
WiFresh: Age-of-Information from
Theory to Implementation

Igor Kadota, Muhammad Shahir Rahman, and Eytan Modiano

Abstract—Emerging applications, such as smart factories and
fleets of drones, increasingly rely on sharing time-sensitive infor-
mation for monitoring and control. In such application domains,
it is essential to keep information fresh, as outdated information
loses its value and can lead to system failures and safety risks. The
Age-of-Information is a performance metric that captures how
fresh the information is from the perspective of the destination.

In this paper, we show that as the congestion in the wireless net-
work increases, the Age-of-Information degrades sharply, leading
to outdated information at the destination. Leveraging years of
theoretical research, we propose WiFresh: an unconventional
architecture that achieves near optimal information freshness
in wireless networks of any size, even when the network is
overloaded. Our experimental results show that WiFresh can
improve information freshness by two orders of magnitude when
compared to an equivalent standard WiFi network. We propose
and realize two strategies for implementing WiFresh: one at the
MAC layer using hardware-level programming and another at
the Application layer using Python.

Index Terms—Age of Information, Implementation, Software
Defined Radio, Wireless Networks, Optimization

I. INTRODUCTION

Emerging applications will increasingly rely on sharing
time-sensitive information for monitoring and control. Ex-
amples are abundant: monitoring mobile ground-robots in
automated fulfillment warehouses at Alibaba and Amazon
[2]; collision prevention applications for vehicles on the road
[3]; path planning, localization and motion control for multi-
robot formations using drones [4] and using ground-robots [5];
multi-drone system for exploration of subterranean environ-
ments [6]; multi-robot simultaneous localization and mapping
(SLAM) using drones [7] and using ground-robots [8]; real-
time surveillance system using a fleet of ground-robots [9];
and data collection from sensors, drones and cameras for
agriculture using the Azure FarmBeats IoT platform [10]. In
such application domains, it is essential to keep information
fresh, as outdated information loses its value and can lead to
system failures and safety risks.

The various time-sensitive applications in [2]–[10] are all
implemented using the IEEE 802.11 standard (WiFi). WiFi
is an attractive choice for it is low-cost, well-established,
and immediately available in drones [4], computing platforms
running the Robot Operating System (ROS) [9], sensors that
measure soil temperature, pH, and moisture [10], and in the

Igor Kadota is with the Department of Electrical Engineering, Columbia
University, New York, NY, 10027. Muhammad Shahir Rahman and Eytan
Modiano are with the Laboratory for Information and Decision Systems
(LIDS), Massachusetts Institute of Technology, Cambridge, MA, 02139.
E-mail: igor.kadota@columbia.edu, shahir@mit.edu, and modiano@mit.edu

This paper was presented in part at ACM MobiCom 2020 [1].

Fig. 1: On the LHS: Software-Defined Radio testbed. On the RHS:
Raspberry Pi testbed with cameras, GPS receivers, and IMU sensors.

Raspberry Pis used in this paper. Moreover, as showcased
by these various implementations, small-scale underloaded
WiFi networks are capable of supporting time-sensitive appli-
cations. Two main shortcomings of WiFi, or any other wireless
technology employing First-Come First-Served (FCFS) queues
and Random Multiple Access mechanisms, are scalability and
congestion.

Our contribution: 1) Leveraging years of theoretical re-
search on Age-of-Information, we propose WiFresh: an uncon-
ventional network architecture that scales gracefully, achiev-
ing near optimal information freshness in wireless networks
of any size, even when the network is overloaded. 2) We
propose and realize two strategies for implementing WiFresh:
WiFresh Real-Time, which is designed to maximize perfor-
mance, and is implemented at the MAC layer in a network of
eleven FPGA-based Software Defined Radios (Fig. 1) using
hardware-level programming; and WiFresh App, which is de-
signed to lower the barriers to adoption, and is implemented
at the Application layer, without modifications to lower layers
of the networking protocol stack, in a network of twenty five
Raspberry Pis (Fig. 1) using Python 3. The WiFresh App runs
over UDP and standard WiFi, making it easy to integrate into
applications that are implemented using WiFi such as [2]–[10].
3) Our experimental results in Sec. V show that the more con-
gested the network, the more prominent is the superiority of
WiFresh when compared to WiFi. In particular, we show that
under high load, WiFresh can improve information freshness
by two orders of magnitude when compared to an equivalent
standard WiFi network.

To illustrate the concept of information freshness, which
is formally defined in Sec. III, consider a monitoring system
composed of a remote monitor, a wireless base station (BS)
and N mobile nodes. Each node i ∈ {1, 2, · · · , N} moves with
an average velocity of vi meters per second, generates status
information from time to time, and sends this information
to the remote monitor via the wireless base station. Status
information can include the node’s current position, inertial
measurements, and pictures of the environment. The remote



Fig. 2: Illustration of a monitoring system.

TABLE I: Measurements of the average age ∆i(t) (in seconds) for
networks with different number of sources N .

N 2 8 12 20 24

WiFi UDP 0.34 0.32 0.32 22.43 34.09
WiFi ACP 0.99 0.97 0.88 5.76 6.91

WiFresh App 0.29 0.35 0.39 0.49 0.54

monitor keeps track of the information, and is particularly
interested in the position of the nodes. Assume that at time t,
the latest packet received by the remote monitor from node
i had information about its position at time τi(t). Then,
the quantity ∆i(t) := t − τi(t) captures how fresh the
position information is at time t. We refer to ∆i(t) as Age-of-
Information (AoI) and say that the remote monitor has stale
information when ∆i(t) is large, and fresh information when
∆i(t) is small. In particular, an age of ∆i(t) = 2 seconds
represents that at time t the remote monitor knows the location
of node i two seconds ago. Hence, the uncertainty about node
i’s position at time t is captured by the quantity vi∆i(t), as
illustrated in Fig. 2, and a large age corresponds to a large
uncertainty.

In Table I, we consider a sequence of networks with
increasing size N and display the average age ∆i(t) in
seconds, where the average is taken over time t and over
all the N sources. Each source is a Raspberry Pi (shown
in Fig. 1) generating position information using the Stratus
GPYes 2.0 u-blox 8 GPS receiver and generating inertial
measurements using the Pololu MinIMU-9 v5 sensor. The
wireless base station is a Raspberry Pi receiving data from
the N sources. We compare networks using three different
architectures, namely:

1) WiFi UDP, which is UDP over standard WiFi;
2) WiFi Age Control Protocol (ACP), which uses the Trans-

port layer protocol developed in [11] to control the packet
generation rates at the sources in order to minimize AoI;

3) WiFresh App, which is one of the WiFresh implementa-
tions proposed in this paper.

Additional details about the experimental setup are provided
in Sec. V-C.

WiFi UDP. The measurements in the first row of Table I
show that as the number of sources N in the WiFi UDP
network increases, the network becomes overloaded and the
average age ∆i(t) degrades sharply. The average age for
N = 12 sources is 0.32 seconds, while for N = 20 sources
is 22.43 seconds, which means that the information at the
remote monitor is (on average) 22 seconds old. Naturally,
this staleness directly affects the capability of the monitoring

system of tracking the current position of the source nodes,
especially for source nodes that are moving fast.

