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Markov Bandit Process

• MDP on a countable state space, where 𝜉 𝑡 ∈ 𝜉1, … , 𝜉𝐾 is the state of the 
bandit at the discrete decision time 𝑡 ∈ {0,1,2, … }.

• Controls applied at decision time 𝑡 :

• 𝑢(𝑡) = 0 freezes the process and gives no reward;

• 𝑢(𝑡) = 1 continues the process and gives instantaneous reward 𝑎𝑡𝑟(𝜉(𝑡)).
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States of the bandit

𝜉1

𝜉2

𝜉3

𝜉4

𝜉5

𝑎 ∈ (0,1) is the 
discount factor

𝑟 . > 0 is the 
bounded reward

State Transitions 
are instantaneous 
with 𝑃 𝜉′ 𝜉
when 𝒖(𝒕) = 𝟏.

𝑷



Simple Family of Alternative Bandit Processes

• n Markov Bandit Processes with state space 𝐸 = 𝐸1 × 𝐸2 ×⋯× 𝐸𝑛 .

• Notice that 𝐸 is exponential on the number of bandits.

• Control 𝒖(𝒕) = 𝟏 is applied to a single bandit 𝒊𝒕 at each decision time t.

• Control 𝑢(𝑡) = 0 is applied to all other bandits. 
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Simple Family of Alternative Bandit Processes

• n Markov Bandit Processes with state space 𝐸 = 𝐸1 × 𝐸2 ×⋯× 𝐸𝑛 .

• Notice that 𝐸 is exponential on the number of bandits.

• Control 𝒖(𝒕) = 𝟏 is applied to a single bandit 𝒊𝒕 at each decision time t.

• Control 𝑢(𝑡) = 0 is applied to all other bandits. 

• Sequence of selected bandits {𝒊𝟏, 𝒊𝟐,…} .

• State of the selected bandit 𝒊𝒕 at each decision time t: 𝜉𝒊𝒕 𝑡 = 𝜉𝒊𝒕. 

• Reward accrued from the selected bandit: 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 .

• Transition probability 𝑃𝑖𝑡(𝜉
′|𝜉𝑖𝑡) . All other bandits remain in the same state.
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Objective Function

• Problem: sequentially allocate effort between different processes to maximize 
the infinite-horizon expected discounted sum of rewards.                                           

• Maximize:

• At time 𝒕, we know the state Ԧ𝜉 = [𝜉1, … , 𝜉𝑛], the probabilities 𝑃𝑖(𝜉′|𝜉𝑖),         
the discount factor 𝑎 and the reward function 𝑟𝑖(. ) for each bandit.
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𝐽𝜋 Ԧ𝜉 = lim
𝑇→∞

𝔼 ቮ

𝑡=0

𝑇−1

𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡
Ԧ𝜉 0 = Ԧ𝜉



Example 1

• Consider 2 bandits, each evolving according to a deterministic state sequence.
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Example 1

• Consider 2 bandits, each evolving according to a deterministic state sequence.

• Let the sequences provide the rewards below:

• Bandit 1 :     { 10 , 9 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 2 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?
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Example 1

• Consider 2 bandits, each evolving according to a deterministic state sequence.

• Let the sequences provide the rewards below:

• Bandit 1 :     { 10 , 9 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 2 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?
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a b c d e f g h …

10𝑎0 + 9𝑎1 + 8𝑎2 + 7𝑎3 + 6𝑎4 + 5𝑎5 +⋯

i j k l m n o p …



• Consider the modification below:

• Bandit 1 :     { 10 , 2 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 9 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?

Policy 1: (𝑎 = 0.1)

Example 2
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“Future is not so important”

10𝑎0 + 5𝑎1 + 4𝑎2 + 3𝑎3 + 9𝑎4 + 2𝑎5 + 8𝑎6 +⋯? ? ? ? ? ?



• Consider the modification below:

• Bandit 1 :     { 10 , 2 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 9 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?

