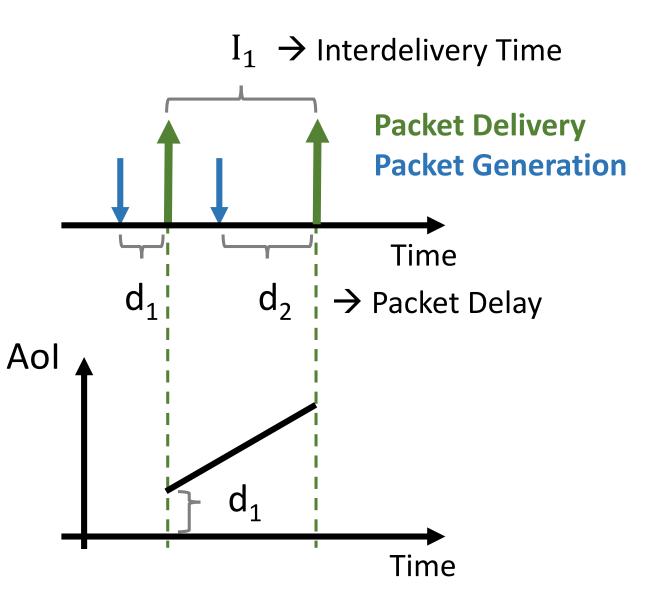
Aol: time elapsed since the most recently delivered packet was generated.



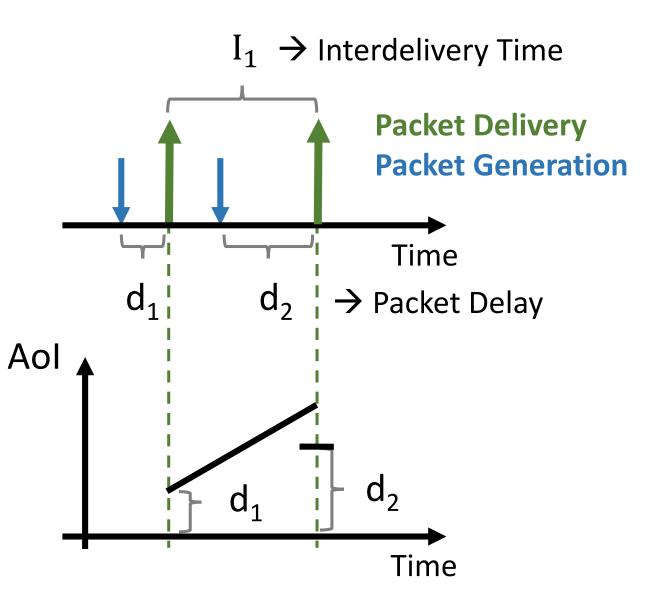
Aol: time elapsed since the most recently delivered packet was generated.



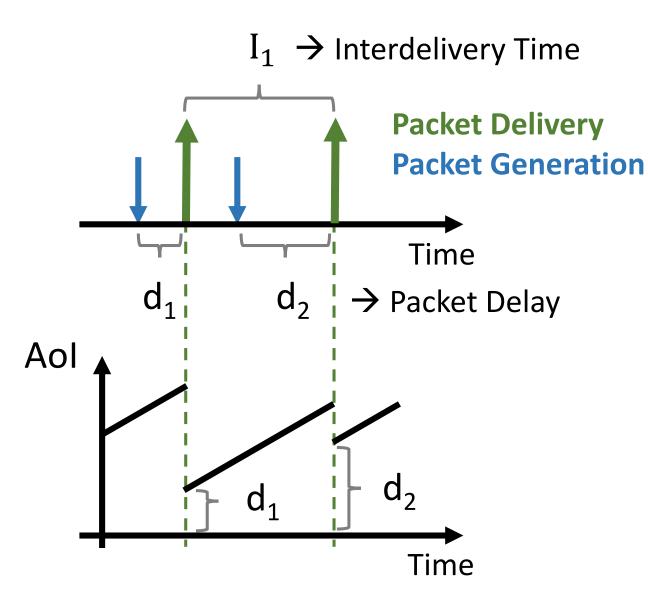
Aol: time elapsed since the most recently delivered packet was generated.



