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General Bandit Process

Markov Bandit Process >

* Markov decision process on countable state space E.
* Discrete decision times: t € {0,1,2, ... }.

* Controls applied at decision time t :
* u(t) = 0 freezes the process and gives no reward;

* u(t) = 1 continues the process and gives instantaneous reward a‘r(é(t)),

where ¢(t) is the state at time t, a € (0,1) is the discount factor
and r(.) is the positive (and bounded) reward .

* State Transitions are instantaneous with P(y|¢) when u(t) = 1.

* Realization of the process “does not depend on the sequence of controls”.



Simple Family of Alternative Bandit Processes

* n Markov Bandit Processes with state space E = E;XE, X--XE,.

* Notice that it is ‘L_?)| is exponential on the number of bandits.

* Control u(t) = 1 is applied to a single bandit i; at each decision time t.
* Control u(t) = 0 is applied to all other bandits.

* Sequence of selected bandits {i, i5,...,}
State of the selected bandit i, at each decision time t: &; (t) = &;..

* Reward accrued from the selected bandit: atrit(fit) .

* Transition probability P;, (y|[¢;,) . All other bandits remain in the same state.



Objective Function

* Problem: sequentially allocate effort between different processes so as to
maximize the infinite-horizon expected discounted sum of rewards.
Maximize:

T—1
J(&) = lim [ 2 a'r;, (&;,) E0) =¢
=0

* At time £, we know the state éj = [&4, ..., &, ], the probabilities P; (y|¢;),
the discount factor a and the reward function r,(.) for each project.

* Theorem: for this problem, there is at least one optimal
policy which is deterministic, stationary and Markov.

* Thus, policy is a mapping from E to {1,2,...,n}.

[3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Chapter 6, 2008. E




Gittins Index

Multi Armed Bandit Problem

(open problem for almost 40 years)



Gittins Index

* Objective is to Maximize:

T—1
J(&) = lim [ z a'r;, (&;,) E0) =¢
=0

* Index Theorem: Optimal policy for this problem is an Index policy.

* Index policy: there exists a function v;(&;), computed separately for each

bandit, such that, for every state 5, the optimal policy continues the bandit:

i, = argmax {v;(&;)}
1e{1,...n}

Notice that computing the index is simple, for it only depends on the parameters
associated with a single bandit. But, how such function should be designed?



Example 1

* Consider 2 bandits, each evolving according to a deterministic state sequence.

a b C d e f g h

* Let the sequences provide the rewards below:
e Bandit1: {10,9,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,2,1,0,0,0,..}

* What is the policy that maximizes 711_1)1()10 IE[ZZ;(} atrit(fit)] ?

10a® + 9a! + 8a? + 7a® + 6a* + 5a° + -



Example 2

e Consider the modification below:
e Banditl: {10,2,8,7,6,0,0,0, ..}
e Bandit2: {5,4,3,9,1,0,0,0,..}

* What is the policy that maximizes hm IE[Zt oa rlt(fit)] ?

’

“Future is not so important”

Policy1:  10a® + 5a' + 4a? + 3a® + 9a* + 2a® + 8a® + --- (a =0.1)

“Future is (almost) as important as the present”

Policy2:  10a + 2a' + 8a? + 7a® + 6a* + 5a° + 4a® + - (a = 0.9)

“Future is somewhat important”

Policy3:  10a + 5a + 2a? + 8a® + 7a* + 6a> + 4a® + - (a = 0.5)



Questions

* How to design a function v;(§;) that encodes the value of choosing bandit i ?

 Value: present reward + future expected rewards
* Future reward is to be considered? When a myopic policy is optimal?
* Future reward is the expected value of choosing bandit i forever?

Or up until a given horizon? How to characterize this horizon?



Gittins Index
bi(er) = sup ELZE=0 @) 16(0) = &
PUT 0 E[ZEZ af [§(0) =& ]

where T is the stopping-time.

* Numerator is the discounted REWARD up to time .
* Denominator is the discounted TIME up to time 7.
* v;(&;) a maximum reward per unit time (“reward density”).

* Interpretation from [1]: “greatest per period rent that one would be willing to
pay for ownership of the rewards arising from the bandit as it is continued for
one or more periods.”

* GITTINS INDEX POLICY chooses the bandit with highest v;(&;) at every
decision time t.




Gittins Index

* Next, we prove that the Gittins Index Policy is optimal. ( adapted from [4] )

* This proof is instructive because:
* shows the origin of the expression for the Gittins index;
* provides insight into why the Gittins Index Policy is optimal;

e provides insight into why it is NOT optimal for the restless case;

e used in the Whittle Index part of this presentation.

[1] ). Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.
[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.



Gittins Index — Proof

* Consider a single bandit i with a “playing charge” of A.