WiFi ACP. The second row of Table I shows that the
average age ∆i(t) for WiFi ACP with N = 20 sources is
5.76 seconds. By controlling the packet generation rates at the
sources using the protocol developed in [11], ACP improves
the average age by a factor of four when compared with WiFi
UDP. Notice that a high packet generation rate may overload
the network and lead to a high average age, while a low packet
generation rate may result in infrequent information updates
at the destination, which may also lead to a high average
age. The ACP dynamically adapts the packet generation rates
at the sources in order to drive the network to the point of
optimal information freshness. This point of minimum AoI is
illustrated in Fig. 4.

WiFresh App. The third row of Table I shows that the
average age ∆i(t) for WiFresh with N = 20 sources is 0.54
seconds. WiFresh improves the average age by a factor of
forty when compared with WiFi UDP. Experimental results in
Sec. V show that this improvement increases for larger N . The
superior performance of WiFresh is due to the combination of
three elements:
• Polling Multiple Access mechanism that prevents packet

collisions, allowing for efficient resource allocation among
sources, which is critical in congested networks and in
networks with large number of sources N ;

• Max-Weight (MW) policy that determines the sequence
of sources to poll in order to keep the age of each source as
low as possible and, thus, optimize information freshness
in the network. Notice that the Polling mechanism is used
to support the MW policy; and

• Last-Come First-Served (LCFS) queues that prioritize
the packet with lowest delay, leading to sources that always
transmit the freshest packets to the base station.

In WiFresh App, these three elements are implemented at the
Application layer in a network of Raspberry Pis. In WiFresh
Real-Time, these three elements are implemented at the MAC
layer in a network of SDRs. The choice of each of these
elements is underpinned by theoretical research. In [12]–
[14], the LCFS queue was shown to be the optimal queueing
discipline in terms of AoI in different settings. In [15]–[18],
the authors developed performance guarantees for the MW
policy in different settings.

Scalability. Neither WiFi UDP nor WiFresh attempt to
control the packet generation rate at the sources. Hence, when
the number of sources N increases to the point that the
cumulative packet generation rate exceeds the capacity of the
network, both WiFi UDP and WiFresh become overloaded and
the number of backlogged packets at the sources grows rapidly.
For WiFi UDP, a large backlog in the First-Come First-Served
(FCFS) queues leads to high packet delay and, thus, to high
average age, as observed in Table I. In contrast, WiFresh scales
gracefully, even when the network is overloaded, with average
age increasing linearly with N . In [18, Chapter 3], the authors
derived a lower bound on the achievable AoI performance in
wireless networks and concluded that the average age cannot



scale better than linearly on the network size N .
The remainder of this paper is organized as follows. In

Sec. II, we describe related work. In Sec. III, we discuss
the impact of the multiple access mechanism, transmission
scheduling policy, and queueing discipline on AoI. In Sec. IV,
we describe the design and implementation of WiFresh Real-
Time and WiFresh App. In Sec. V, we evaluate the per-
formance of WiFresh in networks with increasing load and
increasing size. The paper is concluded in Sec. VI.

II. RELATED WORK

The Age-of-Information was recently proposed in [19] and
has been receiving increasing attention in the literature for
its application in communication systems that carry time-
sensitive data. The AoI captures how fresh the information
is from the perspective of the destination, in contrast to the
well-established packet delay that represents the latency of a
particular packet. Most papers on AoI focus on theory and a
few consider system implementation.

Theoretical research. The problem of optimizing AoI has
been addressed in a variety of contexts. Queueing Theory is
used in [12], [19], [20] to characterize the AoI performance
of various important queueing systems. Information Theory is
used in [21], [22] for designing source and channel coding
schemes to improve AoI. Optimization of scheduling policies
in communication networks is considered in [16], [17], [23]–
[29]. Different applications of AoI in sensor networks, cellular
networks and vehicular networks are analyzed and/or emulated
in [30]–[33]. This list of works is not exhaustive. For a more
comprehensive list of theoretical works we refer the reader to
[18], [34].

Systems research. A few papers [1], [11], [35], [36] have
implemented AoI-based systems. In [35], the authors consider
a source-destination pair transmitting packets over the Internet
and measure the AoI for different packet generation rates. In
[36], the authors consider a vehicular network and develop an
Application layer algorithm that adapts the packet generation
rates at the sources to improve information freshness. This
algorithm is validated using the ORBIT testbed with wireless
sources employing WiFi, in particular the IEEE 802.11a
standard. In [11], the authors consider an Internet-of-Things
network and develop a Transport layer protocol named Age
Control Protocol (ACP) that adapts the packet generation rates
at the sources in order to optimize for information freshness.
This protocol is validated using ten sources connected via
WiFi to the Internet and sending packets to a destination in
another continent. In Sec. V, we implement ACP and evaluate
its performance against WiFresh. Notice that [11], [35], [36]
address the problem of controlling the packet generation rates
at the sources in order to optimize information freshness.

In this paper, we develop and implement a network ar-
chitecture that is optimized across the queueing discipline,
the multiple access mechanism, and the transmission schedul-
ing policy. A simplified version of WiFresh Real-Time was
introduced in our poster [1]. The main differences between
[1] and this paper are with respect to the scope and depth.

Fig. 3: AoI evolution for a single information source sending packets
to the remote monitor via the BS.

This paper presents an in-depth description of both WiFresh
Real-Time and WiFresh App. Moreover, it provides extensive
experimental results using two testbeds with different sizes
and different traffic loads.

III. BACKGROUND ON AOI

Consider a communication network in which packets are
time-stamped upon arrival. Naturally, the higher the time-
stamp, the fresher is the information contained in a packet. Let
τi(t) be the time-stamp of the freshest packet received by the
destination from source i by time t. The AoI associated with
source i is defined as ∆i(t) := t − τi(t). The AoI measures
the time elapsed since the generation of the freshest packet
received by the destination from source i. The value of ∆i(t)
increases linearly in time while no fresher packet from source i
is received, representing the information getting older. At the
moment a fresher packet is received by the destination, the
value of τi(t) is updated and ∆i(t) decreases to the packet
delay. The evolution of the age process is illustrated in Fig. 3.

The time-average expected age associated with source i is
given by

∫ T
t=0

E[∆i(t)]dt/T . From Fig. 3, we can see that to
keep the information at the destination as fresh as possible,
i.e. minimize the time-average expected AoI in the network, it
is necessary to simultaneously provide: i) low packet delay; ii)
high data throughput; and iii) service regularity1. To minimize
AoI, we consider the network as a whole and optimize the
system across the queueing discipline, the multiple access
mechanism, and the transmission scheduling policy. Next, we
discuss each of them in detail.

A. Queueing Discipline

The queueing discipline employed at the sources is central
for minimizing AoI. In this section, we compare FCFS and
LCFS queues and evaluate their performance in terms of
AoI. FCFS queues are widely deployed in communication
systems and they are the basis for other disciplines such as
Priority Queueing and Fair Queueing. FCFS queues transmit
packets in order of arrival, meaning that the freshest packet
is always placed at the tail of the queue. Under heavy loads,
the FCFS queue is often backlogged and the freshest packet
has to wait for a long queueing delay before being delivered

1It is important to emphasize the difference between delivering packets
regularly and providing a minimum throughput. In general, a given minimum
throughput can be achieved even if long periods with no delivery occur, as
long as those are balanced by short periods of consecutive packet deliveries.