Policy 1: (𝑎 = 0.1)

Example 2
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“Future is not so important”

10𝑎0 + 5𝑎1 + 4𝑎2 + 3𝑎3 + 9𝑎4 + 2𝑎5 + 8𝑎6 +⋯



• Consider the modification below:

• Bandit 1 :     { 10 , 2 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 9 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?

Policy 1: (𝑎 = 0.1)

Policy 2: (𝑎 = 0.9)10𝑎0 + 2𝑎1 + 8𝑎2 + 7𝑎3 + 6𝑎4 + 5𝑎5 + 4𝑎6 +⋯
“Future is (almost) as important as the present”

Example 2
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10𝑎0 + 5𝑎1 + 4𝑎2 + 3𝑎3 + 9𝑎4 + 2𝑎5 + 8𝑎6 +⋯
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• Consider the modification below:

• Bandit 1 :     { 10 , 2 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 9 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?

Policy 1: (𝑎 = 0.1)

Policy 2: (𝑎 = 0.9)

Policy 3: (𝑎 = 0.5)

10𝑎0 + 2𝑎1 + 8𝑎2 + 7𝑎3 + 6𝑎4 + 5𝑎5 + 4𝑎6 +⋯
“Future is (almost) as important as the present”

Example 2
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10𝑎0 + 5𝑎1 + 4𝑎2 + 3𝑎3 + 9𝑎4 + 2𝑎5 + 8𝑎6 +⋯

10𝑎0 + 5𝑎1 + 2𝑎2 + 8𝑎3 + 7𝑎4 + 6𝑎5 + 4𝑎6 +⋯

“Future is not so important”

“Future is somewhat important”



Gittins Index

Multi Armed Bandit Problem

(open problem for almost 40 years)
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• Objective is to Maximize:

𝐽𝜋 Ԧ𝜉 = lim
𝑇→∞

𝔼 ቮ

𝑡=0

𝑇−1

𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡
Ԧ𝜉 0 = Ԧ𝜉

• Index Theorem: Optimal policy for this problem is an Index policy.

• Index policy: there exists a function 𝑣𝑖 𝜉𝑖 , computed separately for each 

bandit, such that, for every state Ԧ𝜉, the optimal policy continues the bandit:

𝑖𝑡 = argmax
𝑖∈{1,…,𝑛}

𝑣𝑖 𝜉𝑖

Notice that computing the index is simple, for it only depends on the parameters 
associated with a single bandit. But how such function should be designed?

Index Policy
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Derivation of the Index

• How to design a function 𝑣𝑖 𝜉𝑖 that encodes the value of choosing bandit i ?

• Value: present reward + future expected rewards

• How to consider future reward? Future reward is the expected value of choosing 
bandit 𝑖 forever? Or up until a given horizon? How to characterize this horizon?
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Derivation of the Index – Single bandit with charge
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• Consider a single bandit i with a “playing charge” of 𝜆.

• Optimal Policy is a stopping rule. 

• if at time 𝜏 it is optimal to stop, at time 𝜏 + 1 it is also optimal to stop.



Derivation of the Index – Single bandit with charge
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• Consider a single bandit i with a “playing charge” of 𝜆.

• Optimal Policy is a stopping rule. 

• if at time 𝜏 it is optimal to stop, at time 𝜏 + 1 it is also optimal to stop.

• Optimal Reward:

𝐽 𝜉𝑖 = max
𝜋

𝐽𝜋 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖



Derivation of the Index – Single bandit with charge
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• Consider a single bandit i with a “playing charge” of 𝜆.

• Optimal Policy is a stopping rule. 

• if at time 𝜏 it is optimal to stop, at time 𝜏 + 1 it is also optimal to stop.