Aol: time elapsed since the most recently delivered packet was generated.



Aol: time elapsed since the most recently delivered packet was generated.



At time t: AoI = t -
$$\tau(t)$$

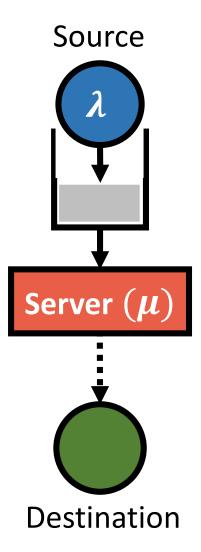
 $\tau(t)$ is the time stamp of the
most recently delivered packet

Aol, Delay and Interdelivery time

• Example: M/M/1 queue

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01			
0.53			
0.99			

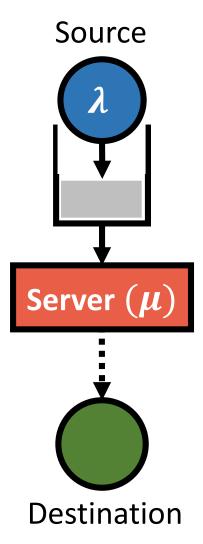


Aol, Delay and Interdelivery time

• Example: M/M/1 queue

Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01	1.01	100.00	
0.53	2.13	1.89	
0.99	100.00	1.01	



Aol, Delay and Interdelivery time

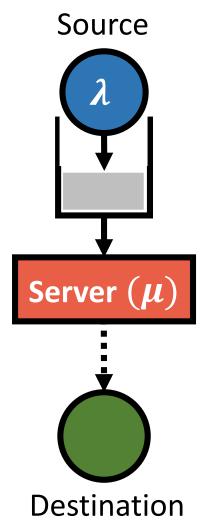
• Example: M/M/1 queue

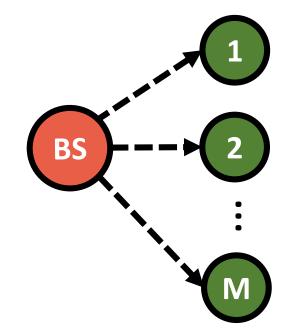
Controllable arrival rate λ and fixed service rate $\mu = 1$ packet per second.

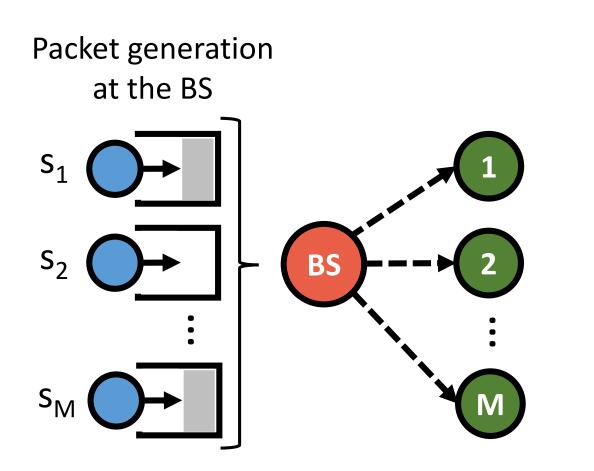
λ	$\mathbb{E}[delay]$	$\mathbb{E}[interdel.]$	Average Aol
0.01	1.01	100.00	101.00
0.53	2.13	1.89	3.48
0.99	100.00	1.01	100.02

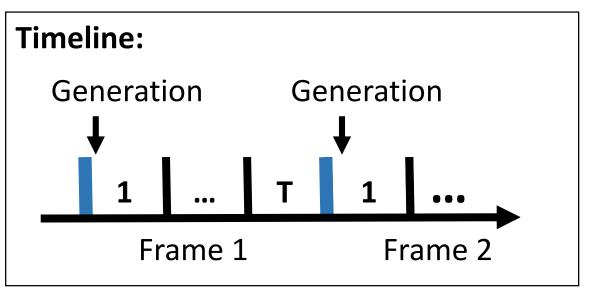
A low AoI is achieved when packets with low delay are delivered regularly.

Minimum throughput requirement DOES NOT guarantee regular deliveries.