Fig. 4: Expected delay, interdelivery time and average age of an
M/M/1 queueing system with service rate of µ = 1.

to the destination. The high queueing delay leads to stale
information at the destination and to high age. This effect
is more prominent for large FCFS queues, as discussed in
Sec. V-A.

LCFS queues are often considered in the AoI literature [12]–
[14], [16], [28], [37], but they are not commonly deployed in
communication systems. LCFS queues place the most recently
generated packet at the Head-of-Line (HoL), leading to sources
that transmit the freshest packet first, which makes LCFS
queues ideal for applications that rely on the knowledge of
the current state of the system, i.e. applications that need fresh
information at the destination. Under heavy loads, the LCFS
queue is frequently replacing its HoL packet with fresher pack-
ets. We expect that the higher the packet generation rate at the
sources, the lower the average age at the destination, regardless
of the queue backlog. LCFS queues are not commonly found
in communication systems. Not surprisingly, LCFS is not one
of the queueing discipline (qdisc) options in Linux nor in the
Software Defined Radios (SDRs) we utilized for implementing
WiFresh. In both cases, the standard queueing discipline is
FCFS.

Comparing FCFS and LCFS. Consider an M/M/1 queue-
ing system with infinite queue size, fixed packet service rate of
µ = 1 packet per second and variable packet generation rate
λ, employing either FCFS or LCFS discipline. In Fig. 4, we
display the time-average expected age for FCFS and LCFS,
the expected packet delay and the expected interdelivery time.
The analytical expressions for the AoI associated with FCFS
and LCFS queues were obtained in [19] and [12], respectively,
and the expressions for packet delay and interdelivery time can
be found in [38].

Choice of LCFS for WiFresh. From Fig. 4, we can see that
the minimum time-average age for FCFS queues is achieved
at moderate loads, in particular λ/µ ≈ 0.53, while for LCFS
queues the higher the packet generation rate λ, the lower
the average age. In addition, LCFS outperforms FCFS for
every packet generation rate λ. As discussed in Sec. II, LCFS
was shown to be the optimal queueing discipline in different
settings including single queue systems [12], [13], [28], single-
hop wireless networks [37] and multi-hop wireless networks
[14]. Thus, we propose to use the LCFS discipline in WiFresh.

Effect of dropping packets. LCFS queues transmit the
freshest packet first. Notice that when a packet with older
information is delivered to the destination after a packet with

Fig. 5: Illustration of the wireless network.

fresher information, the freshness of the information is not
affected and, thus, the value of ∆i(t) remains unchanged.
Hence, if packets with older information were dropped at
the source as soon as a fresher packet arrived to the LCFS
queue, the information freshness at the destination and the
evolution of ∆i(t) over time would not be affected. It follows
that, from the perspective of AoI, a LCFS queue is equivalent
to a head-drop FCFS queue of size 1 packet, in which only
the freshest packet is kept. The advantage of dropping older
packets at the source is saving communication resources. One
possible disadvantage is that dropped packets might contain
useful information. For example, in a position tracking system,
older packets can be used to predict future movement.

B. Multiple Access Mechanism

Consider the network in Fig. 5 with N sources sending time-
sensitive information to the remote monitor via the wireless
BS. Packets are generated at the sources and enqueued in
separate queues. The multiple access mechanism controls the
method utilized by each of the N sources for sharing the
common wireless channel. In this section, we compare two
types of multiple access mechanism, Random Access and
Polling, in terms of information freshness.

To capture the freshness of the information in the network,
we define the expected network AoI (NAoI) as

limT→∞
1
TN

∫ T
t=0

∑N
i=1 E [∆i(t)] dt , (1)

where T > 0 is the time-horizon. To minimize NAoI, the
multiple access mechanism should attempt to: i) provide high
communication efficiency by preventing packet collisions,
minimizing the effects of external interference, and reducing
control overhead; and ii) prioritize transmissions from sources
with high current age ∆i(t) and favorable channel conditions.

Random Access is a widely deployed class of multiple
access mechanisms, e.g. WiFi, ZigBee, Wireless Body Area
networks [39], and traditional cellular systems such as GSM.
The fundamental idea is that, when a source has a packet to
transmit, it uses a randomized algorithm to contend for channel
access. Randomization is employed to reduce the probability
of two or more sources transmitting packets simultaneously,
which would result in a packet collision. Some advantages
of Random Access are simplicity, decentralization and low
control signaling overhead. Some disadvantages are the prob-
ability of packet collision that increases with the number of
sources N , the susceptibility to external interference, and the
distributed operation that makes it challenging to implement a



dynamic transmission prioritization based on parameters such
as age ∆i(t) and/or current channel conditions.

Polling mechanism is a well-known alternative to Random
Access [40]. The BS coordinates the communication in the
network by sending poll packets to the sources selected for
transmission. The BS selects the next source to poll based
on the scheduling policy, which may be a function of dy-
namic parameters such as age ∆i(t) and/or current channel
conditions. The polling mechanism attempts to leverage all
the available communication resources, and it does not back-
off when transmission errors occur due to the unreliability of
the wireless channel or due to external interference. It is the
role of the scheduling policy to estimate the channel conditions
and adapt future scheduling decisions accordingly. The polling
mechanism attempts to maximize communication efficiency
and enables dynamic prioritization, making it suitable for
large-scale time-critical applications.

Two important challenges associated with polling mecha-
nisms are the control overhead and the choice of scheduling
policy. Control overhead: the BS transmits a poll packet
before receiving each data packet. In contrast, Random Access
may require that the BS transmit an acknowledgment packet
following the reception of each data packet. Hence, the con-
trol overhead of both mechanisms is comparable. Scheduling
policy: the BS dynamically chooses the next source to poll.
Evidently, a naive policy can degrade the performance. Next,
we discuss scheduling policies that are designed to optimize
the information freshness in the network.

C. Scheduling Policy

The problem of obtaining an optimal scheduling policy for
single-hop wireless networks in terms of information freshness
was shown in [23] to be NP-hard. Numerous heuristic policies
based on Approximate Dynamic Programming [25], Restless
Multi-Armed Bandits [17], [18] and Lyapunov Optimization
[15]–[18], [24] have been proposed in the literature. This
paper is the first to implement an AoI-based scheduling
policy in a real network. The Max-Weight policy is chosen
for WiFresh because it is intuitive, low-complexity and has
superior performance [16].

Max-Weight (MW) policy. Consider the network in Fig. 5
employing LCFS queues and a Polling mechanism. Assume
that t is the current decision time of the next poll packet. Let
pi ∈ (0, 1] be the channel reliability associated with source
i, namely the probability of a successful reception of a data
packet following the transmission of a poll packet to source
i. Let τHoL(t) be the time-stamp of the current Head-of-Line
packet from source i at time t and let Hi(t) := t − τHoL(t)
be the current system time of this HoL packet. Notice that
if this HoL packet were delivered to the BS at time t, then
Hi(t) would be the associated packet delay and the age would
be reduced from ∆i(t) to Hi(t), as illustrated in Fig. 3.
Hence, the difference ∆i(t) − Hi(t) represents the potential
age reduction of polling source i at time t. Assume that the
scheduling policy knows ∆i(t), Hi(t) and pi, and denote
I(i, t) := pi(∆i(t) − Hi(t))

2 as the index of source i at

time t. Then, the MW policy selects, at every decision time t,
the source i∗(t) with highest value of I(i, t), with ties being
broken arbitrarily. Intuitively, the MW policy is polling the
source with highest weighted potential age reduction. The
MW policy was developed in [16] where we also obtained
performance guarantees in terms of AoI. To implement the
MW policy in a real network, we augment WiFresh with
algorithms that estimate ∆i(t), Hi(t) and pi over time, as
described in Sec. IV-B.