• Optimal Reward:

𝐽 𝜉𝑖 = max
𝜋

𝐽𝜋 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖

• For every 𝜉𝑖, there is a 𝜆 such that there is a null reward for playing:

𝐽 𝜉𝑖 = 𝟎



Derivation of the Index – Single bandit with charge
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• For every 𝜉𝑖, there is a 𝜆 such that there is a null reward for playing:

𝐽 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖 = 𝟎

• Notice that 𝐽 𝜉𝑖 is convex and decreasing on 𝜆. Thus, it has a single root which 
is the Gittins Index, 𝑣𝑖 𝜉𝑖 , given by:

• This 𝑣𝑖(𝜉𝑖) is called the fair charge during state 𝜉𝑖. 

• This is the charge that makes it equally desirable to play and to stop.

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

Details



• Going back to the Simple Family of Alternative Bandit Processes with n bandits
and no playing charge. The Gittins index associated with bandit 𝑖 in state 𝜉𝑖 is

where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

Gittins Index
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𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖



where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• For 𝑎 = 0.5: “Future is somewhat important”

Gittins Index
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𝝉 1 2 3 4 5 6 7

𝒗𝒊 𝝃𝒊, 𝝉 5.00

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

i j k l m n o …

5          2          9          7          2          3          5           Reward
State



where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• For 𝑎 = 0.5: “Future is somewhat important”

Gittins Index
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𝝉 1 2 3 4 5 6 7

𝒗𝒊 𝝃𝒊, 𝝉 5.00 4.00
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where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• For 𝑎 = 0.5: “Future is somewhat important”

Gittins Index
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𝝉 1 2 3 4 5 6 7

𝒗𝒊 𝝃𝒊, 𝝉 5.00 4.00 4.714 4.867 4.774 4.746 4.748

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

i j k l m n o …

5          2          9          7          2          3          5           Reward
State



where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• For 𝑎 = 0.5: “Future is somewhat important”

Gittins Index

25

𝝉 1 2 3 4 5 6 7

𝒗𝒊 𝝃𝒊, 𝝉 5.00 4.00 4.714 4.867 4.774 4.746 4.748

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

i j k l m n o …

5          2          9          7          2          3          5           Reward
State



where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• For 𝑎 = 1: “Future is as important as the present”

Gittins Index
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𝝉 1 2 3 4 5 6 7

𝒗𝒊 𝝃𝒊, 𝝉 5.00 3.50 5.33 5.75 5.00 4.67 4.71

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

i j k l m n o …

5          2          9          7          2          3          5           Reward
State



• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• 𝑣𝑖 𝜉𝑖 a maximum reward per unit time (maximum “reward density”).

• Interpretation from [1]: “greatest per period rent that one would be willing to 
pay for ownership of the rewards arising from the bandit as it is continued for 
one or more periods.” 

Gittins Index
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𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• 𝑣𝑖 𝜉𝑖 a maximum reward per unit time (maximum “reward density”).

• Interpretation from [1]: “greatest per period rent that one would be willing to 
pay for ownership of the rewards arising from the bandit as it is continued for 
one or more periods.” 

• GITTINS INDEX POLICY chooses the bandit with highest 𝑣𝑖 𝜉𝑖 at every 
decision time t.

Gittins Index
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𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖



Remarks

• In supplemental slides we have the proof that the Gittins Index Policy is optimal. 
( adapted from [4] ). 

• This proof is instructive because: 1) provides insight into why the Gittins Index 
Policy is optimal; and 2) provides insight into why it is NOT optimal for the 
restless case;

• Main ideas in the proof:

• We always choose the bandit with larger current reward density value. 

• There is no “opportunity cost” since other bandits are frozen. 

29[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.



Remarks

• In supplemental slides we have the proof that the Gittins Index Policy is optimal. 
( adapted from [4] ). 

• This proof is instructive because: 1) provides insight into why the Gittins Index 
Policy is optimal; and 2) provides insight into why it is NOT optimal for the 
restless case;

• Main ideas in the proof:

• We always choose the bandit with larger current density value. 

• There is no “opportunity cost” since other bandits are frozen. 

30[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.