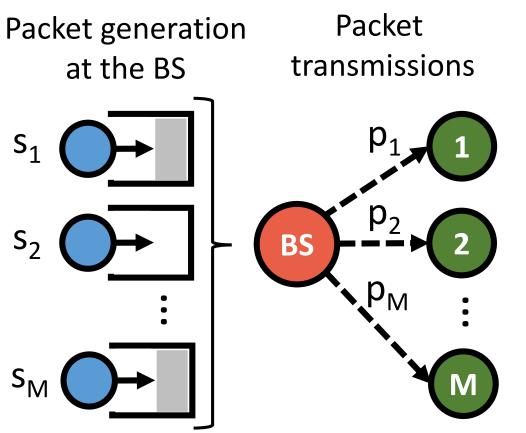


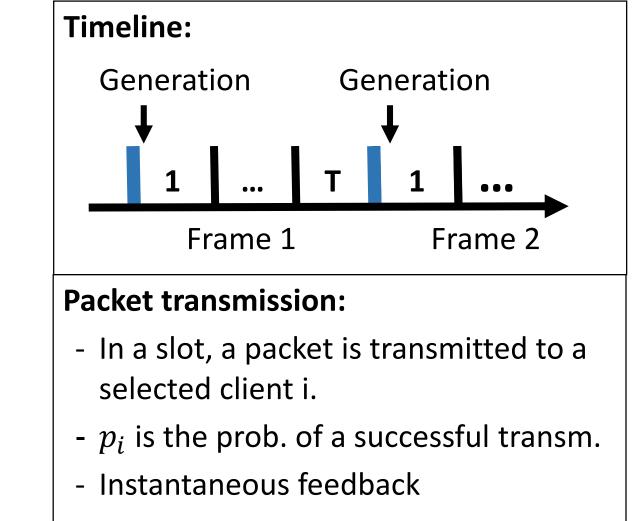






New packets replace undelivered packets from the previous frame.



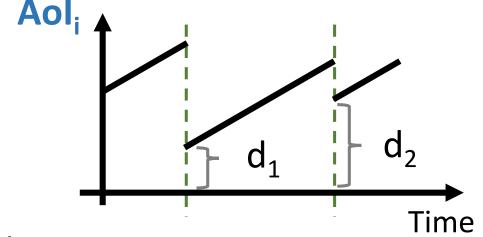


- <u>Goal</u>: design a scheduling policy that provides fresh information to the clients.
- <u>Objective function</u> is the Expected Weighted Sum AoI:

EWSAOI =
$$\frac{1}{\mathrm{KT}} \mathbb{E} \left\{ \sum_{i=1}^{\mathrm{M}} \boldsymbol{\alpha}_{i} \operatorname{AOI}_{i} \right\}$$

where α_i is the client's weight and

AoI_{*i*} is the area under the AoI curve for client i



- <u>Goal</u>: design a scheduling policy that provides fresh information to the clients.
- <u>Equivalent Objective function</u>:

$$J_{K}^{\pi^{*}} = \min_{\pi \in \Pi} \mathbb{E} \left\{ \sum_{k=1}^{K} \sum_{i=1}^{M} \boldsymbol{\alpha}_{i} \boldsymbol{h}_{\mathbf{k},i} \right\}$$

where α_i is the client's weight and

 $h_{\mathbf{k},i}$ is the number of frames since the last delivery from client i

 Π is the class of non-anticipatory policies and π^* is the optimal policy.

Symmetric Network

- <u>Network with symmetric clients</u>: $\alpha_i = \alpha$ and $p_i = p, \forall i \in \{1, ..., M\}$
- <u>Greedy Policy</u> (G): in each slot, select the client with undelivered packet and highest value of h_{k,i}.

Theorem 1: Optimality of the Greedy Policy.

Among the class of admissible policies Π , G attains the minimum time average sum AoI.

