Index Policies

Gittins and Whittle Indices

Outline

- Introduction
 - Bandit Process, Objective Function

- Gittins Index
 - Index Theorem, Examples, Gittins Index, Proof
- Whittle Index
 - Three optimization problems, Decoupled Problem, Indexability, Whittle Index

Markov Bandit Process

- Markov decision process on countable state space E.
- Discrete decision times: $t \in \{0,1,2,...\}$.
- Controls applied at decision time t:
 - u(t) = 0 freezes the process and gives no reward;
 - u(t)=1 continues the process and gives instantaneous reward $a^t r(\xi(t))$, where $\xi(t)$ is the state at time t, $a \in (0,1)$ is the discount factor and r(.) is the positive (and bounded) reward .
- State Transitions are instantaneous with $P(y|\xi)$ when u(t)=1.
- Realization of the process "does not depend on the sequence of controls".

Simple Family of Alternative Bandit Processes

- n Markov Bandit Processes with state space $\vec{E} = E_1 \times E_2 \times \cdots \times E_n$.
 - Notice that it is $|\vec{E}|$ is exponential on the number of bandits.
- Control u(t)=1 is applied to a single bandit $oldsymbol{i}_t$ at each decision time t.
 - Control u(t) = 0 is applied to all **other bandits**.
- Sequence of selected bandits $\{i_1, i_2, ..., \}$ State of the selected bandit i_t at each decision time t: $\xi_{i_t}(t) = \xi_{i_t}$.
- Reward accrued from the selected bandit: $a^t r_{i_t}(\xi_{i_t})$.
- Transition probability $P_{i_t}(y|\xi_{i_t})$. All other bandits remain in the same state.

Objective Function

 <u>Problem</u>: sequentially allocate effort between different processes so as to maximize the <u>infinite-horizon expected discounted sum of rewards</u>.
 Maximize:

$$J_{\pi}(\vec{\xi}) = \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=0}^{T-1} a^{t} r_{i_{t}}(\xi_{i_{t}}) \middle| \vec{\xi}(0) = \vec{\xi} \right]$$

- At time t, we know the state $\vec{\xi} = [\xi_1, ..., \xi_n]$, the probabilities $P_i(y|\xi_i)$, the discount factor a and the reward function $r_i(.)$ for each project.
- **Theorem**: for this problem, there is at least one optimal policy which is **deterministic**, **stationary and Markov**.
 - Thus, policy is a mapping from \vec{E} to $\{1,2,...,n\}$.

Gittins Index

Multi Armed Bandit Problem

(open problem for almost 40 years)

Gittins Index

Objective is to Maximize:

$$J_{\pi}(\vec{\xi}) = \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=0}^{T-1} a^t r_{i_t}(\xi_{i_t}) \middle| \vec{\xi}(0) = \vec{\xi} \right]$$

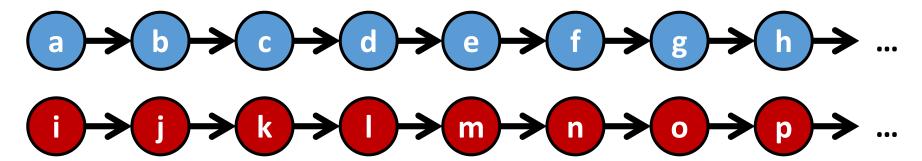
- Index Theorem: Optimal policy for this problem is an Index policy.
- Index policy: there exists a function $v_i(\xi_i)$, computed separately for each bandit, such that, for every state $\vec{\xi}$, the optimal policy continues the bandit:

$$i_t = \underset{i \in \{1, \dots, n\}}{\operatorname{argmax}} \{v_i(\xi_i)\}$$

Notice that computing the index is simple, for it only depends on the parameters associated with a single bandit. But, how such function should be designed?

Example 1

• Consider 2 bandits, each evolving according to a deterministic state sequence.



- Let the sequences provide the rewards below:
 - Bandit 1: { 10,9,8,7,6,0,0,...}
 - Bandit 2: { 5, 4, 3, 2, 1, 0, 0, 0, ...}
- What is the policy that maximizes $\lim_{T\to\infty} \mathbb{E} \big[\sum_{t=0}^{T-1} a^t r_{i_t}(\xi_{i_t}) \big]$?

$$10a^{0} + 9a^{1} + 8a^{2} + 7a^{3} + 6a^{4} + 5a^{5} + \cdots$$

Example 2

- Consider the modification below:
 - Bandit 1: { 10, 2, 8, 7, 6, 0, 0, 0, ... }
 - Bandit 2: { 5, 4, 3, 9, 1, 0, 0, 0, ...}
- What is the policy that maximizes $\lim_{T\to\infty} \mathbb{E}\left[\sum_{t=0}^{T-1} a^t r_{i_t}(\xi_{i_t})\right]$?