Breaks down when bandits are restless, as we see next…



Whittle Index

Restless Multi Armed Bandit Problem

31



Restless Multi Armed Bandit Problem

• Whittle extends the notion of index to restless bandits.

• Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the action 𝑢 = 1
Formally, 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖, 𝑡 and σ𝑖=1

𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡
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Restless Multi Armed Bandit Problem

• Whittle extends the notion of index to restless bandits.

• Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the action 𝑢 = 1
Formally, 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖, 𝑡 and σ𝑖=1

𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

2. Action 𝑢 = 0 no longer freezes the bandit. 
They evolve (possibly) in a distinct way than when 𝑢 = 1.
They accrue reward (possibly) in a distinct way than when 𝑢 = 1.

Use cases: work / rest and  high speed / low speed.
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Three Optimization Problems

• [Original]. Original Problem:

34

maximize lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡 σ𝑖=1

𝑛 𝑟𝑖(𝜉𝑖 , 𝑢𝑖)

s.t.   σ𝑖=1
𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖



Three Optimization Problems

• [Original]. Original Problem:

• [Relaxed]. Problem with Relaxed activation constraint. 
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maximize lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡 σ𝑖=1

𝑛 𝑟𝑖(𝜉𝑖 , 𝑢𝑖)

s.t.   σ𝑖=1
𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖

σ𝑡=0
∞ 𝑎𝑡 σ𝑖=1

𝑛 𝑢𝑖 𝑡 = 𝑚/(1 − 𝑎)



Three Optimization Problems

• [Original]. Original Problem:

• [Relaxed]. Problem with Relaxed activation constraint. 

• [Lagrange]. The Lagrange Dual Function is given by:
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maximize lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡 σ𝑖=1

𝑛 𝑟𝑖(𝜉𝑖 , 𝑢𝑖)

s.t.   σ𝑖=1
𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖

σ𝑡=0
∞ 𝑎𝑡 σ𝑖=1

𝑛 𝑢𝑖 𝑡 = 𝑚/(1 − 𝑎)

ℒ 𝜆 = maximize lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1 𝑎𝑡 σ 𝑖=1

𝑛 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡 + 𝜆(𝑚/(1 − 𝑎))

s.t.  𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖



Decoupling the [Lagrange] Problem

• [Lagrange]. The Lagrange Dual Function is given by:

• Notice that we can decouple this problem and neglect the last term (constant). 
Then, for a fixed 𝜆 ≥ 0 and for each bandit, we have:

[Decoupled Problem]

[Similar to Gittins!]
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maximize lim
𝑇→∞

𝔼 σ𝑡=0
𝑇−1𝑎𝑡 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡

s.t.  𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖

ℒ 𝜆 = maximize lim
𝑇→∞

𝔼 σ𝑖=1
𝑛 σ𝑡=0

𝑇−1 𝑎𝑡 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡 + 𝜆(𝑚/(1 − 𝑎))

s.t.  𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖



Solution to the Decoupled Problem

• Main difference when compared to the MAB problem is that passive bandits 
may change state and accrue reward. Thus, the optimal policy for the 
Decoupled Problem may NOT be a stopping rule.
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Solution to the Decoupled Problem

• Main difference when compared to the MAB problem is that passive bandits 
may change state and accrue reward. Thus, the optimal policy for the 
Decoupled Problem may NOT be a stopping rule.

• In general, the optimal policy divides the state space into two subsets: 

• Let 𝒫(𝜆) be the set of ALL states for which it is 
optimal to idle when the playing charge is 𝜆.

• The set 𝒫(𝜆) is characterized by the solution of 
the Decoupled Problem.

• Optimal Policy: play, if 𝜉𝑖 ∈ 𝒫𝐶(𝜆); stop, otherwise. 

39

𝒫

𝒫𝐶

State Space with 𝜆

(Passive)

(Active)



Indexability

• Definition of Indexability: The Decoupled Problem associated with bandit 𝑖 is 
indexable if 𝒫(𝜆) increases monotonically from ∅ to the entire state space as 𝜆
increases from 0 to +∞. The RMAB problem is indexable if the Decoupled 
Problem is indexable for all bandits. 