IV. DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation
of WiFresh Real-Time and WiFresh App. Prior to delving into
the details, we describe the main challenges.

A. Challenges

Complexity of implementation. To achieve high perfor-
mance, the LCFS queues, the Polling mechanism, and the
MW policy were fully implemented in FPGAs with 10 MHz
clocks, enabling WiFresh Real-Time to make the scheduling
decision and trigger the transmission of the next poll packet
in approximately 20 microseconds. Keeping this time-interval
short and limiting the length of the poll packet are important
factors in reducing the control overhead and achieving high
performance. The main challenge of implementing WiFresh
Real-Time at the MAC layer is the complexity associated with
implementing numerous real-time functions using hardware-
level programming.

Barrier to adoption. Targeting an alternative implementa-
tion of WiFresh that could be easily integrated into applica-
tions that already run over WiFi such as [2]–[10], we propose
WiFresh App which is implemented in Python 3 and runs at
the Application layer, without modifications to lower layers of
the networking protocol stack. The main challenge of WiFresh
App is in the design of a Python application that is capable
of driving a standard WiFi network (with FCFS queues and
Random Access) to behave as WiFresh (with LCFS queues and
Polling mechanism with MW policy). This design is discussed
in Sec. IV-D.

Bridging theory and practice. Theoretical works on AoI
often assume that: 1) nodes are synchronized; 2) nodes gen-
erate packets on-demand or according to known stochastic
processes; 3) each node is associated with a single type of
information such as position, inertial measurements or images;
4) each data packet contains a complete information update;
5) channel reliabilities {pi}Ni=1 are fixed and known; and/or
6) system times of HoL packets {Hi(t)}Ni=1 are known. To
leverage the theory and implement an AoI-based network
architecture, we augment WiFresh with algorithms that syn-
chronize clocks, dynamically learn {pi}Ni=1 and {Hi(t)}Ni=1,
manage sources with multiple information types, and manage
packet fragmentation.

Fragmentation of information updates. The age is re-
duced when fresh information is received at the destination.
The evolution of ∆i(t), as described in Sec. III, assumes
that each data packet contains a complete information update.



Fig. 6: Layers of the WiFresh RT system (LHS) and WiFresh App
system (RHS).

To accommodate large information updates, such as images,
WiFresh has to manage packet fragmentation. Two issues are
discussed below.

The first issue is when to reduce the age ∆i(t). In general,
the age ∆i(t) can be reduced (or partially reduced) upon
reception of a subset of fragments. In this work, fragmentation
is used for transmitting images and, in this case, it makes
sense to reduce age only when all fragments are received.
The second issue is whether the LCFS queue should replace
the HoL packet as soon as a new information update arrives,
or if the LCFS queue should wait until all fragments from the
previous information update are delivered before replacing the
HoL packet. Notice that if information updates are generated
with a high rate, then replacing the HoL packet as soon as
a new information update arrives may hinder the complete
transmission of information updates. For this reason, in this
work, we choose to transmit all fragments before replacing the
information update at the LCFS queue.

WiFresh Real-Time runs at the MAC layer. Hence, it is blind
to the concept of information and can only see individual data
packets. This makes the process discussed above challenging
to implement. To overcome this problem, WiFresh Real-
Time could gather information regarding fragmentation from
other layers of the communication system. In this work, we
implement fragmentation only in WiFresh App, which runs
at the Application layer and is aware of information updates.
Recall that information updates are generated and received by
the Application layer.

B. Design of WiFresh Real-Time

In this section, we describe WiFresh Real-Time (WiFresh
RT) in detail. WiFresh RT is implemented at the MAC layer,
as illustrated in Fig. 6. Next, we describe the main functions
associated with the sources and the base station.

WiFresh RT source. The source generates information
updates in the Application layer and forwards them to lower
layers of the networking protocol stack. When a data packet
arrives at the MAC layer, WiFresh RT appends a time-stamp
to the packet and then stores it in a head-drop FCFS queue of
size 1 packet. Recall that this queue keeps only the freshest
packet and discards older packets. The source can be in one
of two states: 1) waiting for a poll packet from the BS; or 2)
transmitting the freshest data packet to the BS. Upon receiving
a poll packet, if the queue is empty, the source transmits an
empty packet to the BS. The empty packet is used by the BS to

differentiate between not receiving data due to a transmission
error or due to an empty queue at the source, which impacts
the estimation of pi and Hi(t) at the BS. After transmitting
either the data packet or the empty packet, the source goes
back to waiting for the next poll packet.

WiFresh RT Base Station. The BS does not generate
data packets. Its main responsibility is to coordinate the
communication in the network. The BS can be in one of
two states: 1) waiting for a data packet; or 2) transmitting
a poll packet. While waiting for a data packet, the BS keeps
track of the waiting period. If the waiting period exceeds 100
microseconds or a data packet is received, the BS updates its
estimate of the network state (∆̂i(t), Ĥi(t), p̂i(t))

N
i=1, where

∆̂i(t), Ĥi(t) and p̂i(t) are the estimates of ∆i(t), Hi(t) and
pi, respectively, at time t. These estimates are used by the MW
policy to calculate i∗(t) = arg max { p̂i(t)(∆̂i(t)− Ĥi(t))

2}.
After transmitting a poll packet to source i∗(t), the BS goes
back to waiting for the next data packet. The algorithms used
to estimate ∆i(t), pi and Hi(t) are discussed next.

Clock synchronization is needed to accurately compute
∆i(t) := t − τi(t), where t is the current time measured
by the BS and τi(t) is a time-stamp created by source i. If
clocks are not synchronized, the values of ∆i(t) for different
sources may have different biases, which may lead to poor
scheduling decisions by the MW policy. To estimate the time-
stamp offset between each source and the BS, and obtain the
estimates {∆̂i(t)}Ni=1, some possible approaches are: adding
GPS antennas to every source in the system and then using
GPS time; synchronizing the Operating System (OS) of every
source using the Network Time Protocol (NTP) [41] via the
Internet and then using the OS time; or implementing a
synchronization algorithm as part of WiFresh. In WiFresh RT
we use the OS time. In WiFresh App we implement a built-in
synchronization algorithm based on NTP.

Learning channel reliability. To estimate the value of pi ∈
(0, 1] associated with each source i, we implement a low-
complexity estimator. Let Pi(t) be the number of poll packets
transmitted to source i in the last W seconds and let Di(t)
be the number of data packets and empty packets successfully
received from source i in the same period. Then, the estimate
of pi at time t is given by p̂i(t) = (Di(t) + 1)/(Pi(t) + 1).
We choose a time window of W = 0.5 seconds. Notice that
when the number of poll packets Pi(t) is low, the estimate
p̂i(t) tends to be optimistic, i.e. higher. In particular, when
Pi(t) = Di(t) = 0, we have p̂i(t) = 1. This high value
of p̂i(t) when the number of poll packets is low creates an
incentive for the MW policy to select sources that have not
been polled recently.