"Future is not so important"

Policy 1:
$$10a^0 + 5a^1 + 4a^2 + 3a^3 + 9a^4 + 2a^5 + 8a^6 + \cdots$$
 $(a = 0.1)$

"Future is (almost) as important as the present"

Policy 2:
$$10a^0 + 2a^1 + 8a^2 + 7a^3 + 6a^4 + 5a^5 + 4a^6 + \cdots$$
 $(a = 0.9)$

"Future is somewhat important"

Policy 3:
$$10a^0 + 5a^1 + 2a^2 + 8a^3 + 7a^4 + 6a^5 + 4a^6 + \cdots$$
 $(a = 0.5)$

Questions

- How to design a function $v_i(\xi_i)$ that encodes the value of choosing bandit i?
 - Value: present reward + future expected rewards
 - Future reward is to be considered? When a myopic policy is optimal?
 - Future reward is the expected value of choosing bandit i forever?

Or up until a given horizon? How to characterize this horizon?

Gittins Index

$$v_{i}(\xi_{i}) = \sup_{\tau > 0} \frac{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} r_{i}(\xi_{i}(t)) \mid \xi_{i}(0) = \xi_{i}\right]}{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} \mid \xi_{i}(0) = \xi_{i}\right]}$$

where τ is the stopping-time.

- Numerator is the discounted REWARD up to time τ .
- Denominator is the **discounted TIME up to time** τ .
- $v_i(\xi_i)$ a maximum reward per unit time ("reward density").
- Interpretation from [1]: "greatest **per period rent** that one would be willing to pay for ownership of the rewards arising from the bandit as it is continued for one or more periods."
- GITTINS INDEX POLICY chooses the bandit with highest $v_i(\xi_i)$ at every decision time t.

Gittins Index

• Next, we prove that the Gittins Index Policy is optimal. (adapted from [4])

- This proof is instructive because:
 - shows the origin of the expression for the Gittins index;
 - provides insight into why the Gittins Index Policy is optimal;
 - provides insight into why it is NOT optimal for the restless case;
 - used in the Whittle Index part of this presentation.

- Consider a **single** bandit i with a "**playing charge**" of λ .
- Optimal Policy is a stopping rule.
 - if at time τ it is optimal to stop, at time $\tau + 1$ it is also optimal to stop.

• Optimal Reward:

$$J(\xi_i) = \max_{\pi} J_{\pi}(\xi_i) = \sup_{\tau > 0} \mathbb{E} \left| \sum_{t=0}^{\tau - 1} a^t [r_i(\xi_i(t)) - \lambda] \right| \xi_i(0) = \xi_i$$

Optimal Policy:

At every decision time, calculate $I(\xi_i)$:

Play, if
$$J(\xi_i) \ge 0$$
 ; Stop, otherwise.

• For every ξ_i , there is a λ such that there is a null reward for playing:

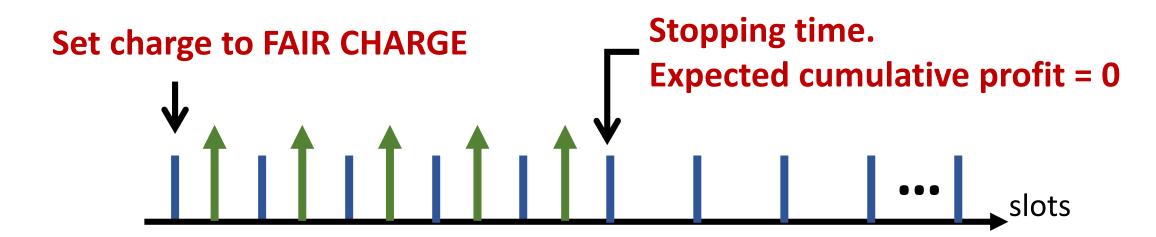
$$J(\xi_i) = \sup_{\tau > 0} \mathbb{E} \left[\sum_{t=0}^{\tau - 1} a^t [r_i(\xi_i(t)) - \lambda] \middle| \xi_i(0) = \xi_i \right] = \mathbf{0}$$

