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Markov Bandit Process

• Markov decision process on countable state space E.

• Discrete decision times: 𝑡 ∈ {0,1,2, … }.

• Controls applied at decision time 𝑡 :

• 𝑢(𝑡) = 0 freezes the process and gives no reward;

• 𝑢(𝑡) = 1 continues the process and gives instantaneous reward 𝑎𝑡𝑟(𝜉(𝑡)) ,

where 𝜉(𝑡) is the state at time 𝑡, 𝑎 ∈ (0,1) is the discount factor 
and r(.) is the positive (and bounded) reward .

• State Transitions are instantaneous with 𝑃(𝑦|𝜉) when 𝒖(𝒕) = 𝟏.

• Realization of the process “does not depend on the sequence of controls”.

General Bandit Process
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Simple Family of Alternative Bandit Processes

• n Markov Bandit Processes with state space 𝐸 = 𝐸1 × 𝐸2 × ⋯× 𝐸𝑛 .

• Notice that it is 𝐸 is exponential on the number of bandits.

• Control 𝒖(𝒕) = 𝟏 is applied to a single bandit 𝒊𝒕 at each decision time t.

• Control 𝑢(𝑡) = 0 is applied to all other bandits. 

• Sequence of selected bandits {𝒊𝟏, 𝒊𝟐,…,}                                                               
State of the selected bandit 𝒊𝒕 at each decision time t: 𝜉𝒊𝒕 𝑡 = 𝜉𝒊𝒕. 

• Reward accrued from the selected bandit: 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 .

• Transition probability 𝑃𝑖𝑡(𝑦|𝜉𝑖𝑡) . All other bandits remain in the same state.
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Objective Function

• Problem: sequentially allocate effort between different processes so as to 
maximize the infinite-horizon expected discounted sum of rewards.                                           
Maximize:

𝐽𝜋  𝜉 = lim
𝑇→∞

𝔼   

𝑡=0

𝑇−1

𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡
 𝜉 0 =  𝜉

• At time 𝒕, we know the state  𝜉 = [𝜉1, … , 𝜉𝑛], the probabilities 𝑃𝑖(𝑦|𝜉𝑖),         
the discount factor 𝑎 and the reward function ri(.) for each project.

• Theorem: for this problem, there is at least one optimal 
policy which is deterministic, stationary and Markov. 

• Thus, policy is a mapping from 𝐸 to {1,2,…,n}.
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[3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Chapter 6, 2008.



Gittins Index

Multi Armed Bandit Problem

(open problem for almost 40 years)
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• Objective is to Maximize:

𝐽𝜋  𝜉 = lim
𝑇→∞

𝔼   

𝑡=0

𝑇−1

𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡
 𝜉 0 =  𝜉

• Index Theorem: Optimal policy for this problem is an Index policy.

• Index policy: there exists a function 𝑣𝑖 𝜉𝑖 , computed separately for each 

bandit, such that, for every state  𝜉, the optimal policy continues the bandit:

𝑖𝑡 = argmax
𝑖∈{1,…,𝑛}

𝑣𝑖 𝜉𝑖

Notice that computing the index is simple, for it only depends on the parameters 
associated with a single bandit. But, how such function should be designed?

Gittins Index
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Example 1

• Consider 2 bandits, each evolving according to a deterministic state sequence.

• Let the sequences provide the rewards below:

• Bandit 1 :     { 10 , 9 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 2 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼  𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?
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a b c d e f g h …

10𝑎0 + 9𝑎1 + 8𝑎2 + 7𝑎3 + 6𝑎4 + 5𝑎5 + ⋯

i j k l m n o p …



• Consider the modification below:

• Bandit 1 :     { 10 , 2 , 8 , 7 , 6 , 0 , 0 , 0 , … } 

• Bandit 2 :     {  5 ,  4 , 3 , 9 , 1 , 0 , 0 , 0 , … } 

• What is the policy that maximizes   lim
𝑇→∞

𝔼  𝑡=0
𝑇−1 𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡 ?

Policy 1: (𝑎 = 0.1)

Policy 2: (𝑎 = 0.9)

Policy 3: (𝑎 = 0.5)

10𝑎0 + 2𝑎1 + 8𝑎2 + 7𝑎3 + 6𝑎4 + 5𝑎5 + 4𝑎6 + ⋯
“Future is (almost) as important as the present”

Example 2
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10𝑎0 + 5𝑎1 + 4𝑎2 + 3𝑎3 + 9𝑎4 + 2𝑎5 + 8𝑎6 + ⋯

10𝑎0 + 5𝑎1 + 2𝑎2 + 8𝑎3 + 7𝑎4 + 6𝑎5 + 4𝑎6 + ⋯

“Future is not so important”

“Future is somewhat important”



Questions

• How to design a function 𝑣𝑖 𝜉𝑖 that encodes the value of choosing bandit i ?

• Value: present reward + future expected rewards

• Future reward is to be considered? When a myopic policy is optimal?

• Future reward is the expected value of choosing bandit i forever? 

Or up until a given horizon? How to characterize this horizon?
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𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼  𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼  𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

where 𝜏 is the stopping-time.

• Numerator is the discounted REWARD up to time 𝝉.

• Denominator is the discounted TIME up to time 𝝉.

• 𝑣𝑖 𝜉𝑖 a maximum reward per unit time (“reward density”).

• Interpretation from [1]: “greatest per period rent that one would be willing to 
pay for ownership of the rewards arising from the bandit as it is continued for 
one or more periods.” 

• GITTINS INDEX POLICY chooses the bandit with highest 𝑣𝑖 𝜉𝑖 at every 
decision time t.

Gittins Index
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Gittins Index

• Next, we prove that the Gittins Index Policy is optimal. ( adapted from [4] )

• This proof is instructive because:

• shows the origin of the expression for the Gittins index;

• provides insight into why the Gittins Index Policy is optimal;

• provides insight into why it is NOT optimal for the restless case;

• used in the Whittle Index part of this presentation.

12[4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.

[1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.



Gittins Index – Proof 
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• Consider a single bandit i with a “playing charge” of 𝜆.

• Optimal Policy is a stopping rule. 

• if at time 𝜏 it is optimal to stop, at time 𝜏 + 1 it is also optimal to stop.

• Optimal Reward:

𝐽 𝜉𝑖 = max
𝜋

𝐽𝜋 𝜉𝑖 = sup
𝜏>0

𝔼   

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖

• Optimal Policy: 

At every decision time, calculate 𝐽 𝜉𝑖 :

Play, if 𝐽 𝜉𝑖 ≥ 0 ; Stop, otherwise. 



Gittins Index – Proof
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• For every 𝜉𝑖, there is a 𝜆 such that there is a null reward for playing:

𝐽 𝜉𝑖 = sup
𝜏>0

𝔼   

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖 = 𝟎

• Notice that 𝐽 𝜉𝑖 is convex and decreasing on 𝜆. Thus, it has a single root which 
is the Gittins Index, 𝑣𝑖 𝜉𝑖 , given by:

• This 𝑣𝑖(𝜉𝑖) is called the fair charge during state 𝜉𝑖. 

• This is the charge that makes it equally desirable to play and to stop.

𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼  𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼  𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

Details



Gittins Index – Proof
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• Suppose that at time 𝑡 = 0 we are in state 𝜉𝑖 with a fair charge of 𝑣𝑖 𝜉𝑖 . 

• If we set 𝜆 = 𝑣𝑖 𝜉𝑖 and play bandit i optimally, we expect 0 profit.

• Optimal play is not profitable nor loss-making.

• If we deviate from the optimal policy, then we expect loss.

• What is the optimal policy in this case? (Stopping rule)

slots
…

Set charge to FAIR CHARGE Stopping time. 
Expected cumulative profit = 0



Gittins Index – Proof

slots
…
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• What if at the stopping time, we reset the charge.