* Optimal Policy is a stopping rule.
e if at time 7 it is optimal to stop, at time 7 + 1 it is also optimal to stop.

e Optimal Reward:

]
[

J(&) = mélxjn(fi) = sup E at[r;(&;(t)) — 21| &;(0) = ¢&;

>0
0

1
(g
Il

* Optimal Policy:

At every decision time, calculate J(&;):

Play, if J(&;) = 0 : Stop, otherwise. %




Gittins Index — Proof

* For every ¢;, there is a A such that there is a null reward for playing:
(T—1 T
JE) =supE| ) afr6(0) — 21| &(0) = & = 0
>
t=0

* Notice that J(&;) is convex and decreasing on A. Thus, it has a single root which
is the Gittins Index, v;(¢&;), given by:

. [E [ g;é at Ti(gi(t)) | 61(0) = fi ] Details
vi(fi) — i‘ig [E[ g;g at |€l(0) — gl] E

* This v;(&;) is called the fair charge during state ¢;.
* This is the charge that makes it equally desirable to play and to stop. 14



Gittins Index — Proof

* Suppose that at time t = 0 we are in state &; with a fair charge of v;(¢;) .

o If we set 1 = v;(£;) and play bandit i optimally, we expect 0 profit.

e Optimal play is not profitable nor loss-making.
* If we deviate from the optimal policy, then we expect loss.

 What is the optimal policy in this case? (Stopping rule)

Set charge to FAIR CHARGE Stopping time.
‘1' Expected cumulative profit =0

slots

15



Gittins Index — Proof

 What if at the stopping time, we reset the charge.

* At the stopping time, instead of stopping, we reset the charge to v;(&;) and
continue playing.
* If we do this repeatedly, the expected profit would still be ZERO.
* The bandit is continuously playing a fair game with optimum policy.

Set charge to FAIR CHARGE Expected cumulative profit = 0
‘1' f Reset the charge to v;(§;)

slots

17



Gittins Index — Proof

* Notice that as the game evolves, the charge is reset several times.
* Let 4;(t) be the current fee and v;(¢;) the calculated fair fee.

* 1;(t) is non-increasing and is equal to the minimum fair charge “so far”.

Optimal Policy is to always play.

>

l o Total Expected Reward is ZERO.




Gittins Index — Proof

* Consider n bandits, each with a different initial state ¢;.

* We set each initial charge as 4; = v;(§;), Vi and update them as before.

* Assume we selected bandit i. The optimal policy tells us to play client i
until 4; is reset. If we don’t, we will incur in a loss.

2;(0), v;(&) Expected profit is O.

Now we can choose another client.
Again, the profit will be ZERO.

>

—_/

For ANY client order, the optimal policy yields ZERO profit.

| | | | | | > time



Gittins Index — Proof

* Consider the policy that selects the bandit with highest A,(t) at every slot.

* This policy has NULL profit. And incurs the HIGHEST sum of discounted
charges.

* This is because it selects the highest charges first, in a non-increasing
order. (recall Example 1 in slide 7)

* Since Profit = Reward — Charges = This policy incurs highest Reward.

* Notice that choosing the bandit with highest 4;(t) is EQUIVALENT to choosing
the bandit with highest v;(&;). Thus the Gittins Index Policy is optimal. m



Gittins Index — Intuition

2 (€) =supE[ o at (& (1) 1&:(0) =& ]
Y 0 E[XiZ0 at |&(0) =¢&;]
where T is the stopping-time.

* If T = 1 for all bandits and all states, then the Gittins Policy is actually a myopic
policy (a.k.a. one-step look-ahead policy)

* In general, the Gittins policy can be seen as a 7-step look-ahead policy.

 What happens when the bandits are restless? RMAB problems next.



Whittle Index

Restless Multli Armed Bandit Problem



Whittle’s index

 Whittle extends the notion of index to restless bandits.

* Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the actionu =1
Formally, u;(t) € {0,1},Vi,t and X ,u;(t) =m,Vt

2. Action u = 0 no longer freezes the bandit. [Reward + Evolution]
They evolve (possibly) in a distinct way than when u = 1.
Use cases: work /rest ; high speed /low speed




Three Optimization Problems

* [Original]. Original Problem:  maximize Thm E>I-ta DR ACTRID]

s.t. i ui(t) =m, Vvt
u;(t) € {0,1}, Vi

* [Relaxed]. Problem with Relaxed activation constraint.
Yizoa' Nizui(t) =m/(1—a)
 [Lagrange]. The Lagrange Dual Function is given by:
L(A) = maximize hm IE[ datyt (r L) — w ()] + Am/(1 — a))
s.t. u;(t) € {0,1}, Vi



Decoupling the [Lagrange] Problem

* [Lagrange]. The Lagrange Dual Function is given by:
L(2) = maximize lim E[X", XI=d at(ri (&, w) — 2w ()| + A(m/(1 — a))
s.t. u;(t) €{0,1},Vi

* Notice that we can decouple this problem into the bandits and neglect the last
term (constant). Then, for a fixed A and for each bandit, we have:

[Decoupled Problem]
maximize 11m IE[ Iy at (ri(&,w) — Au;(0))]

s.t. u;(t) €{0,1}, Vi [Similar to Gittins!]



