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Markov Bandit Process

* MDP on a countable state space, where &(t) € {&5, ..., &k} is the state of the
bandit at the discrete decision time t € {0,1,2, ... }.

* Controls applied at decision time t :
* u(t) = 0 freezes the process and gives no reward;

* u(t) = 1 continues the process and gives instantaneous reward a‘r(é(t)).

State Transitions
are instantaneous

with P(¢"[¢)
when u(t) = 1.

[States of the bandi
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a € (0,1) is the
discount factor

r(.) > 0is the
bounded reward



Simple Family of Alternative Bandit Processes

* n Markov Bandit Processes with state space E = E;XE, X--XE,.

* Notice that ‘L_?)| is exponential on the number of bandits.

* Control u(t) = 1is applied to a single bandit i; at each decision time t.
* Control u(t) = 0 is applied to all other bandits.

u(t) = 0 u(t) = 1 u(t) = 0
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Simple Family of Alternative Bandit Processes

* n Markov Bandit Processes with state space E = E;XE, X--XE,.

* Notice that ‘L_?)| is exponential on the number of bandits.

* Control u(t) = 1is applied to a single bandit i; at each decision time t.
* Control u(t) = 0 is applied to all other bandits.

* Sequence of selected bandits {iq, i,...} .

* State of the selected bandit i; at each decision time t: §; (t) = ¢;,.

* Reward accrued from the selected bandit: atrit(fit) .

* Transition probability P;, (€’|€it) . All other bandits remain in the same state.



Objective Function

* Problem: sequentially allocate effort between different processes to maximize
the infinite-horizon expected discounted sum of rewards.

* Maximize: (T—1
J2(&) = lim z ar;, (&;,) £0) =¢
| t=0

* At time £, we know the state 4? = [&4, ..., &,], the probabilities P;(&'|¢;),
the discount factor a and the reward function r;(. ) for each bandit.



Example 1

* Consider 2 bandits, each evolving according to a deterministic state sequence.

o C d e f g h
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Example 1

* Consider 2 bandits, each evolving according to a deterministic state sequence.

a b C d e f g h

* Let the sequences provide the rewards below:
e Bandit1: {10,9,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,2,1,0,0,0,..}

* What is the policy that maximizes lim IE[Z{;(} atrit(fit)] ?

T — 00



Example 1

* Consider 2 bandits, each evolving according to a deterministic state sequence.

a b C d e f g h

* Let the sequences provide the rewards below:
e Bandit1: {10,9,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,2,1,0,0,0,..}

* What is the policy that maximizes lim IE[Z{;(} atrit(fit)] ?

T — 00

10a® + 9a! + 8a? + 7a® + 6a* + 5a° + -



Example 2

 Consider the modification below:
e Bandit1: {10,2,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,9,1,0,0,0,..}

4 ’ 4

* What is the policy that maximizes Th_r)rolo IE[Z{;& atrit(€it)] ?

“Future is not so important”

Policy 1:  10a® +?a' + ?a* + ?a® + ?a* + ?a® + ?a® + --- (a =0.1)



Example 2

 Consider the modification below:
e Bandit1: {10,2,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,9,1,0,0,0,..}

4 ’ ’

* What is the policy that maximizes Th_r)lgo IE[Z{;Ol atrit(fit)] ?

“Future is not so important”

Policy 1:  10a® + 5a' + 4a? + 3a3® + 9a* + 2a® + 8a® + -

(a=0.1)
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Example 2

e Consider the modification below:

e Bandit1: {10,2,8,7,6,0,0,0, ..
e Bandit2: {5,4,3,9,1,0,0,0,..}

}

4 ’ ’

* What is the policy that maximizes Th_r)lgo IE[Z{;Ol atrit(fit)] ?

Policy 1:

Policy 2:

“Future is not so important”

10a® + 5at + 4a® + 3a3® + 9a* + 2a® + 8a® + -

“Future is (almost) as important as the present”

10a® + 2at + 8a? + 7a3® + 6a* + 5a> + 4a® + -

(a=0.1)

(a = 0.9)
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Example 2

 Consider the modification below:
e Bandit1: {10,2,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,9,1,0,0,0,..}

4 ’ ’

* What is the policy that maximizes Th_r)lgo IE[Z{;Ol atrit(fit)] ?