• At the stopping time, instead of stopping, we reset the charge to 𝑣𝑖 𝜉𝑖
′ and 

continue playing.

• If we do this repeatedly, the expected profit would still be ZERO.

• The bandit is continuously playing a fair game with optimum policy.

Set charge to FAIR CHARGE Expected cumulative profit = 0
Reset the charge to 𝒗𝒊 𝝃𝒊

′



• Notice that as the game evolves, the charge is reset several times.

• Let 𝜆𝑖 t be the current fee and 𝑣𝑖 𝜉𝑖 the calculated fair fee. 

• 𝜆𝑖 t is non-increasing and is equal to the minimum fair charge “so far”.

Gittins Index – Proof

time
18

Optimal Policy is to always play.

Total Expected Reward is ZERO.
𝝀𝒊 𝒕 , 𝑣𝑖 𝜉𝑖



• Consider n bandits, each with a different initial state 𝜉𝑖.

• We set each initial charge as 𝝀𝒊 = 𝒗𝒊 𝝃𝒊 , ∀𝑖 and update them as before.

• Assume we selected bandit i. The optimal policy tells us to play client i
until 𝝀𝒊 is reset. If we don’t, we will incur in a loss.

Gittins Index – Proof
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time

𝝀𝒊 𝒕 , 𝑣𝑖 𝜉𝑖
Expected profit is 0.
Now we can choose another client. 
Again, the profit will be ZERO.

For ANY client order, the optimal policy yields ZERO profit.



Gittins Index – Proof
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• Consider the policy that selects the bandit with highest 𝜆𝑖 𝑡 at every slot. 

• This policy has NULL profit. And incurs the HIGHEST sum of discounted 
charges.

• This is because it selects the highest charges first, in a non-increasing  
order. (recall Example 1 in slide 7)

• Since Profit = Reward – Charges  This policy incurs highest Reward.

• Notice that choosing the bandit with highest 𝜆𝑖 𝑡 is EQUIVALENT to choosing 
the bandit with highest 𝑣𝑖 𝜉𝑖 . Thus the Gittins Index Policy is optimal.



𝑣𝑖 𝜉𝑖 = sup
𝜏>0

𝔼  𝑡=0
𝜏−1 𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) | 𝜉𝑖(0) = 𝜉𝑖

𝔼  𝑡=0
𝜏−1 𝑎𝑡 | 𝜉𝑖(0) = 𝜉𝑖

where 𝜏 is the stopping-time.

• If 𝜏 = 1 for all bandits and all states, then the Gittins Policy is actually a myopic 
policy (a.k.a. one-step look-ahead policy)

• In general, the Gittins policy can be seen as a 𝜏-step look-ahead policy.

• What happens when the bandits are restless? RMAB problems next.

Gittins Index – Intuition 
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Whittle Index

Restless Multi Armed Bandit Problem
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Whittle’s index

• Whittle extends the notion of index to restless bandits.

• Generalizations in comparison to the MAB problem:

1. At each time t, exactly m out of n bandits are given the action 𝑢 = 1

Formally, 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖, 𝑡 and  𝑖=1
𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

2. Action 𝑢 = 0 no longer freezes the bandit. [Reward + Evolution]

They evolve (possibly) in a distinct way than when 𝑢 = 1.

Use cases:     work / rest   ;   high speed / low speed   .

25



Three Optimization Problems

• [Original]. Original Problem:

• [Relaxed]. Problem with Relaxed activation constraint. 