To determine the changes in Di(t) and Pi(t) for each
source i over time, we log the transmission and reception
events within the window W using arrays. This log is created
at the on-board processor of the SDR (as opposed to the
FPGA) in order to spare the limited FPGA resources. The
disadvantage of keeping the log at the processor is the added
round-trip communication delay between on-board processor
and FPGA which is of approximately 500 microseconds.



Since p̂i(t) represents the average channel reliability in the
last W = 0.5 seconds, it follows that this relatively small
round-trip communication delay has a negligible impact on
the performance of the MW policy. The estimate of pi is the
only portion of WiFresh RT which is not fully implemented
at the FPGA.

Learning the system times. Recall that the difference
∆i(t)−Hi(t) represents the potential age reduction of polling
source i at time t and that the MW policy wishes to use this
difference for selecting the appropriate source to poll. The
problem is that the MW policy does not know the system
times of the HoL packets {Hi(t)}Ni=1, which are only known
by the respective sources, as illustrated in Fig. 5. One approach
for estimating Hi(t) could be to develop an algorithm that
generates estimates Ĥi(t) based on the entire history of
transmission and reception events, especially the sequence of
previously received time-stamps. The main drawback of this
approach is its computational complexity. A less accurate but
much simpler approach is to estimate Hi(t) based on the latest
received packet only. In particular, we know that when the
freshest data packet from source i is received at time t, the
potential age reduction of polling source i again at time t is
(most likely2) zero, which is represented by Hi(t) = ∆i(t).
Similarly, when an empty packet is received at time t, the
potential age reduction of polling source i again at time t is
(most likely) zero. Hence, we can estimate Hi(t) using the
following mechanism:
• Ĥi(t) ← ∆̂i(t) following the successful reception of a

data packet or an empty packet from source i at time t;
and

• Ĥi(t) remains constant over time while no packet is
received.

This low-complexity mechanism for obtaining Ĥi(t) prevents
the MW policy to repeatedly schedule the same source i with a
high age ∆̂i(t) and an empty queue. In Sec. V-C, we compare
the MW policy with the Maximum Age First (MAF) policy
which schedules the source i with highest current age ∆̂i(t),
disregarding the estimates p̂i(t) and Ĥi(t). We show that, as
expected, MW outperforms MAF in every experiment.

Estimation errors in ∆̂i(t), p̂i(t) and/or Ĥi(t) affect the
performance of WiFresh RT only when they result in poor
scheduling decisions. In Sec. V, we evaluate the performance
of WiFresh RT using the low-complexity mechanisms de-
scribed in this section and show that WiFresh RT achieves
low NAoI in a variety of network settings. Next, we discuss
the implementation of WiFresh RT.

C. Implementation of WiFresh Real-Time

We implement WiFresh RT in the SDR testbed in Fig. 1
composed of one NI USRP 2974 operating as the wireless
base station, and ten sources: seven NI USRP 2974 and three
NI USRP 2953R. The code is developed using a modifiable

2The potential age reduction of polling source i again at time t might be
greater than zero if source i generates a new data packet while the previous
data packet was being transmitted. We assume that this is an unlikely event
and neglect its effect.

WiFi reference design [42] with Transport layer based on UDP,
MAC layer based on the Distributed Coordination Function
(DCF), PHY layer based on the IEEE 802.11n standard with
center frequency 2.437 GHz, 20 MHz bandwidth and a fixed
MCS index of 5. We use this WiFi reference design as a
starting point to implement WiFresh RT.

The WiFi reference design is composed of two parts: the
Host code (running at the on-board Intel i7 6822EQ 2 GHz
Quad Core processor) and the FPGA code (running at the Xil-
inx Kintex-7 XC7K410T FPGA). The Host code is responsible
for the generation of data packets, radio configuration, and
displaying measurements and plots. The FPGA code is respon-
sible for processing data packets, generating control packets
(e.g. Clear-to-Send, Request-to-Send and Acknowledgments),
accessing the wireless channel using DCF, time management
(e.g. Interframe spaces and timeouts), etc. The FPGA code
allows us to implement real-time functions at the hardware
level. The FPGA clock is of 10 MHz, meaning that these
functions run at the microsecond time-scale. For implementing
WiFresh RT, we developed several new real-time functions at
the FPGA, including: 1) Polling mechanism; 2) Max-Weight
policy; 3) head-drop FCFS queue with size 1 packet; 4) time-
stamp processing; 5) learning algorithms; and 6) measurement
logs.

D. Design of WiFresh App

WiFresh App is an implementation of WiFresh that aims
to be easily integrated into time-sensitive applications that
already run over WiFi such as [2]–[10]. WiFresh App is im-
plemented in Python and runs at the Application layer, without
modifications to lower layers of the networking protocol stack,
as illustrated in Fig. 6. It is designed to drive a standard WiFi
network (with FCFS queues and Random Access) to behave
as WiFresh (with LCFS queues and Polling mechanism with
MW policy). WiFresh App contains all elements of WiFresh
RT and some additional features, namely fragmentation of
large information updates, a simple built-in synchronization
algorithm, and support for sources that generate multiple types
of information. Next, we describe WiFresh App.

WiFresh App source. The source generates information
updates at the Application layer. WiFresh App time-stamps the
information updates and stores them in a LCFS queue, which
is implemented using a Python LIFO stack. The LCFS queue
releases a single information update only when the source
receives a poll packet from the destination. If the released
information update fits into a single data packet, this informa-
tion update is encapsulated into a data packet and forwarded
to lower layers of the networking protocol stack. Otherwise,
the information update is fragmented, stored and the first data
packet is forwarded. Fragments are stored in a FCFS queue
which is separate from the LCFS queue containing information
updates. Upon receiving the next poll packet acknowledging
the first fragment, the source forwards the second fragment,
and so on, until all fragments are successfully delivered to
the destination. When the poll packet acknowledging the
final fragment is received, the LCFS queue releases the next



information update, which is then fragmented, stored and
transmitted following the same procedure.

When a fragment reaches the source’s MAC layer, WiFi
stores it in a FCFS queue and transmits it to the destination
using Random Access. Ideally, since the destination only
generates a new poll packet after the previous fragment is
received, there should be at most one source attempting trans-
mission using Random Access at any given time. This means
that, even when all sources are generating information updates
with a high rate, the underlying WiFi network is handling
one data packet at a time, leading to low packet delay and
low probability of packet collision. When transmission errors
occur, WiFi may attempt to retransmit the data packet. Notice
that by implementing LCFS queues and Polling mechanisms
with MW policy at the Application layer, WiFresh App is
driving the underlying WiFi network to behave as a WiFresh
network.

WiFresh App destination. Similarly to the WiFresh RT
Base Station, the destination in WiFresh App generates poll
packets, implements a timeout of 300 milliseconds, updates its
estimate of the network state (∆̂i(t), Ĥi(t), p̂i(t))

N
i=1, and uses

the MW policy to decide which source to poll next. The main
differences are that: 1) the scheduling decisions are made at
the Application layer at the millisecond time-scale, as opposed
to the MAC layer at the microsecond time-scale; and 2) the
destination manages the fragmentation procedure described
above, uses a built-in clock synchronization algorithm based
on the on-wire protocol that is part of NTP [41, Sec. 8]
to estimate the current age ∆̂i(t), and supports sources that
generate multiple types of information.