“Future is not so important”

Policy1:  10a® + 5a! + 4a* + 3a® + 9a* + 2a> + 8a® + --- (a =0.1)

“Future is (almost) as important as the present”

Policy2:  10a + 2a' + 8a? + 7a® + 6a* + 5a° + 4a® + - (a = 0.9)

“Future is somewhat important”

Policy3:  10a + 5a! + 2a? + 8a® + 7a* + 6a® + 4a® + - (a = 0.5)



Gittins Index

Multi Armed Bandit Problem

(open problem for almost 40 years)



Index Policy

* Objective is to Maximize:

T—1
J(&) = lim [ 2 a'r;, (&;,) E0) =¢
=0

* Index Theorem: Optimal policy for this problem is an Index policy.

* Index policy: there exists a function v;(&;), computed separately for each

bandit, such that, for every state 5, the optimal policy continues the bandit:

i, = argmax {v;(&;)}
1e{1,...n}

Notice that computing the index is simple, for it only depends on the parameters
associated with a single bandit. But how such function should be designed?



Derivation of the Index

* How to design a function v;(§;) that encodes the value of choosing bandit i ?

e Value: present reward + future expected rewards

 How to consider future reward? Future reward is the expected value of choosing
bandit i forever? Or up until a given horizon? How to characterize this horizon?



Derivation of the Index — Single bandit with charge

e Consider a single bandit i with a “playing charge” of A.

* Optimal Policy is a stopping rule.
e if at time 7 it is optimal to stop, at time 7 + 1 it is also optimal to stop.



Derivation of the Index — Single bandit with charge

e Consider a single bandit i with a “playing charge” of A.

* Optimal Policy is a stopping rule.
e if at time 7 it is optimal to stop, at time 7 + 1 it is also optimal to stop.

 Optimal Reward:

]
[

J(&) = mgxfn(fi) = sup E at[r;(&;(t)) — 21| &:(0) = ¢&;
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Derivation of the Index — Single bandit with charge

e Consider a single bandit i with a “playing charge” of A.

* Optimal Policy is a stopping rule.
e if at time 7 it is optimal to stop, at time 7 + 1 it is also optimal to stop.

 Optimal Reward:

]
[

J(&) = mgxfn(fi) = sup E at[r;(&;(t)) — 21| &:(0) = ¢&;

>0
0

1
(g
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* For every ¢;, there is a A such that there is a null reward for playing:

J(&) =0



Derivation of the Index — Single bandit with charge

* For every ¢;, there is a A such that there is a null reward for playing:
(7—1 T
JE) = supE| ) atlr(5(0) — 41| £(0) = & [ = 0
>
t=0

* Notice that /(&;) is convex and decreasing on A. Thus, it has a single root which
is the Gittins Index, v;(&;), given by:

_ E [ ?23 at r;(&;(t)) | &(0) =¢;] Details
vi§i) = sup——p= 1 4 [£,(0) = & ] >

* This v;(&;) is called the fair charge during state ¢;.
* This is the charge that makes it equally desirable to play and to stop. E 20



Gittins Index

e Going back to the Simple Family of Alternative Bandit Processes with n bandits
and no playing charge. The Gittins index associated with bandit i in state ¢; is

0 (&) = sup[E [ Y20 at ;i (§:(8) & (0) =& ]
Y S0 E[Xizs ab [&(0) =¢; ]
where T is the stopping-time.
* Numerator is the discounted REWARD up to time 7.

* Denominator is the discounted TIME up to time .



Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time .
Reward 5 2 9 7 2 3 5

* For a = 0.5: “Future is somewhat important”

T 1 2 3 4 5 6 7/

vi(fi’ T) 5.00




Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time .
Reward 5 2 9 7 2 3 5

* For a = 0.5: “Future is somewhat important”

T 1 2 3 4 5 6 7/

vi(fi’ T) 5.00 4.00




Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time .
Reward 5 2 9 7 2 3 5

* For a = 0.5: “Future is somewhat important”

T 1 2 3 4 5 6 7/

v;(&;,T) 5.00 4.00 4.714 4.867 4.774 4.746 4.748




Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time .
Reward 5 2 9 7 2 3 5

* For a = 0.5: “Future is somewhat important”

T 1 2 3 4 5 6 7/

v;(&;,T) 5.00 4.00 4.714 4.867 4.774 4.746 4.748




Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time .
Reward 5 2 9 7 2 3 5

 For a = 1: “Future is as important as the present”

T 1 2 3 4 5 6 7/

v;(§;,T) 500 3.50 5.33 575 500 467 4.71




Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 E | ’5;3 at | £(0) = & |

* Numerator is the discounted REWARD up to time .
* Denominator is the discounted TIME up to time 7.
* v;(&;) a maximum reward per unit time (maximum “reward density”).

* Interpretation from [1]: “greatest per period rent that one would be willing to
pay for ownership of the rewards arising from the bandit as it is continued for
one or more periods.”

[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



Gittins Index
v (&) = SUpIE [ YI25 at r;(&;(1) | &(0) = & ]
i\Si >0 [E [Zg;g at | £(0) = & |

* Numerator is the discounted REWARD up to time .

* Denominator is the discounted TIME up to time 7.
* v;(&;) a maximum reward per unit time (maximum “reward density”).

* Interpretation from [1]: “greatest per period rent that one would be willing to
pay for ownership of the rewards arising from the bandit as it is continued for
one or more periods.”

* GITTINS INDEX POLICY chooses the bandit with highest v;(&;) at every
decision time t.




Remarks

* In supplemental slides we have the proof that the Gittins Index Policy is optimal.
( adapted from [4] ).

 This proof is instructive because: 1) provides insight into why the Gittins Index
Policy is optimal; and 2) provides insight into why it is NOT optimal for the
restless case;

* Main ideas in the proof:
* We always choose the bandit with larger current reward density value.

* There is no “opportunity cost” since other bandits are frozen.

[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.



Remarks

* In supplemental slides we have the proof that the Gittins Index Policy is optimal.
( adapted from [4] ).

 This proof is instructive because: 1) provides insight into why the Gittins Index
Policy is optimal; and 2) provides insight into why it is NOT optimal for the
restless case;

* Main ideas in the proof:

* We always choose the bandit with larger current density value.

* There is no “opportunity cost” since other bandits are frozen.

Breaks down when bandits are restless, as we see next...

[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.



Whittle Index

Restless Multi Armed Bandit Problem



Restless Multi Armed Bandit Problem

 Whittle extends the notion of index to restless bandits.

* Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the actionu =1
Formally, u;(t) € {0,1},Vi,t and X ,u;(t) =m,Vt



Restless Multi Armed Bandit Problem

 Whittle extends the notion of index to restless bandits.
* Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the actionu =1
Formally, u;(t) € {0,1},Vi,t and X ,u;(t) =m,Vt

2. Action u = 0 no longer freezes the bandit.
They evolve (possibly) in a distinct way than when u = 1.
They accrue reward (possibly) in a distinct way than when u = 1.

Use cases: work/rest and  high speed / low speed.




Three Optimization Problems

* [Original]. Original Problem: maximize 711_1330 E| Zz_ol at 27{;1 1 (& uy)]

s.t. i ui(t) =m, Vvt
u;(t) € {0,1}, Vi



Three Optimization Problems

* [Original]. Original Problem: maximize Tll_r)glo E| Zz_ol at 27{;1 1 (& uy)]

s.t. i ui(t) =m, Vvt
u;(t) € {0,1}, Vi

* [Relaxed]. Problem with Relaxed activation constraint.
Yicoat Xic ui(t) =m/(1—a)



Three Optimization Problems

* [Original]. Original Problem:  maximize Thm E[Yfzg at X ri(é,u)]

s.t. i ui(t) =m, Vvt
u;(t) € {0,1}, Vi

* [Relaxed]. Problem with Relaxed activation constraint.
Yizoa' Nizui(t) =m/(1—a)
 [Lagrange]. The Lagrange Dual Function is given by:
L(A) = maximize hm IE[ “daty o (rELu) — Aw ()] + Am/(1 — a))
s.t. u;(t) € {0,1}, Vi



Decoupling the [Lagrange] Problem

* [Lagrange]. The Lagrange Dual Function is given by:
£(2) = maximize lim E[YIL,; 3{=0 a* (r;(&;, w) — 2w (D)) + A(m/(1 — a))
s.t. u;(t) €{0,1}, Vi

* Notice that we can decouple this problem and neglect the last term (constant).
Then, for a fixed A = 0 and for each bandit, we have:

[Decoupled Problem]
maximize hm ]E[ +=0 Lat (‘ri(fi,ui) — /Wi(t))]

s.t. u;(t) €{0,1},Vi [Similar to Gittins!]