• [Lagrange]. The Lagrange Dual Function is given by:

26

maximize lim
𝑇→∞

𝔼  𝑡=0
𝑇−1 𝑎𝑡  𝑖=1

𝑛 𝑟𝑖(𝜉𝑖 , 𝑢𝑖)

s.t.    𝑖=1
𝑛 𝑢𝑖 𝑡 = 𝑚, ∀𝑡

𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖

 𝑡=0
∞ 𝑎𝑡  𝑖=1

𝑛 𝑢𝑖 𝑡 = 𝑚/(1 − 𝑎)

ℒ 𝜆 = maximize lim
𝑇→∞

𝔼  𝑡=0
𝑇−1 𝑎𝑡  𝑖=1

𝑛 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡 + 𝜆(𝑚/(1 − 𝑎))

s.t. 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖



Decoupling the [Lagrange] Problem

• [Lagrange]. The Lagrange Dual Function is given by:

• Notice that we can decouple this problem into the bandits and neglect the last 
term (constant). Then, for a fixed 𝜆 and for each bandit, we have:

[Decoupled Problem]

[Similar to Gittins!]
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maximize lim
𝑇→∞

𝔼  𝑡=0
𝑇−1 𝑎𝑡 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡

s.t. 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖

ℒ 𝜆 = maximize lim
𝑇→∞

𝔼  𝑖=1
𝑛  𝑡=0

𝑇−1 𝑎𝑡 𝑟𝑖 𝜉𝑖 , 𝑢𝑖 − 𝜆𝑢𝑖 𝑡 + 𝜆(𝑚/(1 − 𝑎))

s.t. 𝑢𝑖 𝑡 ∈ 0,1 , ∀𝑖



Decoupled Problem

• Main differences when compared to the MAB problem:

• Passive bandits may give reward.

• Passive bandits may change states.

• Thus, the optimal policy is NOT a stopping rule.

• Again, there exists at least one optimal policy which is deterministic, stationary 
and Markov. In general, this optimal policy divides the state space into two 
subsets: 

• Let 𝒫(𝜆) be the set of ALL states for which it is 
optimal to idle when the playing charge is 𝜆.

• Optimal Policy: play, if 𝜉𝑖 ∈ 𝒫𝐶(𝜆); stop, otherwise. 

29

𝒫

𝒫𝐶

State Space with 𝜆

(Passive)

(Active)



Decoupled Problem – Indexability

• The set 𝒫(𝜆) is characterized by the solution of the Decoupled Problem.

• Definition of Indexability: The Decoupled Problem associated with bandit i is 
indexable if 𝒫(𝜆) increases monotonically from ∅ to the entire state space as 𝜆
increases from 0 to +∞. The RMAB problem is indexable if the Decoupled 
Problem is indexable for all bandits. 

• Means that if a bandit is rested with 𝜆, it should also be rested when 𝜆’ > 𝜆.
30

𝒫

𝒫𝐶

State Space with low 𝜆

(Passive)

(Active)

𝒫

𝒫𝐶

State Space with high 𝜆

(Passive)

(Active)



Decoupled Problem – Whittle Index

• Definition of Index: Consider the Decoupled Problem and denote by 𝑣𝑖 𝜉𝑖 the 
Whittle Index in state 𝜉𝑖. Given indexability, 𝑣𝑖 𝜉𝑖 is the infimum playing charge 
𝜆 that makes it equally desirable to play and to stop in state 𝜉𝑖.

• Recall that this definition is the same as in the proof for Gittins.  (slide 14)

• Optimal Policy for the [Lagrange] Problem with n bandits and fixed 𝝀.

• At every decision time, calculate the fair charge 𝑣𝑖 𝜉𝑖
′ for each bandit.

• If 𝑣𝑖 𝜉𝑖
′ ≥ 𝜆. “Current fee is smaller than the fair fee”  Play

• If 𝑣𝑖 𝜉𝑖
′ < 𝜆. “Current fee is higher than the fair fee”  Stop
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Whittle Index Policy

• Going back to our [Original] problem: 

• At each time t, exactly m out of n bandits are given the action 𝑢 = 1

• There is no “playing charge” 𝜆.

• The Whittle Index Policy is one that, at every decision time, selects the m bandits with 
higher values of 𝒗𝒊 𝝃𝒊

′ .

• The Index Policy is a low-complexity heuristic that has been extensively used in the 
literature and is known to have a strong performance in a range of applications. 

• The challenge associated with this approach is that the Index Policy is only defined for 
problems that are indexable, a condition that is often difficult to establish. Moreover, it is 
often hard to find a closed-form expression to 𝑣𝑖 𝜉𝑖

′ .