• Notice that $J(\xi_i)$ is convex and decreasing on λ . Thus, it has a single root which is the Gittins Index, $v_i(\xi_i)$, given by:

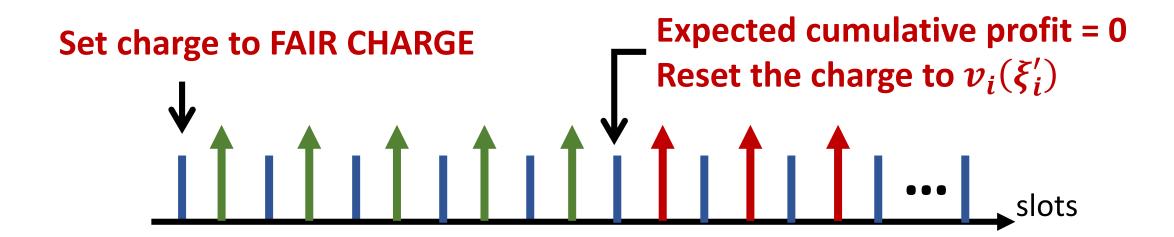
$$v_{i}(\xi_{i}) = \sup_{\tau > 0} \frac{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} r_{i}(\xi_{i}(t)) \mid \xi_{i}(0) = \xi_{i}\right]}{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} \mid \xi_{i}(0) = \xi_{i}\right]}$$
Details

- This $v_i(\xi_i)$ is called the **fair charge** during state ξ_i .
- This is the charge that makes it equally desirable to play and to stop.

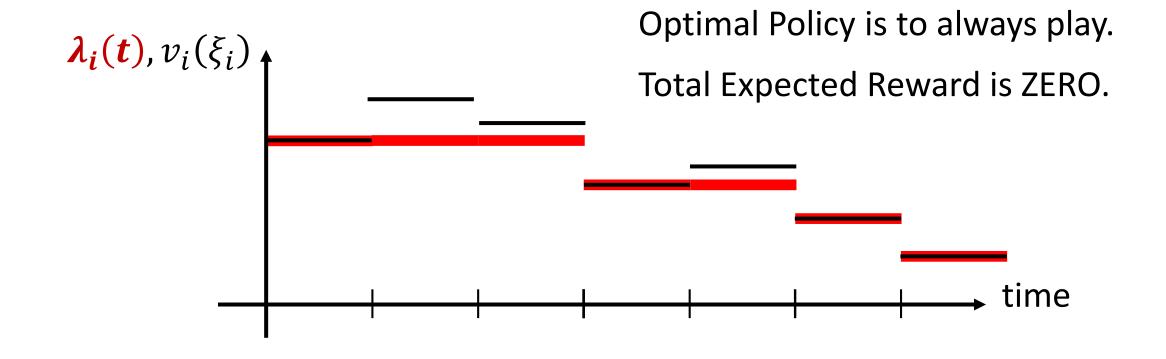
- Suppose that at time t=0 we are in state ξ_i with a **fair charge** of $v_i(\xi_i)$.
- If we set $\lambda = v_i(\xi_i)$ and play bandit i optimally, we expect 0 profit.
 - Optimal play is not profitable nor loss-making.
- If we deviate from the optimal policy, then we expect loss.
- What is the optimal policy in this case? (Stopping rule)



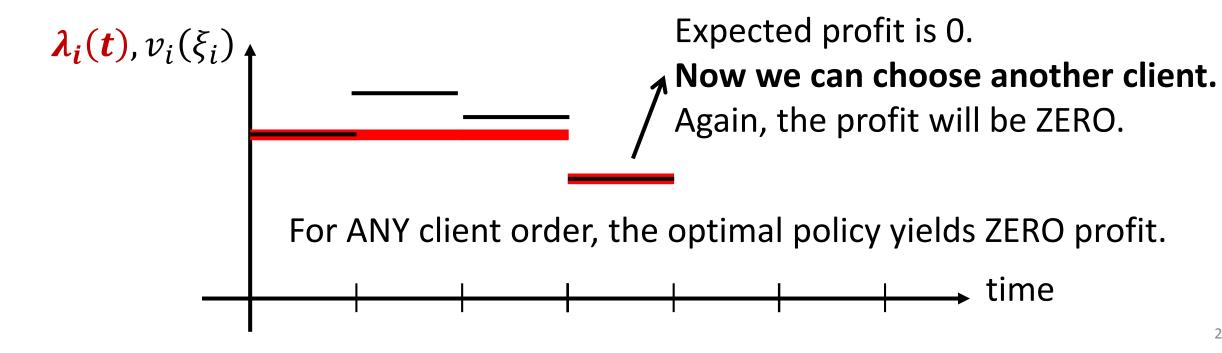
- What if at the stopping time, we reset the charge.
- At the stopping time, instead of stopping, we reset the charge to $v_i(\xi_i')$ and continue playing.
- If we do this **repeatedly**, the expected profit would still be ZERO.
 - The bandit is continuously playing a fair game with optimum policy.