General Network

• Network with clients having (possibly) different α_i and p_i

• Objective Function:
$$J_{K}^{\pi^{*}} = \min_{\pi \in \Pi} \mathbb{E} \left\{ \sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} h_{k,i} \right\}$$

- Policy π is a mapping from all possible states in each possible slot to the associated scheduling choice. In general, computing π is complex.
- Index Policy: in each slot, select the client with undelivered packet and highest value of $C_i(h_{k,i})$.
- The Index Policy is a low-complexity heuristic that is extensively used in the literature for its strong performance [K. Liu, 2010; R. Weber, 1990; et al.]

General Network: Whittle Index

- For designing the Index Policy, we use the RMAB framework in [16].
 - We relax our problem to the case of a single client, M = 1, and add a cost per transmission, C > 0.
- The solution to this relaxed problem yields:
 - Condition for indexability;
 - Expression for the Whittle Index, $C_i(h_{k,i})$.
- Challenges:
 - Indexability is often hard to establish
 - Indexable problems might not have closed-form solutions for the Whittle Index.

[16] P. Whittle, "Restless bandits: Activity allocation in a changing world", 1988.

General Network: Definitions

- Indexability:
 - Consider the relaxed problem with a single client and cost per transmission.
 - Let $\mathcal{P}(C)$ be the set of states for which it is optimal to idle when the cost for transmission is C.
 - The problem is indexable if $\mathcal{P}(C)$ increases monotonically from \emptyset to the entire state space as C increases from 0 to $+\infty$.
 - The condition checks if the problem is suited for an Index Policy.
- Whittle Index:
 - Given indexability, C(h) is the infimum cost C that makes both scheduling decisions equally desirable in state h.
 - C(h) represents how valuable is to transmit a client in state h.

[16] P. Whittle, "Restless bandits: Activity allocation in a changing world", 1988.

General Network: Index Policy

- We establish that the problem is indexable and find a **closed-form** solution for the Whittle Index.
- <u>Index Policy</u>: in each slot, select the client with undelivered packet and *highest* value of $C_i(h_{k,i})$, where:

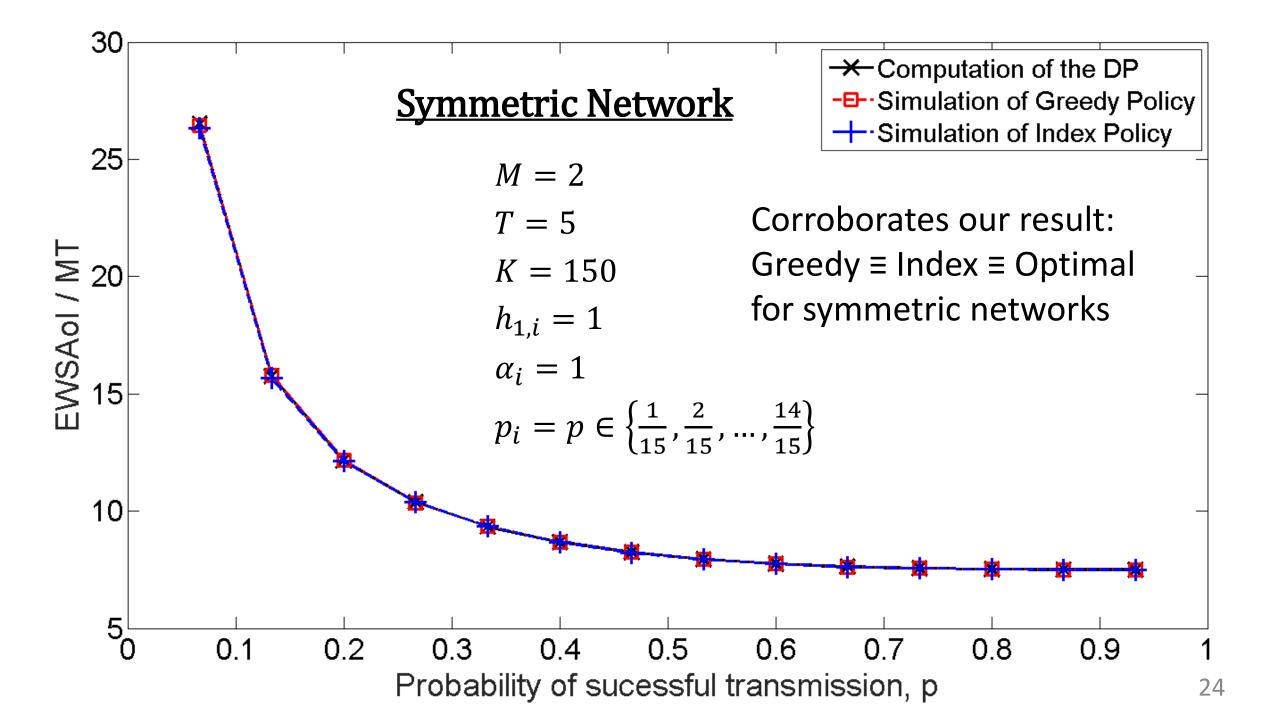
$$C_i(h_i) = \frac{T\alpha_i}{2} p_i h_i \left[h_i + \frac{1 + (1 - p_i)^T}{1 - (1 - p_i)^T} \right]$$