• Notice that if our RMAB problem is actually a MAB, then Whittle ≡ Gittins. Thus, in this 
case, Whittle is optimal.

32



Asymptotic Optimality (for average cost problems)

• Intuition: as 𝑛 → ∞, we expect a weaker coupling among different bandits.

• Conjecture [6]: with 𝑚/𝑛 = 𝛼 and as 𝑛 → ∞, the reward of the optimal policy 
is asymptotically the same as the reward achieved by Whittle’s index policy.

• From [5]: this conjecture is NOT always satisfied in RMAB. Using theory of 
large deviations, [5] derives sufficient conditions for the conjecture to hold.  
One of which is indexability.

• From [5]: “Evidence so far is that counterexamples to the conjecture are rare 
and that the degree of sub-optimality is very small. It appears that in most cases 
the index policy is a very good heuristic.”

33
[5] R. Weber and Weiss, “On an Index Policy for Restless Bandits”, 1990
[6] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World”, 1981
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Bandit Process

• Bandit process is a special type of semi-Markov decision process.

• Continuous time and a succession of (random) decision times 𝑡1, 𝑡2, 𝑡3, …

• Same controls applied at decision times

• 𝑢(𝑡𝑖) = 0 freezes the process and gives no reward.
Time 𝑡𝑖 + 𝛿 is another decision time.

• 𝑢(𝑡𝑖) = 1 continues the process and gives instantaneous reward 𝑎𝑡𝑖𝑟 𝑥 𝑡𝑖 .
Time 𝑡𝑖 + 𝑠 is another decision time, where s is drawn from 𝐹(𝑠|𝑦, 𝑥).

where 𝑥(𝑡) is the current state, y is the next state, 𝑎 ∈ (0,1) is the discount factor 
and r(.) is the positive (and bounded) reward .

• State Transitions are instantaneous with 𝑃(𝑦|𝑥).

• Markov bandit process is a Bandit Process with discrete decision times t={0,1,…}
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Decision Process Theory [3]

• Let D be a Markov decision process with state space 𝐸 and control space U.

• Objective is to maximize the reward of the expected sum of discounted rewards 
up to the infinite horizon, i.e. to maximize:

𝐽𝜋  𝜉 = lim
𝑇→∞

𝔼   

𝑡=0

𝑇−1

𝑎𝑡𝑟𝑖𝑡 𝜉𝑖𝑡(𝑡)
 𝜉 0 =  𝜉

• Let 𝑟𝑖 . be bounded and U(  𝜉) be the FINITE set of controls for each  𝜉 ∈ 𝐸.

• Theorem: there is at least one optimal policy which is deterministic, stationary 
and Markov.

[3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2008.
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• Equation:

• For a fixed 𝜉𝑖 and 𝜏 , the function  𝐽 𝜉𝑖 , 𝜏, 𝜆 is linear and decreasing on 𝜆. 

𝐽 𝜉𝑖 , 𝜏, 𝜆 =  

𝑡=0

𝜏−1

𝑎𝑡𝔼 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆  

𝑡=0

𝜏−1

𝑎𝑡

38

𝜆

𝐽 𝜉𝑖 = sup
𝜏>0

𝔼   

𝑡=0

𝜏−1

𝑎𝑡 𝑟𝑖 𝜉𝑖(𝑡) − 𝜆 𝜉𝑖 0 = 𝜉𝑖 = 0

𝐽(. )
(Dashed blue 
lines for each 𝜏)

𝑣𝑖 𝜉𝑖 , 𝜏 =
 𝑡=0

𝜏−1 𝑎𝑡𝔼 𝑟𝑖 𝜉𝑖(𝑡)

 𝑡=0
𝜏−1 𝑎𝑡

The Gittins Index is 
the highest 𝑣𝑖 𝜉𝑖 , 𝜏



Necessary Conditions for Gittins

• Infinite Horizon

• Constant exponential discounting

• Single processor/server
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