Multiple information types per source. The age is as-
sociated with a single type of information such as position,
inertial measurements or images. In a network with sources
that generate multiple types of information, we create for each
tuple (source, information type) a separate instance of WiFresh
App with independent LCFS queue, age ∆̂i(t), channel re-
liability p̂i(t), and system time Ĥi(t). The destination treats
each instance of WiFresh App at the sources as an independent
entity, and sends individual poll packets to each of them.

E. Implementation of WiFresh App

We implement WiFresh App in a Raspberry Pi (Raspi)
testbed composed of one desktop computer operating as the
destination, one Raspberry Pi 3B+ with a WiFi USB adapter
operating as the wireless BS, and twenty four sources: ten
Raspberry Pi 3B+ fetching data from sensors and fourteen
Raspberry Pi Zero W generating synthetic data that emulates
the sensors. For the measurements in Sec. V, sources are
static and placed indoors. The distance between sources and
destination is between 2 and 3 meters. In Fig. 1, we display
some of the sources3 and the three sensors described below:
• cameras (Arducam 5 Megapixels 1080p) generating jpg

images with resolution 256x144 pixels and size of approx-
imately 19 kbytes at a rate of 2 Hz.

3The remote control cars and battery packs are used for running tests
outdoors. The measurements discussed in this paper were performed indoors.

• Inertial Measurement Units (Pololu MinIMU-9 v5 Gyro,
Accelerometer, and Compass) generating information up-
dates of size 20 bytes at a rate of 100 Hz; and

• GPS units (Stratux GPYes 2.0 u-blox 8) generating infor-
mation updates of size 50 bytes at a rate of 1 Hz;

To create synthetic GPS data for indoor environments, we use
a NMEA sentence generator [43] that emulates the GPS unit.

The Raspberry Pis run the Raspbian Stretch OS and com-
municate via WiFi, in particular the IEEE 802.11g standard at
2.4 GHz. WiFresh App is implemented using Python 3. The
main functionalities we developed are: 1) Polling mechanism;
2) Max-Weight policy; 3) LCFS queue; 4) fragmentation man-
agement; 5) time-stamp processing; 6) learning algorithms;
7) interface with sensors; 8) synthetic generation of data
packets emulating each type of sensor; 9) graphical user
interfaces; and 10) measurement logs. The Transport, Network,
MAC and PHY layers were kept unchanged, as illustrated in
Fig. 6. WiFresh App is built over standard UDP, IP and WiFi
protocols.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of WiFresh in
a dynamic indoor office space with multiple external sources
of interference such as mobile phones, laptops and campus
WiFi base stations. We evaluate WiFresh RT and WiFresh
App, and compare them with other communication systems.
In particular, using the SDR testbed described in Sec. IV-C,
we compare:
• WiFresh RT: as described in Sec. IV-B;
• WiFresh RT FCFS: identical to WiFresh RT but with

sources employing FCFS queues;
• WiFi UDP FCFS: UDP over standard WiFi; and
• WiFi UDP LCFS: UDP over standard WiFi but with

sources employing LCFS queues instead of FCFS queues.
In addition, using the Raspi testbed described in Sec. IV-E,
we compare:
• WiFresh App: as described in Sec. IV-D;
• WiFresh Max. Age First (MAF): identical to WiFresh

App but with a scheduling policy that, at every decision
time t, selects the source i∗(t) with highest current age
∆i(t). The MAF policy was proposed in [17];

• WiFi UDP FCFS: UDP over standard WiFi;
• WiFi TCP FCFS: TCP over standard WiFi; and
• WiFi ACP FCFS: Age Control Protocol (ACP) over

standard WiFi. ACP is a Transport layer protocol recently
proposed in [11] that adapts the packet generation rate of
each source i in order to minimize the NAoI in Eq.(1).
Recall that in our testbed, the packet generation rate is
fixed and determined by the associated sensor. Hence, in
our implementation of ACP, we approximate the target
packet generation rate by regularly discarding some of the
packets before they reach the FCFS queue.

Next, we present experimental evaluations of WiFresh. Each
experiment runs for 10 minutes.



TABLE II: Single source measurements with the SDR testbed.

SDR WiFresh RT WiFi UDP FCFS

AoI (sec) Thr. (Mbps) AoI (sec) Thr. (Mbps)

λ = 5k 0.003 4.866 0.306 2.406
λ = 6k 0.003 4.905 0.304 2.433
λ = 7k 0.004 4.412 0.320 2.328

TABLE III: Single source measurements with the Raspi testbed.

Raspi WiFresh App WiFi UDP FCFS

AoI (sec) Thr. (Mbps) AoI (sec) Thr. (Mbps)

λ = 5k 0.040 0.229 224.8 1.242
λ = 6k 0.046 0.197 248.2 1.183
λ = 7k 0.042 0.208 242.3 1.281

A. Single Source with High Load

In this section, we consider a network with a destination,
a wireless BS and a single source generating packets of 150
bytes with rate λ ∈ {5, 6, 7} kHz. These short packets of
150 bytes represent status updates, and different values of λ
represent different levels of congestion. In Tables II and III, we
measure the time-average AoI (in seconds) and the effective
throughput (in Mbps). The effective throughput is measured
at the Application layer of the destination and, thus, it refers
to the number of useful bits received per second. In Table II,
we consider WiFresh RT and WiFi UDP FCFS in the SDR
testbed, and in Table III, we consider WiFresh App and WiFi
UDP FCFS in the Raspi testbed.

External interference. The results in Tables II and III
show that when the packet generation rate increases from
5 kHz to 7 kHz, the effective throughput does not change
significantly, indicating that sources with λ ≥ 5 kHz are
saturated, i.e. always have data to transmit. Table II shows that
the throughput of WiFresh RT is higher than the throughput of
WiFi UDP FCFS. This is because WiFresh RT does not back-
off when a transmission error occurs due to the unreliability of
the wireless channel or due to collisions with external wireless
networks, making WiFresh RT less susceptible to external
interference than WiFi UDP FCFS. Recall that WiFresh RT is
designed to support large-scale time-critical applications and,
to that end, it attempts to maximize its channel utilization.
In contrast, WiFresh App runs over standard WiFi, making
it as susceptible to external interference as WiFi UDP FCFS.
Table III shows that the throughput of WiFresh App is lower
than the throughput of WiFi UDP FCFS. The main reason for
the lower throughput is the control overhead associated with
running a Polling mechanism over standard WiFi. Notice that
acknowledgement packets follow the successful transmission
of every poll and data packets, thus increasing the control
overhead. Despite the lower throughput, WiFresh App signif-
icantly outperforms WiFi UDP FCFS in terms of AoI, as we
see next.

Queueing discipline. The results in Tables II and III show
that WiFresh RT and WiFresh App can improve age by two
orders of magnitude when compared to WiFi UDP FCFS. In
this single source scenario, the performance gain comes from
using LCFS instead of FCFS. In Fig. 7, we compare the age
∆i(t) evolution over time for systems employing FCFS and

Fig. 7: Age ∆i(t) evolution over time in the Raspi testbed with
λ = 6 kHz. On the LHS we have WiFi UDP FCFS and on the RHS
we have WiFresh App, which uses LCFS.

LCFS. Notice that a high packet generation rate λ degrades
the age ∆i(t) performance of the FCFS queue, and improves
the age performance of the LCFS queue.