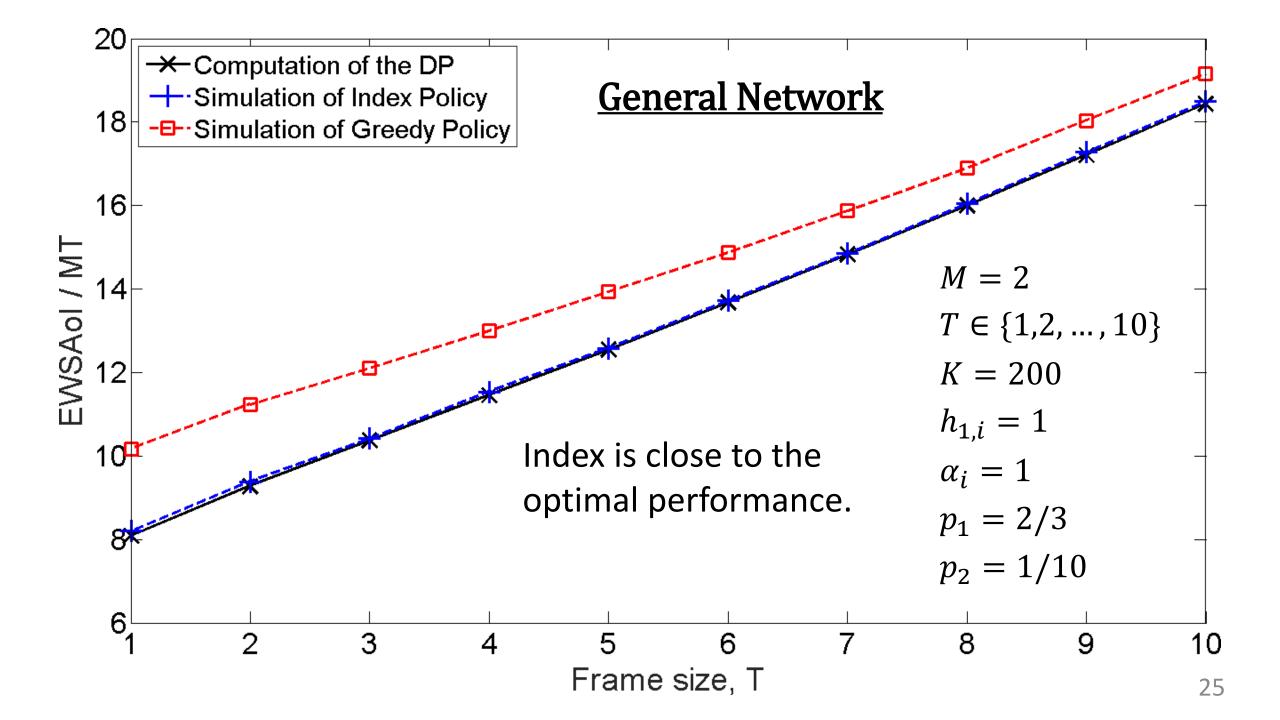
• Observe that the client ordering imposed by the Index Policy is the same as the one imposed by the Greedy Policy for the case of <u>symmetric networks</u>. Thus, the Index Policy is OPTIMAL.