- Notice that as the game evolves, the charge is reset several times.
- Let $\lambda_i(t)$ be the current fee and $v_i(\xi_i)$ the calculated fair fee.
- $\lambda_i(t)$ is non-increasing and is equal to the minimum fair charge "so far".



- Consider **n** bandits, each with a different initial state ξ_i .
- We set each initial charge as $\lambda_i = v_i(\xi_i)$, $\forall i$ and update them as before.
- Assume we selected bandit i. The optimal policy tells us to play client i until λ_i is reset. If we don't, we will incur in a loss.



- Consider the policy that selects the bandit with highest $\lambda_i(t)$ at every slot.
- This policy has NULL profit. And incurs the HIGHEST sum of discounted charges.
 - This is because it selects the highest charges first, in a non-increasing order. (recall Example 1 in slide 7)
 - Since Profit = Reward Charges → This policy incurs highest Reward.
- Notice that choosing the bandit with highest $\lambda_i(t)$ is EQUIVALENT to choosing the bandit with highest $v_i(\xi_i)$. Thus the Gittins Index Policy is optimal.

Gittins Index – Intuition

$$v_{i}(\xi_{i}) = \sup_{\tau > 0} \frac{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} r_{i}(\xi_{i}(t)) \mid \xi_{i}(0) = \xi_{i}\right]}{\mathbb{E}\left[\sum_{t=0}^{\tau-1} a^{t} \mid \xi_{i}(0) = \xi_{i}\right]}$$

where τ is the stopping-time.

- If $\tau=1$ for all bandits and all states, then the Gittins Policy is actually a myopic policy (a.k.a. one-step look-ahead policy)
- In general, the Gittins policy can be seen as a τ -step look-ahead policy.
- What happens when the bandits are restless? RMAB problems next.

Whittle Index

Restless Multi Armed Bandit Problem

Whittle's index

- Whittle extends the notion of index to restless bandits.
- Generalizations in comparison to the MAB problem:

- 1. At each time t, exactly **m out of n** bandits are given the action u=1 Formally, $u_i(t) \in \{0,1\}$, $\forall i,t$ and $\sum_{i=1}^n u_i(t) = m$, $\forall t$
- 2. Action u=0 no longer freezes the bandit. [Reward + Evolution] They evolve (possibly) in a distinct way than when u=1. Use cases: work / rest; high speed / low speed.

Three Optimization Problems

• [Original]. Original Problem: maximize $\lim_{T\to\infty}\mathbb{E}[\sum_{t=0}^{T-1}a^t\sum_{i=1}^nr_i(\xi_i,u_i)]$ s.t. $\sum_{i=1}^nu_i(t)=m, \forall t$ $u_i(t)\in\{0,1\}, \forall i$

• [Relaxed]. Problem with Relaxed activation constraint.

$$\sum_{t=0}^{\infty} a^t \sum_{i=1}^{n} u_i(t) = m/(1-a)$$

• [Lagrange]. The Lagrange Dual Function is given by:

$$\mathcal{L}(\lambda) = \text{maximize} \lim_{T \to \infty} \mathbb{E} \Big[\sum_{t=0}^{T-1} a^t \sum_{i=1}^n \Big(r_i(\xi_i, u_i) - \lambda u_i(t) \Big) \Big] + \lambda (m/(1-a))$$
s.t. $u_i(t) \in \{0,1\}, \forall i$

Decoupling the [Lagrange] Problem

• [Lagrange]. The Lagrange Dual Function is given by:

$$\mathcal{L}(\lambda) = \text{maximize} \lim_{T \to \infty} \mathbb{E} \Big[\sum_{i=1}^{n} \sum_{t=0}^{T-1} a^{t} \Big(r_{i}(\xi_{i}, u_{i}) - \lambda u_{i}(t) \Big) \Big] + \lambda (m/(1-a))$$
s.t. $u_{i}(t) \in \{0,1\}, \forall i$