• Means that if a bandit is rested with 𝜆, it should also be rested when 𝜆’ > 𝜆.
40

Low 𝜆

𝒫

𝒫𝐶

(Passive)

(Active)

High 𝜆

𝒫

𝒫𝐶

(Passive)

(Active)

Increasing 𝜆

𝒫

𝒫𝐶

(Passive)

(Active)



Whittle Index

• Definition of Index: Consider the Decoupled Problem and denote by 𝑣𝑖 𝜉𝑖
the Whittle Index in state 𝜉𝑖. Given indexability, 𝑣𝑖 𝜉𝑖 is the infimum playing 
charge 𝝀 that makes it equally desirable to play and to stop in state 𝜉𝑖.

• Recall that this definition of index is the same as for Gittins.  (slide 20)
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Increase 𝜆

𝒫

𝒫𝐶

(Passive)

(Active)

𝜉𝑖

Until 𝜆′ is such that

𝒫

𝒫𝐶

(Passive)

(Active)

𝜉𝑖 → Then 𝒗𝒊 𝝃𝒊 = 𝝀′



Whittle Index Policy

• Going back to our [Original] problem: 

• At each time t, exactly m out of n bandits are given the action 𝑢 = 1

• There is no “playing charge” 𝜆.

• The Whittle Index Policy is one that, at every decision time 𝑡, selects the m 
bandits with higher values of 𝒗𝒊 𝝃𝒊 .

• The Index Policy is a low-complexity heuristic that has been extensively used in 
the literature and is known to have a strong performance in a range of 
applications. 
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Whittle Index Policy

• The challenge associated with this approach is that the Index Policy is only 
defined for problems that are indexable, a condition that is often difficult to 
establish. Moreover, it is often hard to find a closed-form expression to 𝑣𝑖 𝜉𝑖 .

• Notice that if our RMAB problem is actually a MAB, then Whittle ≡ Gittins. 
Thus, in this case, Whittle is optimal.
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Application of Whittle Index

Age-of-Information Minimization Problem

44
[7] I. Kadota, “Age-of-Information in Wireless Networks: Theory and Implementation”, PhD thesis, 2020.
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…

1w1

w2

wN

p1

pN

p2

𝒉𝑵(𝒕)

slot

𝒉𝟐(𝒕)

slot

Unreliable transmissions 
on a shared wireless 

channel

Weight 𝒘𝒊 > 0 represents priority of source 𝑖

Probability 𝒑𝒊 ∈ 0,1 represents quality of the link

…

𝒉𝟏(𝒕)

slot

Sources (or Bandits) always 
have packets to transmit

2

N

System Model



Original Problem

Goal: find a transmission scheduling policy 𝝅∗ that minimizes

min
𝜋∈Π

lim
𝑇→∞

1

𝑇𝑁


𝑡=1

𝑇



𝑖=1

𝑁

𝒘𝒊𝔼 𝒉𝒊
𝝅(𝒕)

s. t. 

𝑖=1

𝑁

𝑢𝑖
𝜋 𝑡 = 1, ∀𝑡

𝑢𝑖
𝜋 𝑡 ∈ 0,1 , ∀𝑖
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Relaxed Problem

Goal: find a transmission scheduling policy 𝝅∗ that minimizes

min
𝜋∈Π

lim
𝑇→∞

1

𝑇𝑁


𝑡=1

𝑇



𝑖=1

𝑁

𝒘𝒊𝔼 𝒉𝒊
𝝅(𝒕)

s. t.
1

𝑇𝑁


𝑡=1

𝑇



𝑖=1

𝑁

𝔼 𝑢𝑖
𝜋 𝑡 ≤

1

𝑁

𝑢𝑖
𝜋 𝑡 ∈ 0,1 , ∀𝑖
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Lagrange Dual Function 