Queue size. In all three WiFi UDP FCFS experiments in
Table III, the age ∆i(t) grows as in Fig. 7 throughout the entire
experiment, i.e. for 600 seconds, giving a time-average age of
at least 220 seconds. This result suggests that the FCFS queue
of the Raspberry Pi did not overflow, which would have helped
stabilizing the age. In contrast, in all three WiFi UDP FCFS
experiments in Table II, the FCFS queue4 overflows in the first
few seconds, limiting the age ∆i(t) growth and resulting in
a time-average age of around 0.3 seconds. This suggests that
smaller FCFS queues result in better age performance.

B. Network with Increasing Load

In this section, we consider a network with a destination, a
wireless BS and ten sources generating packets of 150 bytes
with rate λ. In Fig. 8(a), we display the NAoI measurements
(in milliseconds on a log scale) for the SDR testbed employing
the following communication systems: 1) WiFresh RT; 2) WiFi
UDP LCFS; 3) WiFresh RT FCFS; and 4) WiFi UDP FCFS.

By comparing the results of WiFresh RT and WiFi UDP
FCFS for λ ≥ 500 Hz, we can see that WiFresh RT improves
information freshness by (at least) a factor of 200 when com-
pared to an equivalent standard WiFi network. To understand
how much of this improvement is due to the queueing disci-
pline and how much is due to the multiple access mechanism,
we draw additional comparisons. By comparing WiFresh RT
and WiFi UDP LCFS, both of which use LCFS queues, we
can assess the impact of the multiple access mechanism on
NAoI. As expected, the improvement of Polling over Random
Access increases with the network congestion. In particular,
for λ = 5 kHz, WiFresh RT improves age by a factor of 7
when compared to WiFi UDP LCFS. To assess the impact of
queueing, we compare WiFresh RT and WiFresh RT FCFS,
both of which use Polling with MW policy. For λ ≥ 500 Hz,
the LCFS queue improves information freshness by (at least)
a factor of 100 when compared to the FCFS queue. Both
the queueing discipline and the multiple access mechanism
improve NAoI significantly, but the effect of queueing is clearly
dominant.

In Fig. 8(b), we display the expected NAoI measurements
(in seconds on a log scale) for the Raspi testbed employing

4The transmission queue of the SDR can store one megabyte of data.
Notice that for λ = 5kHz we are generating 0.75 megabyte per second.



(a) SDR testbed with N = 10 sources
generating packets of 150 bytes with
increasing rate λ.

(b) Raspi testbed with N = 10
sources generating packets of 150
bytes with increasing rate λ.

(c) Raspi testbed with increasing num-
ber of sources N generating position
information and images.

(d) Raspi testbed with increasing num-
ber of sources N generating position
information and inertial measurements.

Fig. 8: Time-average NAoI measurements for the SDR testbed and Raspi testbed shown in Fig. 1.

the following communication systems: 1) WiFresh App; and
2) WiFi UDP FCFS. The results in Fig. 8(b) show that for
λ ≥ 100 Hz, WiFresh App improves information freshness
by three orders of magnitude when compared to an equiva-
lent standard WiFi network. We note that WiFi UDP FCFS
performs differently in the Raspi and SDR testbeds due to
differences in the platforms, and in particular due to differences
in the FCFS queue sizes. The large FCFS queues at the
Raspberry Pis have a negative effect on WiFi UDP FCFS,
which amplifies the performance gain of WiFresh App at high
packet generation rates λ.

No need for congestion control. The results in Figs. 8(a)
and 8(b) show that the combination of LCFS queues and
Polling mechanism with MW policy is the only architecture
in which a higher rate λ leads to a lower NAoI, meaning that
the WiFresh architecture eliminates the need for controlling the
packet generation rate at the sources. Notice that any of the
other three architectures, which employ either FCFS queues
or Random Access, need to control λ in order to minimize
NAoI.

C. Network with Increasing Size

In this section, we consider a network with a destination,
a wireless BS and N sources, each source generates up to
three types of information updates: positions information of
50 bytes at 1 Hz, inertial measurements of 20 bytes at 100 Hz,
and images of 19 kbytes at 2 Hz. Notice that a network with
N physical sources can have up to 3N sources of information,
each source of information with its own independent instance
of WiFresh App.

In Figs. 8(c) and 8(d), we display the NAoI (in seconds
on a log scale) for the Raspi testbed employing the following
communication systems: 1) WiFresh App; 2) WiFresh MAF;
3) WiFi UDP FCFS; 4) WiFi TCP FCFS; and 5) WiFi
ACP FCFS. In Fig. 8(c), we consider sources generating
both position information and images, and in Fig. 8(d), we
consider sources generating both position information and
inertial measurements.

TCP over WiFi. The results in Figs. 8(c) and 8(d) show
that WiFi TCP FCFS has the worst performance in terms
of AoI. TCP provides reliable and in-order packet delivery
by requesting retransmissions and rearranging out-of-order
packets before forwarding them to the Application layer. Both
of these features can degrade information freshness, especially
when sources are generating packets at high rates.

ACP over WiFi. ACP dynamically adapts the packet gen-
eration rates at the sources (by regularly discarding some of
the packets) in order to drive the underlying WiFi network to
the point of minimum AoI. The results in Figs. 8(c) and 8(d)
show that, for N = 20, WiFi ACP FCFS improves NAoI by
a factor of four when compared to WiFi UDP FCFS; in turn
WiFresh App improves NAoI by (at least) a factor of forty
when compared to WiFi UDP FCFS.

Impact of scheduling policy. The only difference between
WiFresh App and WiFresh MAF is the scheduling policy.
MAF schedules the source with highest value of ∆̂i(t), and
neglects information about channel conditions p̂i(t) and about
the HoL packet at the source’s queue Ĥi(t). For this reason,
MAF can often poll sources with poor channel condition or
an empty queue, what degrades its NAoI performance. This
is a main reason for the performance gap between WiFresh
MAF and WiFresh App in Figs. 8(c) and 8(d).

Impact of traffic load. The results in Fig. 8(c) show that
for N ≥ 16, WiFresh App improves NAoI by a factor of 65
when compared to WiFi UDP FCFS, and by a factor of 230
when compared to WiFi TCP FCFS. The results in Fig. 8(d)
show that for N ≥ 16, WiFresh App improves information
freshness by a factor of 20 when compared to either WiFi UDP
FCFS or WiFi TCP FCFS. The improvement is more evident
in Fig. 8(c) since cameras generate more traffic than IMUs. In
particular, the camera generates approximately 304 kbits per
second per source while the IMU generates approximately 16
kbits per second per source.

Summary. From the measurements in this section, we
can see that: 1) the more congested the network, the more
prominent is the superiority of WiFresh when compared with
WiFi in terms of NAoI; 2) the average NAoI in a WiFresh
network scales gracefully with the packet generation rate λ,
as seen in Sec. V-B, and with the number of sources N , as
seen in Sec. V-C; and 3) WiFresh RT achieves the highest
performance in terms of throughput and average NAoI, while
WiFresh App achieves high performance and can be easily
integrated into time-sensitive applications that already run over
WiFi, as discussed in Sec. IV-D.