• Notice that we can decouple this problem into the bandits and neglect the last term (constant). Then, for a fixed λ and for each bandit, we have:

[Decoupled Problem]

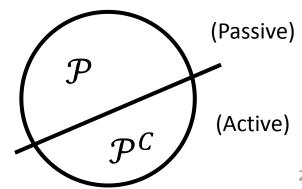
$$\begin{aligned} & \text{maximize } \lim_{T \to \infty} \mathbb{E} \big[\sum_{t=0}^{T-1} a^t \left(r_i(\xi_i, u_i) - \lambda u_i(t) \right) \big] \\ & \text{s.t. } u_i(t) \in \{0, 1\}, \forall i \end{aligned}$$

[Similar to Gittins!]

Decoupled Problem

- Main differences when compared to the MAB problem:
 - Passive bandits may give reward.
 - Passive bandits may change states.
- Thus, the optimal policy is NOT a stopping rule.
- Again, there exists at least one optimal policy which is deterministic, stationary and Markov. In general, this optimal policy divides the state space into two subsets:
 - Let $\mathcal{P}(\lambda)$ be the set of ALL states for which it is optimal to idle when the playing charge is λ .
 - **Optimal Policy**: play, if $\xi_i \in \mathcal{P}^{\mathcal{C}}(\lambda)$; stop, otherwise.

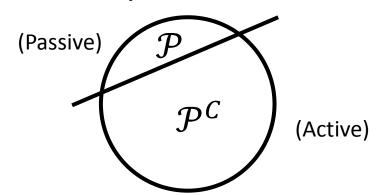
State Space with λ



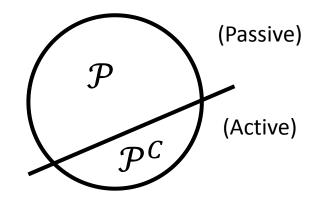
Decoupled Problem – Indexability

- The set $\mathcal{P}(\lambda)$ is characterized by the solution of the Decoupled Problem.
- <u>Definition of Indexability</u>: The Decoupled Problem associated with bandit i is indexable if $\mathcal{P}(\lambda)$ increases monotonically from \emptyset to the entire state space as λ increases from 0 to $+\infty$. The RMAB problem is indexable if the Decoupled Problem is indexable for all bandits.

State Space with low λ



State Space with high λ



• Means that if a bandit is rested with λ , it should also be rested when $\lambda' > \lambda$.

Decoupled Problem – Whittle Index

- **<u>Definition of Index</u>**: Consider the Decoupled Problem and denote by $v_i(\xi_i)$ the Whittle Index in state ξ_i . Given *indexability*, $v_i(\xi_i)$ is the infimum playing charge λ that makes it equally desirable to play and to stop in state ξ_i .
- Recall that this definition is the same as in the proof for Gittins. (slide 14)

- Optimal Policy for the [Lagrange] Problem with n bandits and fixed λ .
 - At every decision time, calculate the **fair charge** $v_i(\xi_i')$ for each bandit.
 - If $v_i(\xi_i') \geq \lambda$. "Current fee is **smaller** than the fair fee" \rightarrow Play
 - If $v_i(\xi_i') < \lambda$. "Current fee is **higher** than the fair fee" \rightarrow Stop

Whittle Index Policy

- Going back to our [Original] problem:
 - At each time t, exactly **m** out of **n** bandits are given the action u=1
 - There is no "playing charge" λ .
- The Whittle Index Policy is one that, at every decision time, selects the m bandits with higher values of $v_i(\xi_i')$.
- The Index Policy is a low-complexity heuristic that has been extensively used in the literature and is known to have a strong performance in a range of applications.
- The **challenge** associated with this approach is that the Index Policy is only defined for problems that are *indexable*, a condition that is often difficult to establish. Moreover, it is often hard to find a closed-form expression to $v_i(\xi_i')$.
- Notice that if our RMAB problem is actually a MAB, then Whittle

 = Gittins. Thus, in this case, Whittle is optimal.