Solution to the Decoupled Problem

* Main difference when compared to the MAB problem is that passive bandits
may change state and accrue reward. Thus, the optimal policy for the
Decoupled Problem may NOT be a stopping rule.



Solution to the Decoupled Problem

* Main difference when compared to the MAB problem is that passive bandits
may change state and accrue reward. Thus, the optimal policy for the
Decoupled Problem may NOT be a stopping rule.

* In general, the optimal policy divides the state space into two subsets:

* Let P(A) be the set of ALL states for which it is
optimal to idle when the playing charge is A. State Space with A

* The set P(A) is characterized by the solution of (Passive)
the Decoupled Problem.

* Optimal Policy: play, if ¢; € jDC(/l); stop, otherwise. 4 (Active)




Indexability

* Definition of Indexability: The Decoupled Problem associated with bandit i is
indexable if P (1) increases monotonically from @ to the entire state space as 4
increases from 0 to +o0o0. The RMAB problem is indexable if the Decoupled
Problem is indexable for all bandits.

Low A Increasing A High 1

(Passive) (Passive (Passive)
(Active) (Active) 4 (Active)

 Means that if a bandit is rested with A, it should also be rested when A’ > A.



Whittle Index

* Definition of Index: Consider the Decoupled Problem and denote by v;(¢;)
the Whittle Index in state &;. Given indexability, v;(&;) is the infimum playing
charge A that makes it equally desirable to play and to stop in state ¢;.

* Recall that this definition of index is the same as for Gittins. (slide 20)

>

Increase A Until A’ is such that
(Passive (Passive)
‘I
o
(Active) (Active)

$i $i - Then v;($;) = A’



Whittle Index Policy

* Going back to our [Original] problem:
* At each time t, exactly m out of n bandits are given the actionu =1
* There is no “playing charge” A.

* The Whittle Index Policy is one that, at every decision time t, selects the m
bandits with higher values of v;(¢;).

* The Index Policy is a low-complexity heuristic that has been extensively used in
the literature and is known to have a strong performance in a range of
applications.



Whittle Index Policy

* The challenge associated with this approach is that the Index Policy is only
defined for problems that are indexable, a condition that is often difficult to
establish. Moreover, it is often hard to find a closed-form expression to v;(¢;).

* Notice that if our RMAB problem is actually a MAB, then Whittle = Gittins.
Thus, in this case, Whittle is optimal.



Application of Whittle Index

Age-of-Information Minimization Problem

[7] |. Kadota, “Age-of-Information in Wireless Networks: Theory and Implementation”, PhD thesis, 2020.



System Model

Sources (or Bandits) always
have packets to transmit

Unreliable transmissions
on a shared wireless
channel

Weight w; > 0 represents priority of source i
Probability p; € (0,1] represents quality of the link

slot

slot

45



Original Problem

Goal: find a transmission scheduling policy =* that minimizes

( )

-~

1
min< lim —
Tell T—oo TN

M'ﬂ
Mz

w;E[h] (t)]

(o
I

11

\
N
S. t. Zu?(t) =1,Vt

=1
u(t) € {0,1}, Vi

Il
[y

J



Relaxed Problem

Goal: find a transmission scheduling policy =* that minimizes

( 1 T N )

. . . ) 1.1'
min im0, 2, W Ol
L t=1i=1 y

1 v 1

1 )] < —

-t TNZZE[U‘ OIS

t=11=1

u(t) € {0,1}, Vi



Lagrange Dual Function

Goal: find a transmission scheduling policy =* that minimizes

£(A) = min{ lim —z Z(w E[h"(£)] + AE[u ”(t)])

eIl T—>Oo TN

S. t. u”(t) e {0,1}, Vi

Notice that the problem can be decoupled...