Goal: find a transmission scheduling policy 𝝅∗ that minimizes

ℒ 𝜆 = min
𝜋∈Π

lim
𝑇→∞

1

𝑇𝑁


𝑡=1

𝑇



𝑖=1

𝑁

𝒘𝒊𝔼 𝒉𝒊
𝝅(𝒕) + 𝜆𝔼 𝑢𝑖

𝜋 𝑡 −
𝜆

𝑁

s. t. 𝑢𝑖
𝜋 𝑡 ∈ 0,1 , ∀𝑖

Notice that the problem can be decoupled…
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Decoupled Problem

Goal: find a transmission scheduling policy 𝝅∗ that minimizes

min
𝜋∈Π

lim
𝑇→∞

1

𝑇


𝑡=1

𝑇

𝒘𝒊𝔼 𝒉𝒊
𝝅(𝒕) + 𝜆𝔼 𝑢𝑖

𝜋 𝑡

s. t. 𝑢𝑖
𝜋 𝑡 ∈ 0,1 , ∀𝑖

𝜆 ≥ 0

Optimal policy? 
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Decoupled Problem

Goal: find a transmission scheduling policy 𝝅∗ that minimizes

min
𝜋∈Π

lim
𝑇→∞

1

𝑇


𝑡=1

𝑇

𝒘𝒊𝔼 𝒉𝒊
𝝅(𝒕) + 𝜆𝔼 𝑢𝑖

𝜋 𝑡

s. t. 𝑢𝑖
𝜋 𝑡 ∈ 0,1 , ∀𝑖

𝜆 ≥ 0

The optimal policy 𝜋∗ has a threshold structure, namely 

transmits when ℎ𝑖
𝜋 𝑡 ≥ 𝐻 ; and 

idles when ℎ𝑖
𝜋 𝑡 ≤ 𝐻 − 1
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Solution to the Decoupled Problem

• The stationary scheduling policy that solves the Decoupled Problem is a 
threshold policy that, in each decision time 𝑡:

• transmits when ℎ𝑖
𝜋 𝑡 ≥ 𝐻 ; and 

• idles when ℎ𝑖
𝜋 𝑡 ≤ 𝐻 − 1,

where 

𝐻 =
3

2
−
1

𝑝𝑖
+

1

𝑝𝑖
−
1

2

2

+
2𝜆

𝑤𝑖𝑝𝑖
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Indexability

• For a given value of 𝜆 ≥ 0, the set 𝒫(𝜆) of states ℎ𝑖
𝜋(𝑡) in which the threshold 

policy idles is given by

𝒫 𝜆 = ℎ𝑖
𝜋 𝑡 ∈ 1,2,3, … ℎ𝑖

𝜋 𝑡 ≤ 𝐻 − 1

where

𝐻 =
3

2
−
1

𝑝𝑖
+

1

𝑝𝑖
−
1

2

2

+
2𝜆

𝑤𝑖𝑝𝑖
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Indexability

• For a given value of 𝜆 ≥ 0, the set 𝒫(𝜆) of states ℎ𝑖
𝜋(𝑡) in which the threshold 

policy idles is given by

𝒫 𝜆 = ℎ𝑖
𝜋 𝑡 ∈ 1,2,3, … ℎ𝑖

𝜋 𝑡 ≤ 𝐻 − 1

where

𝐻 =
3

2
−
1

𝑝𝑖
+

1

𝑝𝑖
−
1

2

2

+
2𝜆

𝑤𝑖𝑝𝑖

• Notice that as 𝜆 increases from 0 to +∞, the value of 𝐻 increases from 𝐻 = 1
to 𝐻 → ∞ and, thus, 𝒫 𝜆 increases from 𝒫 𝜆 = ∅ to the entire state space.

• Hence, the Decoupled Problem is indexable for all 𝑖 ∈ 1,2, … , 𝑁 .
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Whittle’s Index

• The index 𝑣𝑖 ℎ𝑖
𝜋(𝑡) is the infimum playing charge 𝜆 that makes it equally 

desirable to play and to stop in state ℎ𝑖
𝜋(𝑡). 