Decoupled Problem

* Main differences when compared to the MAB problem:
* Passive bandits may give reward.
* Passive bandits may change states.

* Thus, the optimal policy is NOT a stopping rule.

* Again, there exists at least one optimal policy which is deterministic, stationary
and Markov. In general, this optimal policy divides the state space into two

subsets: ,
State Space with 4

(Passive)

* Let P(A) be the set of ALL states for which it is
optimal to idle when the playing charge is A.

» Optimal Policy: play, if &; € P (1); stop, otherwise. 4 (Active)




Decoupled Problem — Indexability

* The set P(A) is characterized by the solution of the Decoupled Problem.

* Definition of Indexability: The Decoupled Problem associated with bandit i is
indexable if P(A) increases monotonically from @ to the entire state space as 1
increases from 0 to +o0o0. The RMAB problem is indexable if the Decoupled
Problem is indexable for all bandits.

State Space with low A State Space with high 1

(Passive) (Passive)
(Active) ’ (Active)

 Means that if a bandit is rested with A, it should also be rested when A’ > A.



Decoupled Problem — Whittle Index

* Definition of Index: Consider the Decoupled Problem and denote by v;(§;) the
Whittle Index in state &;. Given indexability, v;(&;) is the infimum playing charge
A that makes it equally desirable to play and to stop in state ¢;.

* Recall that this definition is the same as in the proof for Gittins. (slide 14)

* Optimal Policy for the [Lagrange] Problem with n bandits and fixed A.

* At every decision time, calculate the fair charge v;(&;) for each bandit.
* If v;(&;) = A. “Current fee is smaller than the fair fee” > Play

* If v;(¢;) < A. “Current fee is higher than the fair fee” - Stop



Whittle Index Policy

* Going back to our [Original] problem:
* At each time t, exactly m out of n bandits are given the actionu =1
* There is no “playing charge” A.

* The Whittle Index Policy is one that, at every decision time, selects the m bandits with
higher values of v;(§}).

* The Index Policy is a low-complexity heuristic that has been extensively used in the
literature and is known to have a strong performance in a range of applications.

* The challenge associated with this approach is that the Index Policy is only defined for
problems that are indexable, a condition that is often difficult to establish. Moreover, it is
often hard to find a closed-form expression to v; (&;).

* Notice that if our RMAB problem is actually a MAB, then Whittle = Gittins. Thus, in this
case, Whittle is optimal.



Asymptotic Optimality (for average cost problems)

* Intuition: as n — oo, we expect a weaker coupling among different bandits.

* Conjecture [6]: withm/n = a and as n = oo, the reward of the optimal policy
is asymptotically the same as the reward achieved by Whittle’s index policy.

* From [5]: this conjecture is NOT always satisfied in RMAB. Using theory of
large deviations, [5] derives sufficient conditions for the conjecture to hold.
One of which is indexability.

* From [5]: “Evidence so far is that counterexamples to the conjecture are rare
and that the degree of sub-optimality is very small. It appears that in most cases
the index policy is a very good heuristic.”

[5] R. Weber and Weiss, “On an Index Policy for Restless Bandits”, 1990
[6] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World”, 1981
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Bandit Process

* Bandit process is a special type of semi-Markov decision process.
* Continuous time and a succession of (random) decision times tq, t,, t3, ...
* Same controls applied at decision times

* u(t;) = 0 freezes the process and gives no reward.
Time t; + 0 is another decision time.

* u(t;) = 1 continues the process and gives instantaneous reward atir(x(tl-)).
Time t; + s is another decision time, where s is drawn from F(s|y, x).

where x(t) is the current state, y is the next state, a € (0,1) is the discount factor
and r(.) is the positive (and bounded) reward .

e State Transitions are instantaneous with P(y|x).

 Markov bandit process is a Bandit Process with discrete decision times t={0,1,...}

J |




Decision Process Theory [3]

* Let D be a Markov decision process with state space E and control space U.

* Objective is to maximize the reward of the expected sum of discounted rewards
up to the infinite horizon, i.e. to maximize:

(T—1
J2(&) = lim [ 2 a'r;, (&,(0)) £(0) =¢
=0

* Let 1;(. ) be bounded and U(g) be the FINITE set of controls for each g; eE.

 Theorem: there is at least one optimal policy which is deterministic, stationary
and Markov.

[3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2008. E




* Equation:

T
=

J(&;) =supE at[r;(§;(t)) — ]| &(0) =& =0

>0
0

1
(o ]
1

* For a fixed &; and 7, the function J(&;, T, A) is linear and decreasing on A.

T—1 T—1
B (Dashed blue
](';) J(&iT.2) = ; a"E[ry(§:(0)] - Atz(:) at lines for each 1)

=0 o AL E[r;(&;:(1))] The Gittins Index is
I—oat the highest v;(&;, 7)

~ v;(&,T) =




Necessary Conditions for Gittins

* Infinite Horizon
* Constant exponential discounting
* Single processor/server