BS

Numerical Results

- Metric is the normalized AoI: EWSAoI / MT
- Comparison:
 - Greedy Policy Simulation (each point is an average over 1k runs)
 - Index Policy Simulation (each point is an average over 1k runs)
 - **Optimal Policy** Computation (using Dynamic Programming)
- Two settings:
 - Symmetric Network
 - General Network





Minimum Delivery Ratio Constraint

- In our network setting, undelivered packets are replaced.
- Consider the problem of finding the scheduling policy $\eta \in \Pi$ that satisfies:

$$\mathbb{P}ig(\widehat{q}_i^\eta \geq oldsymbol{q}_iig) = 1$$
, $orall i$

where q_i is the minimum delivery ratio requirement of client i and \hat{q}''_i is:

$$\hat{q}_{i}^{\eta} \triangleq \liminf_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} e_{i}(k) \text{ , where } e_{i}(k) = \begin{cases} 1, \text{ if delivery } (k, i) \\ 0, \text{ otherwise} \end{cases}$$

• An equivalent problem is to find the η that maximizes the Expected Weighted Sum Throughput (next slide).

Max Throughput vs Min Aol

• The **Throughput maximization** metric is given by:

$$EWST = \frac{1}{K} \mathbb{E} \left\{ \sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_{i} e_{i}(k) \right\}, \text{ where } e_{i}(k) = \begin{cases} 1, \text{ if delivery } (k,i) \\ 0, \text{ otherwise} \end{cases}$$

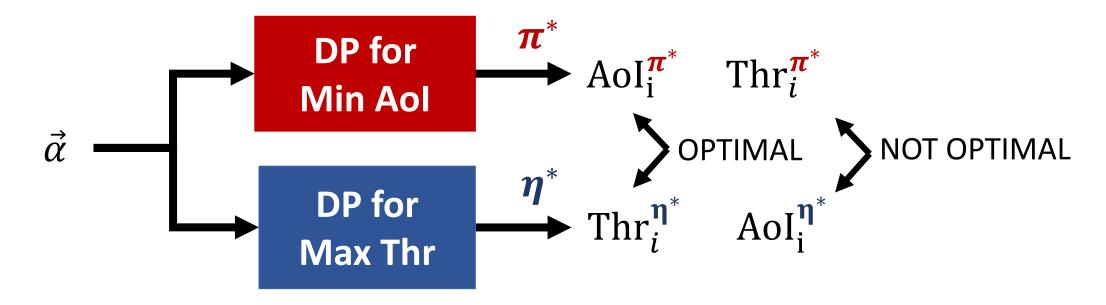
• The Aol minimization metric is:

$$EWSAoI = \frac{1}{K} \mathbb{E} \left\{ \sum_{k=1}^{K} \sum_{i=1}^{M} \alpha_i \left(\frac{T^2}{2} + T^2 h_{k,i} \right) \right\} \text{ , where } h_{k+1,i} = \begin{cases} 1, \text{ if delivery } (k,i) \\ h_{k,i} + 1, \text{ otherwise} \end{cases}$$