Decoupled Problem

Goal: find a transmission scheduling policy =* that minimizes

f

T )
1

min< lim — E (w;E[h{ (t)] + AE[u;* (t)])
T t=1

-~

mrell T —>co
\

y,
s.t. u' (t) € {0,1}, Vi

A=0

Optimal policy?



Decoupled Problem

Goal: find a transmission scheduling policy =* that minimizes

( T
min< lim %tzl(wiIE[h’f(t)] + AE[u (t)])

mrell T —>co
\

s.t. u' (t) € {0,1}, Vi
A=0

The optimal policy " has a threshold structure, namely
transmits when h}’(t) = H ; and
idles when h{'(t) < H — 1

\

-~

J



Solution to the Decoupled Problem

* The stationary scheduling policy that solves the Decoupled Problem is a
threshold policy that, in each decision time t:

e transmits when h}'(t) = H ; and
* idles when h'(t) < H — 1,

where

3 1 (1 1)2 22
H=|=——4+ |[==Z) +
p; 2 W;Dp;




Indexability

* For a given value of 1 = 0, the set P (1) of states h;'(t) in which the threshold
policy idles is given by

P(L) = {h™(t) € {1,2,3, .. )}hT(t) < H — 1}

where

3 1 (1 1)2 22
H=|=——+ |[==Z) +
p; 2 W;Dp;




Indexability

* For a given value of 1 = 0, the set P (1) of states h;'(t) in which the threshold
policy idles is given by

P(L) = {h™(t) € {1,2,3, .. )}hT(t) < H — 1}

where

3 1 (1 1)2 22
H=|=——+ |[==Z) +
p; 2 W;Dp;

* Notice that as A increases from 0 to 4+, the value of H increases from H = 1
to H — oo and, thus, P (A1) increases from P(1) = @ to the entire state space.

* Hence, the Decoupled Problem is indexable for all i € {1,2, ..., N}.



Whittle’s Index

* The index v; (h{ (t)) is the infimum playing charge A that makes it equally
desirable to play and to stop in state h;* (t).

* For both scheduling decisions to be equally desirable in state h}'(t), the
threshold should be H = h;'(t) + 1. Hence, by substituting

3 1 (1 1)2 22
H=|-——+ |[==2) +
2 P \\Pi 2 W;Dp;

we obtain the index in closed-form:

b (W (1)) = w;p;h; (t)[

hi'(t) + — — 1]
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General Bandit Process



Bandit Process

* Bandit process is a special type of semi-Markov decision process.
* Continuous time and a succession of (random) decision times tq, t,, t3, ...
* Same controls applied at decision times

* u(t;) = 0 freezes the process and gives no reward.
Time t; + 0 is another decision time.

* u(t;) = 1 continues the process and gives instantaneous reward atir(x(tl-)).
Time t; + s is another decision time, where s is drawn from F(s|y, x).

where x(t) is the current state, y is the next state, a € (0,1) is the discount factor
and r(.) is the positive (and bounded) reward .

* State Transitions are instantaneous with P(y|x).

* Markov bandit process is a Bandit Process with discrete decision times t={0,1,...}

J |




Gittins Index — Proof



Gittins Index — Proof

e Consider a single bandit i with a “playing charge” of A.

* Optimal Policy is a stopping rule.
e if at time 7 it is optimal to stop, at time 7 + 1 it is also optimal to stop.

 Optimal Reward:

]
[

J(&) = mgxfn(fi) = sup E at[r;(&;(t)) — A]| &:(0) = ¢

>0
0

1
(g
Il

e Optimal Policy:

At every decision time, calculate J(&;):

Play, if J(&;) = 0 : Stop, otherwise. %




Gittins Index — Proof

* For every ¢;, there is a A such that there is a null reward for playing:
(7—1 T
JE) = supE| ) atlr(5(0) — 41| £(0) = & [ = 0
>
t=0

* Notice that /(&;) is convex and decreasing on A. Thus, it has a single root which
is the Gittins Index, v;(&;), given by:

_ E [ ?23 at r;(&;(t)) | &(0) =¢;] Details
0= o0 E[Xis) at [§(0) =& 13

* This v;(&;) is called the fair charge during state ¢;.
* This is the charge that makes it equally desirable to play and to stop. @




Gittins Index — Proof

 Suppose that at time t = 0 we are in state &; with a fair charge of v;(¢;) .

o If we set 1 = v;(£;) and play bandit i optimally, we expect 0 profit.

e Optimal play is not profitable nor loss-making.
* If we deviate from the optimal policy, then we expect loss.