VI. FINAL REMARKS

In this paper, we propose WiFresh: an unconventional
network architecture that scales gracefully, achieving near
optimal information freshness in wireless networks of any size
N , regardless of the level of congestion λ, even when the



network is overloaded. The superior performance of WiFresh
is due to the combination of three elements: Last-Come
First-Served queues, Polling Multiple Access mechanism, and
Max-Weight scheduling policy. The choice of each of these
elements is underpinned by theoretical research. We propose
and realize two strategies for implementing WiFresh: WiFresh
Real-Time, which is designed to maximize performance, and is
implemented at the MAC layer in a network of FPGA-enabled
SDRs using hardware-level programming; and WiFresh App
which is designed to lower the barriers to adoption, and is
implemented at the Application layer, without modifications
to lower layers of the networking protocol stack, in a network
of Raspberry Pis using Python 3. WiFresh App runs over
UDP and standard WiFi, making it easy to integrate into
time-sensitive applications that are implemented using WiFi
such as [2]–[10]. Our experimental results show that WiFresh
can improve the expected network AoI by two orders of
magnitude when compared to an equivalent standard WiFi
network. Moreover, our results show that the more congested
the network, the more prominent is the superiority of WiFresh
when compared with WiFi in terms of information freshness.

ACKNOWLEDGMENTS

We thank Mohammad Alizadeh and Ping-Chun Hsieh for
their helpful suggestions and feedback. This work was sup-
ported by NSF Grant CNS-1713725 and by Army Research
Office (ARO) grant number W911NF-17-1-0508.

REFERENCES

[1] I. Kadota, M. S. Rahman, and E. Modiano, “Poster: Age of information
in wireless networks: from theory to implementation,” in Proc. of ACM
MobiCom, 2020.

[2] P. Valerio, “Amazon robotics: IoT in the warehouse,” online:
https://www.informationweek.com/strategic-cio/amazon-robotics-iot-in-
the-warehouse/d/d-id/1322366, 2015.

[3] J. Gozalvez, M. Sepulcre, and R. Bauza, “IEEE 802.11p vehicle to
infrastructure communications in urban environments,” IEEE Commu-
nications Magazine, 2012.

[4] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager,
and D. Rus, “Distributed multi-robot formation control in dynamic
environments,” Autonomous Robots, 2019.

[5] P. Urcola, M. T. Lázaro, J. A. Castellanos, and L. Montano, “Cooperative
minimum expected length planning for robot formations in stochastic
maps,” Robotics and Autonomous Systems, 2017.

[6] F. Mascarich, H. Nguyen, T. Dang, S. Khattak, C. Papachristos, and
K. Alexis, “A self-deployed multi-channel wireless communications
system for subterranean robots,” in Proc. of IEEE AeroConf, 2020.

[7] N. Mahdoui, V. Frémont, and E. Natalizio, “Communicating multi-UAV
system for cooperative SLAM-based exploration,” Journal of Intelligent
& Robotic Systems, 2020.

[8] M. T. Lázaro, L. M. Paz, P. Pinies, J. A. Castellanos, and G. Grisetti,
“Multi-robot SLAM using condensed measurements,” in Proc. of
IEEE/RSJ IROS, 2013.

[9] L. Matignon and O. Simonin, “Multi-robot simultaneous coverage and
mapping of complex scene - comparison of different strategies,” in Proc.
of ACM AAMAS, 2018.

[10] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, “FarmBeats: An IoT
platform for data-driven agriculture,” in Proc. of NSDI, 2017.

[11] T. Shreedhar, S. Kaul, and R. D. Yates, “An age control transport
protocol for delivering fresh updates in the internet-of-things,” in Proc.
of IEEE WoWMoM, 2019.

[12] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. IT,
2016.

[13] S. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,”
in Proc. of IEEE CISS, 2012.

[14] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in
multihop networks,” IEEE/ACM ToN, 2019.

[15] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness
and synchrony: Drift-based design and heavy-traffic analysis,” in Proc.
of IEEE WiOpt, 2017.

[16] I. Kadota and E. Modiano, “Minimizing the age of information in
wireless networks with stochastic arrivals,” in Proc. of ACM MobiHoc,
2019.

[17] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM ToN, 2018.

[18] Y. Sun, I. Kadota, R. Talak, and E. Modiano, Age of Information: A
New Metric for Information Freshness. Morgan & Claypool, 2019.

[19] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. of IEEE INFOCOM.

[20] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. of IEEE ISIT, 2015.

[21] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong, “Timely updates over
an erasure channel,” in Proc. of IEEE ISIT, 2017.

[22] P. Mayekar, P. Parag, and H. Tyagi, “Optimal lossless source codes for
timely updates,” in Proc. of IEEE ISIT, 2018.

[23] Q. He, D. Yuan, and A. Ephremides, “Optimizing freshness of informa-
tion: On minimum age link scheduling in wireless systems,” in Proc. of
IEEE WiOpt, 2016.

[24] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM ToN, 2018.

[25] Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and
analysis of optimal scheduling algorithms,” in Proc. of IEEE ISIT, 2017.

[26] R. Talak, S. Karaman, and E. Modiano, “Optimizing information fresh-
ness in wireless networks under general interference constraints,” in
Proc. of ACM MobiHoc, 2018.

[27] S. Kaul and R. D. Yates, “Status updates over unreliable multiaccess
channels,” in Proc. of IEEE ISIT, 2017.

[28] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,
“Age of information of multiple sources with queue management,” in
Proc. of IEEE ICC, 2015.

[29] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” in IEEE INFOCOM workshop, 2018.

[30] C. Kam, S. Kompella, and A. Ephremides, “Experimental evaluation of
the age of information via emulation,” in Proc. of IEEE MILCOM, 2015.

[31] E. Altman, R. El-Azouzi, D. S. Menasche, and Y. Xu, “Forever young:
Aging control for hybrid networks,” in Proc. of ACM MobiHoc, 2019.

[32] A. Franco, E. Fitzgerald, B. Landfeldt, N. Pappas, and V. Angelakis,
“LUPMAC: a cross-layer MAC technique to improve the age of infor-
mation over dense WLANs,” in Proc. of IEEE ICT, 2016.

[33] A. Baiocchi and I. Turcanu, “A model for the optimization of beacon
message age-of-information in a VANET,” in Proc. of ITC, 2017.

[34] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,” Foundations and Trends in Networking, 2017.

[35] C. Sönmez, S. Baghaee, A. Ergişi, and E. Uysal-Biyikoglu, “Age-of-
information in practice: Status age measured over TCP/IP connections
through WiFi, ethernet and LTE,” in Proc. of IEEE BlackSeaCom, 2018.

[36] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. of IEEE SECON, 2011.

[37] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of
information through queues,” IEEE Trans. IT, 2019.

[38] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, 2013.

[39] K. S. Kwak, S. Ullah, and N. Ullah, “An overview of IEEE 802.15.6
standard,” in Proc. of the IEEE ISABEL, 2010.

[40] E. Biton, D. Sade, D. Shklarsky, M. Zussman, and G. Zussman,
“Challenge: CeTV and Ca-Fi - cellular and Wi-Fi over CATV,” in Proc.
of ACM MobiCom, 2005.

[41] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol
version 4: Protocol and algorithms specification,” Internet Requests for
Comments, RFC 5905, 2010.

[42] N. Instruments, “LabVIEW communications 802.11 application frame-
work 3.0,” online: http://www.ni.com/manuals/, 2019.

[43] D. Assencio, “Nmea generator,” online: https://nmeagen.org/, 2016.