• For both scheduling decisions to be equally desirable in state ℎ𝑖
𝜋(𝑡), the 

threshold should be 𝐻 = ℎ𝑖
𝜋 𝑡 + 1. Hence, by substituting  

𝐻 =
3

2
−
1

𝑝𝑖
+

1

𝑝𝑖
−
1

2

2

+
2𝜆

𝑤𝑖𝑝𝑖

we obtain the index in closed-form:

𝑣𝑖 ℎ𝑖
𝜋(𝑡) =

𝑤𝑖𝑝𝑖ℎ𝑖
𝜋 𝑡

2
ℎ𝑖
𝜋 𝑡 +

2

𝑝𝑖
− 1
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General Bandit Process
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Bandit Process

• Bandit process is a special type of semi-Markov decision process.

• Continuous time and a succession of (random) decision times 𝑡1, 𝑡2, 𝑡3, …

• Same controls applied at decision times

• 𝑢(𝑡𝑖) = 0 freezes the process and gives no reward.
Time 𝑡𝑖 + 𝛿 is another decision time.

• 𝑢(𝑡𝑖) = 1 continues the process and gives instantaneous reward 𝑎𝑡𝑖𝑟 𝑥 𝑡𝑖 .
Time 𝑡𝑖 + 𝑠 is another decision time, where s is drawn from 𝐹(𝑠|𝑦, 𝑥).

where 𝑥(𝑡) is the current state, y is the next state, 𝑎 ∈ (0,1) is the discount factor 
and r(.) is the positive (and bounded) reward .

• State Transitions are instantaneous with 𝑃(𝑦|𝑥).

• Markov bandit process is a Bandit Process with discrete decision times t={0,1,…}
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Gittins Index – Proof 
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Gittins Index – Proof 

60

• Consider a single bandit i with a “playing charge” of 𝜆.

• Optimal Policy is a stopping rule. 

• if at time 𝜏 it is optimal to stop, at time 𝜏 + 1 it is also optimal to stop.

• Optimal Reward:

𝐽 𝜉𝑖 = max
𝜋

𝐽𝜋 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖

• Optimal Policy: 

At every decision time, calculate 𝐽 𝜉𝑖 :

Play, if 𝐽 𝜉𝑖 ≥ 0 ; Stop, otherwise. 



Gittins Index – Proof
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• For every 𝜉𝑖, there is a 𝜆 such that there is a null reward for playing:

𝐽 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖 = 𝟎

• Notice that 𝐽 𝜉𝑖 is convex and decreasing on 𝜆. Thus, it has a single root which 
is the Gittins Index, 𝑣𝑖 𝜉𝑖 , given by:

• This 𝑣𝑖(𝜉𝑖) is called the fair charge during state 𝜉𝑖. 

• This is the charge that makes it equally desirable to play and to stop.

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼 σ𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

Details



Gittins Index – Proof
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• Suppose that at time 𝑡 = 0 we are in state 𝜉𝑖 with a fair charge of 𝑣𝑖 𝜉𝑖 . 

• If we set 𝜆 = 𝑣𝑖 𝜉𝑖 and play bandit i optimally, we expect 0 profit.

• Optimal play is not profitable nor loss-making.

• If we deviate from the optimal policy, then we expect loss.

• What is the optimal policy in this case? (Stopping rule)

slots
…

Set charge to FAIR CHARGE Stopping time. 
Expected cumulative profit = 0



Gittins Index – Proof

slots
…
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• What if at the stopping time, we reset the charge.

• At the stopping time, instead of stopping, we reset the charge to 𝑣𝑖 𝜉𝑖
′ and 

continue playing.

• If we do this repeatedly, the expected profit would still be ZERO.

• The bandit is continuously playing a fair game with optimum policy.