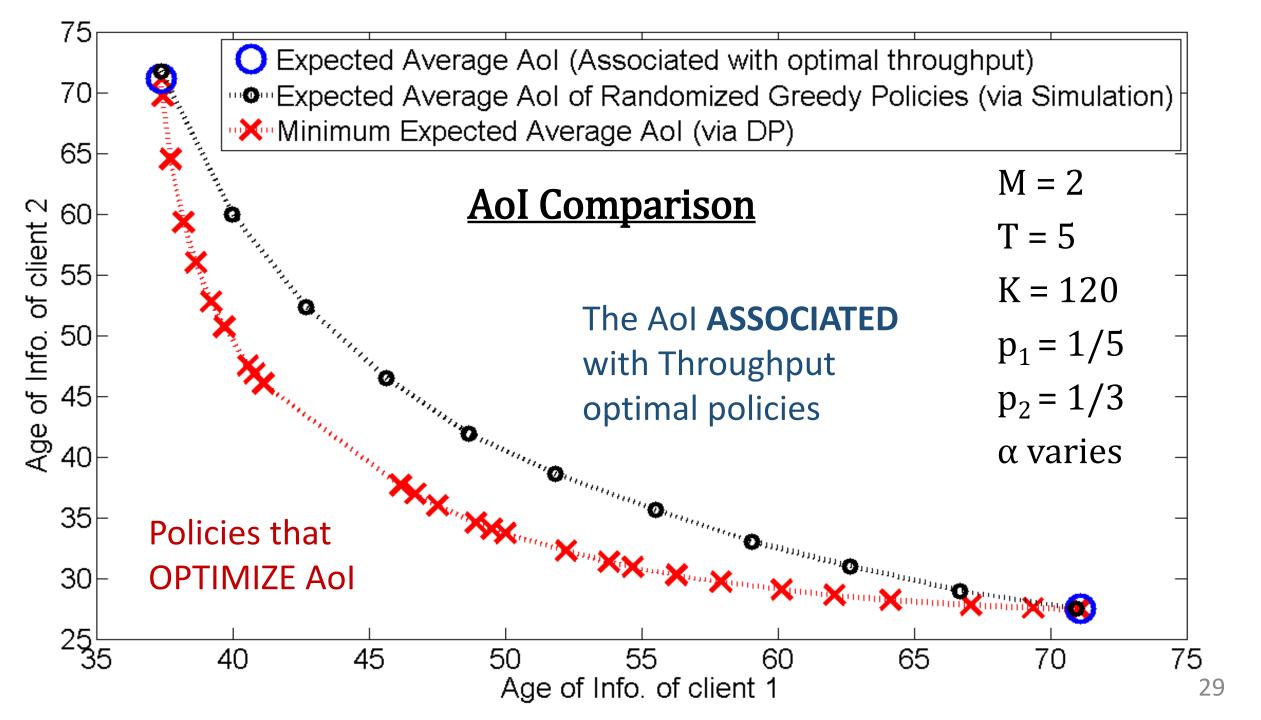
• For comparing the scheduling policies that result from each problem, we consider their DP solutions.