* What is the optimal policy in this case? (Stopping rule)

Set charge to FAIR CHARGE Stopping time.
‘1' Expected cumulative profit =0

slots
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Gittins Index — Proof

 What if at the stopping time, we reset the charge.

* At the stopping time, instead of stopping, we reset the charge to v;(&;) and
continue playing.
* If we do this repeatedly, the expected profit would still be ZERO.
* The bandit is continuously playing a fair game with optimum policy.

Set charge to FAIR CHARGE Expected cumulative profit=0
‘1' f Reset the charge to v;(§;)

slots

64



Gittins Index — Proof

* Notice that as the game evolves, the charge is reset several times.
* Let 4;(t) be the current fee and v;(¢;) the calculated fair fee.

* 1;(t) is non-increasing and is equal to the minimum fair charge “so far”.

Optimal Policy is to always play.

>

l o Total Expected Reward is ZERO.




Gittins Index — Proof

* Consider n bandits, each with a different initial state ¢;.

* We set each initial charge as 4; = v;(§;), Vi and update them as before.

* Assume we selected bandit i. The optimal policy tells us to play bandit i
until 4; is reset. If we don’t, we will incur in a loss.

Expected profit is O.
Now we can choose another client.
Again, the profit will be ZERO.

>

A (), v;(&;)

—_/

For ANY client order, the optimal policy yields ZERO profit.

| | | | | | > time



Gittins Index — Proof

» Consider the policy that selects the bandit with highest A,(t) at every slot.

* This policy has NULL profit. And incurs the HIGHEST sum of discounted
charges.

* This is because it selects the highest charges first, in a non-increasing
order. (recall Example 1 at the beginning of the presentation)

* Since Profit = Reward — Charges = This policy incurs highest Reward.

* Notice that choosing the bandit with highest 4;(t) is EQUIVALENT to choosing
the bandit with highest v;(&;). Thus the Gittins Index Policy is optimal. m



J(&;) is convex and
decreasing on A




* Equation:

T
=

J(&;) =supE at[r;(§;(t)) — ]| &(0) =& =0

>0
0

1
(g
1

* For a fixed &; and 7, the function J(&;, T, A) is linear and decreasing on A.

T—1 T—1
B (Dashed blue
](';) J(&iT, ) = Z(:) a"E[ry(§: ()] - Atz(:) at lines for each 1)

20 a'E[r(5,()]  |The Gittins Index is
I—sat the highest v;(&;, 7)

N Ui (fii T) —




Necessary Conditions
and
Extensions



Necessary Conditions for Gittins

* Control space is finite

* Infinite Horizon

* Constant exponential discounting
* Single processor/server

[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



Extensions

* Uncountable state space
 Continuous time
e Reward can be unbounded

* Instead of a discounted reward problem, one could formulate the problem as an
infinite horizon problem

[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



Asymptotic Optimality



Asymptotic Optimality (for average cost problems)

* Intuition: as n — oo, we expect a weaker coupling among different bandits.

* Conjecture [6]: withm/n = a and as n = oo, the reward of the optimal policy
is asymptotically the same as the reward achieved by Whittle’s index policy.

* From [5]: this conjecture is NOT always satisfied in RMAB. Using theory of
large deviations, [5] derives sufficient conditions for the conjecture to hold.
One of which is indexability.

* From [5]: “Evidence so far is that counterexamples to the conjecture are rare
and that the degree of sub-optimality is very small. It appears that in most cases
the index policy is a very good heuristic.”

[5] R. Weber and Weiss, “On an Index Policy for Restless Bandits”, 1990
[6] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World”, 1981