Asymptotic Optimality (for average cost problems)

- Intuition: as $n \to \infty$, we expect a weaker coupling among different bandits.
- Conjecture [6]: with $m/n = \alpha$ and as $n \to \infty$, the reward of the optimal policy is asymptotically the same as the reward achieved by Whittle's index policy.
- From [5]: this **conjecture is NOT always satisfied in RMAB**. Using theory of large deviations, [5] derives sufficient conditions for the conjecture to hold. One of which is indexability.
- From [5]: "Evidence so far is that counterexamples to the conjecture are rare and that the degree of sub-optimality is very small. It appears that in most cases the index policy is a very good heuristic."

References

- [1] J. Gittins, K. Glazebrook and R. Weber, Multi-armed Bandit Allocation Indices, 2 Ed., 2011.
- [2] R. Weber, Tutorial on Bandit Processes and Index Policies, YEQT VII workshop, 2013.
- [3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2008.
- [4] R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.
- [5] R. Weber and Weiss, "On an Index Policy for Restless Bandits", 1990
- [6] P. Whittle, "Restless Bandits: Activity Allocation in a Changing World", 1981

Supplementary Slides

Bandit Process

- Bandit process is a special type of semi-Markov decision process.
- Continuous time and a succession of (random) decision times $t_1, t_2, t_3, ...$
- Same controls applied at decision times
 - $u(t_i) = 0$ freezes the process and gives no reward. Time $t_i + \delta$ is another decision time.
 - $u(t_i) = 1$ continues the process and gives instantaneous reward $a^{t_i}r(x(t_i))$. Time $t_i + s$ is another decision time, where s is drawn from F(s|y,x).
 - where x(t) is the current state, y is the next state, $a \in (0,1)$ is the discount factor and r(.) is the positive (and bounded) reward.
- State Transitions are instantaneous with P(y|x).
- Markov bandit process is a Bandit Process with discrete decision times t={0,1,...}

Decision Process Theory [3]

- Let D be a Markov decision process with state space \vec{E} and control space U.
- Objective is to maximize the reward of the expected sum of discounted rewards up to the infinite horizon, i.e. to maximize:

$$J_{\pi}(\vec{\xi}) = \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=0}^{T-1} a^t r_{i_t}(\xi_{i_t}(t)) \middle| \vec{\xi}(0) = \vec{\xi} \right]$$

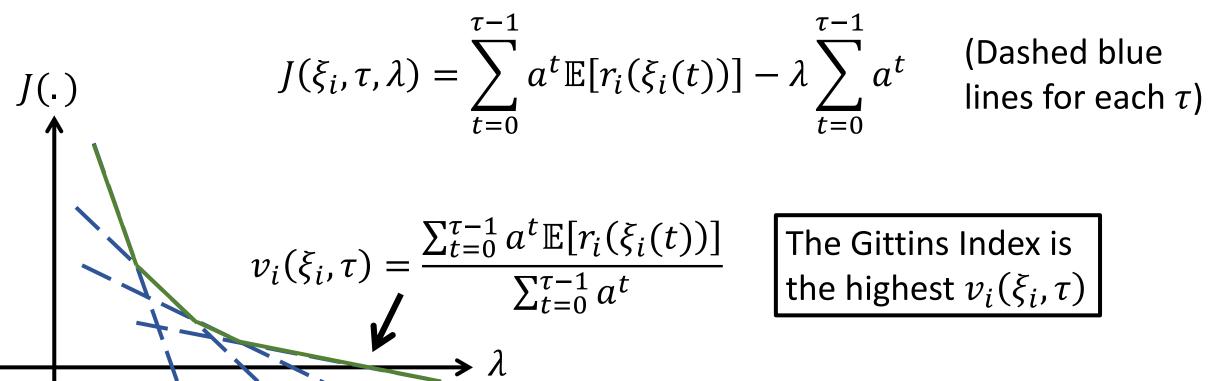
• Let $r_i(.)$ be bounded and $U(\vec{\xi})$ be the FINITE set of controls for each $\vec{\xi} \in \vec{E}$.

 Theorem: there is at least one optimal policy which is deterministic, stationary and Markov.

• Equation:

$$J(\xi_i) = \sup_{\tau > 0} \mathbb{E} \left[\sum_{t=0}^{\tau - 1} a^t [r_i(\xi_i(t)) - \lambda] \middle| \xi_i(0) = \xi_i \right] = 0$$

• For a fixed ξ_i and τ , the function $J(\xi_i, \tau, \lambda)$ is linear and decreasing on λ .



Necessary Conditions for Gittins

- Infinite Horizon
- Constant exponential discounting
- Single processor/server