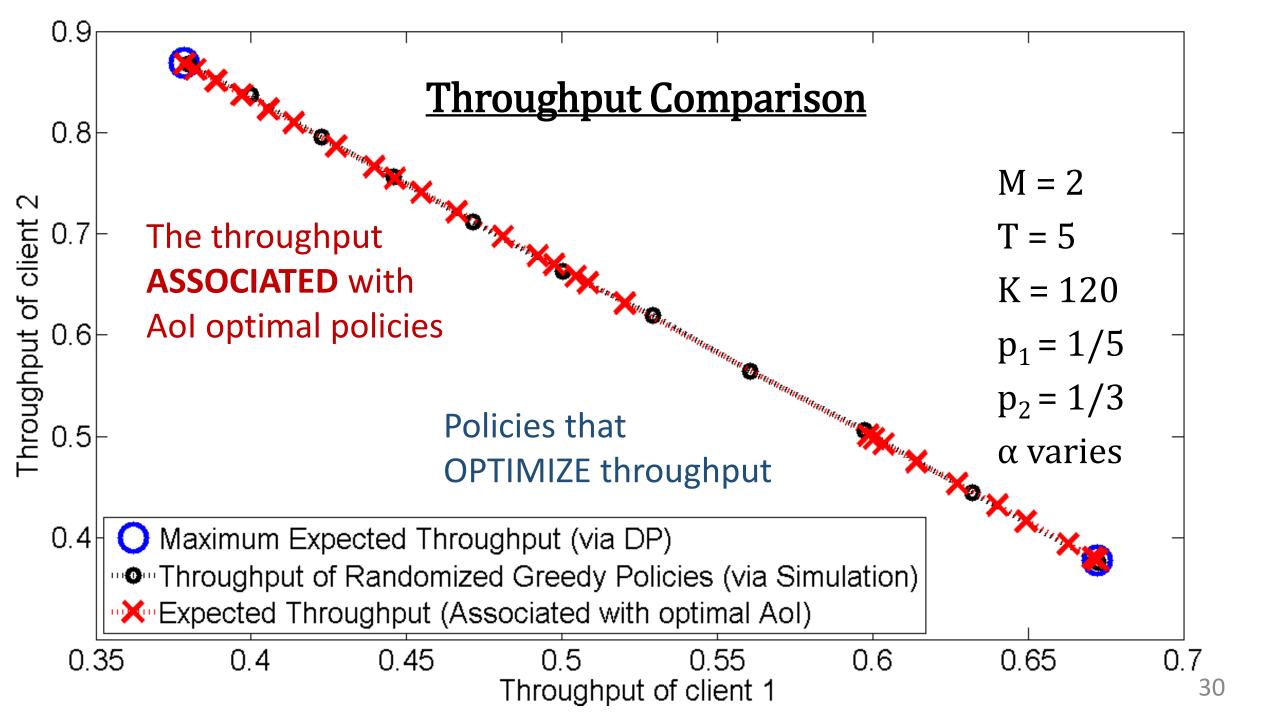
Max Throughput vs Min Aol

• For a fixed vector of client weights $\vec{\alpha}$, the Dynamic Programs yield:



- We sweep $\vec{\alpha}$ and plot the results next:
 - **Red** is for metrics associated with π^* .
 - Blue is associated with η^* .





Max Throughput vs Min Aol

• The conclusion illustrated by the numerical results holds in general:

Thr Optimal Policies ≠ Aol Optimal

Aol Optimal Policies \Rightarrow Thr. Optimal¹

¹ Pareto optimal

- By minimizing the AoI, we are assured to achieve maximum throughput.
- However, it is still not known how to design a scheduling policy that achieves a **given throughput** with minimum AoI.

Aol, Throughput and Interdelivery times

• **Proposition**: Consider the network over an infinite horizon, namely $K \to \infty$, and assume that the steady-state distribution of the underlying MC exists when the stationary policy π is employed. Then, it follows

$$EWSAoI = T^{2} \sum_{i=1}^{M} \alpha_{i} + \frac{T^{2}}{2} \sum_{i=1}^{M} \alpha_{i} \left(\frac{\mathbb{V}ar[I_{i}]}{\mathbb{E}[I_{i}]} + \mathbb{E}[I_{i}] \right)$$

where I_i is the r.v. that represents the number of frames in the interval between two packet deliveries from client i, i.e. the interdelivery time.

Consider the AoI optimal policy π^* and the associated throughput performance. Under the conditions of the Proposition, we know that from all policies with the same throughput, policy π^* achieves the lowest value of $\mathbb{V}ar[I_i]$.

Outline / Contributions

- Age of Information (AoI) and Network Model
- Symmetric Network and the **OPTIMALITY** of the Greedy Policy
- General Network and the **DESIGN** of the Index Policy
- VALIDATION of the policies via Numerical Results
- **COMPARISON** of the Min AoI problem and the Max Throughput problem.

Supplementary Slides

Intuition of the proof: ideal channels

- Consider M = 3, T = 1 and p = 1 (ideal channels)
- Employ GREEDY policy. **Deliveries** are in green.

$$\begin{array}{c|c} 8 & 7 & 6 & 6 & 6 \\ Gr^{eedN} \\ PO^{IICN} \\ PO^{IICN} \end{array} \begin{array}{c} 1 \\ \vec{h}_1 = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} \\ \vec{h}_2 = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \\ \vec{h}_3 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \\ \vec{h}_3 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \\ \vec{h}_4 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \\ \vec{h}_5 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \\ Frames$$

- One packet is scheduled and delivered in each frame (T = 1 slot).
- Greedy achieves the lowest $\sum_{i=1}^{M} h_{k,i}$ in every frame k \rightarrow Greedy is optimal.
- Note that $h_{k,1} + h_{k,2} + h_{k,3} = 6$, $\forall k \ge 3$ (steady-state)

Intuition of the proof: coupling argument

- Consider M = 3, T = 1 and $p \in (0,1]$ (unreliable channels)
- Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.

- Fix any sample path for the state of the active channel:
 - channel is OFF: no room for improvement. All policies are equivalent.
 - channel is ON ≡ ideal channels: the best policy is Greedy. (example next)

Intuition of the proof: coupling argument

- Consider M = 3, T = 1 and $p \in (0,1]$ (unreliable channels)
- Employ ARBITRARY policy. Deliveries are green. Failed transmissions are red.