Set charge to FAIR CHARGE Expected cumulative profit = 0
Reset the charge to 𝒗𝒊 𝝃𝒊

′



• Notice that as the game evolves, the charge is reset several times.

• Let 𝜆𝑖 t be the current fee and 𝑣𝑖 𝜉𝑖 the calculated fair fee. 

• 𝜆𝑖 t is non-increasing and is equal to the minimum fair charge “so far”.

Gittins Index – Proof

time
65

Optimal Policy is to always play.

Total Expected Reward is ZERO.
𝝀𝒊 𝒕 , 𝑣𝑖 𝜉𝑖



• Consider n bandits, each with a different initial state 𝜉𝑖.

• We set each initial charge as 𝝀𝒊 = 𝒗𝒊 𝝃𝒊 , ∀𝑖 and update them as before.

• Assume we selected bandit i. The optimal policy tells us to play bandit 𝑖
until 𝝀𝒊 is reset. If we don’t, we will incur in a loss.

Gittins Index – Proof

67

time

𝝀𝒊 𝒕 , 𝑣𝑖 𝜉𝑖
Expected profit is 0.
Now we can choose another client. 
Again, the profit will be ZERO.

For ANY client order, the optimal policy yields ZERO profit.



Gittins Index – Proof
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• Consider the policy that selects the bandit with highest 𝜆𝑖 𝑡 at every slot. 

• This policy has NULL profit. And incurs the HIGHEST sum of discounted 
charges.

• This is because it selects the highest charges first, in a non-increasing  
order. (recall Example 1 at the beginning of the presentation)

• Since Profit = Reward – Charges → This policy incurs highest Reward.

• Notice that choosing the bandit with highest 𝜆𝑖 𝑡 is EQUIVALENT to choosing 
the bandit with highest 𝑣𝑖 𝜉𝑖 . Thus the Gittins Index Policy is optimal.



𝐽 𝜉𝑖 is convex and 
decreasing on 𝜆
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• Equation:

• For a fixed 𝜉𝑖 and 𝜏 , the function  𝐽 𝜉𝑖 , 𝜏, 𝜆 is linear and decreasing on 𝜆. 

𝐽 𝜉𝑖 , 𝜏, 𝜆 = 

𝑡=0

𝜏−1

𝑎𝑡𝔼 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆

𝑡=0

𝜏−1

𝑎𝑡
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𝜆

𝐽 𝜉𝑖 = sup
𝜏>0

𝔼 ቮ

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖 = 0

𝐽(. )
(Dashed blue 
lines for each 𝜏)

𝑣𝑖 𝜉𝑖 , 𝜏 =
σ𝑡=0
𝜏−1𝑎𝑡𝔼 𝑟𝑖 𝜉𝑖(𝑡)

σ𝑡=0
𝜏−1 𝑎𝑡

The Gittins Index is 
the highest 𝑣𝑖 𝜉𝑖 , 𝜏



Necessary Conditions
and

Extensions
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Necessary Conditions for Gittins

• Control space is finite

• Infinite Horizon

• Constant exponential discounting

• Single processor/server
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Extensions

• Uncountable state space

• Continuous time

• Reward can be unbounded

• Instead of a discounted reward problem, one could formulate the problem as an 
infinite horizon problem
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[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



Asymptotic Optimality
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Asymptotic Optimality (for average cost problems)

• Intuition: as 𝑛 → ∞, we expect a weaker coupling among different bandits.

• Conjecture [6]: with 𝑚/𝑛 = 𝛼 and as 𝑛 → ∞, the reward of the optimal policy 
is asymptotically the same as the reward achieved by Whittle’s index policy.

• From [5]: this conjecture is NOT always satisfied in RMAB. Using theory of  
large deviations, [5] derives sufficient conditions for the conjecture to hold.  
One of which is indexability.

• From [5]: “Evidence so far is that counterexamples to the conjecture are rare 
and that the degree of sub-optimality is very small. It appears that in most cases 
the index policy is a very good heuristic.”
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