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ABSTRACT 
 

The bootstrap is a method for estimating the distribution of an estimator or test statistic 

by resampling one’s data or a model estimated from the data.  Under conditions that hold in a wide 

variety of econometric applications, the bootstrap provides approximations to distributions of 

statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis 

tests that are more accurate than the approximations of first-order asymptotic distribution theory.  

The reductions in the differences between true and nominal coverage or rejection probabilities can 

be very large.  In addition, the bootstrap provides a way to carry out inference in certain settings 

where obtaining analytic distributional approximations is difficult or impossible.  This article 

explains the usefulness and limitations of the bootstrap in contexts of interest in econometrics.  The 

presentation is informal and expository.  It provides an intuitive understanding of how the 

bootstrap works.  Mathematical details are available in references that are cited. 
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1.  INTRODUCTION 

 The bootstrap is a method for estimating the distribution of an estimator or test statistic by 

resampling one’s data or a model estimated from the data.  It amounts to treating the data as if they 

were the population for the purpose of evaluating the distribution of interest.  Under mild regularity 

conditions, the bootstrap yields an approximation to the distribution of an estimator or test statistic 

that is at least as accurate as and often more accurate than the approximation obtained from first-

order asymptotic theory.  Thus, the bootstrap provides a way to substitute computation for 

mathematical analysis if calculating the asymptotic distribution of an estimator or statistic is 

difficult, and it often provides a practical way to improve upon first-order approximations.   

 Improvements on first-order approximations are called asymptotic refinements.  The 

bootstrap’s ability to provide asymptotic refinements is important, because first-order asymptotic 

theory often gives poor approximations to the distributions of test statistics with the sample sizes 

available in applications.  Therefore, the nominal probability that a test based on an asymptotic 

critical value rejects a true null hypothesis or the nominal coverage probability of a confidence 

interval can be very different from the true rejection probability (RP) or coverage probability.  The 

information matrix test of White (1982) is a well-known example of a test in which large finite-

sample errors in the RP can occur when asymptotic critical values are used (Horowitz 1994, 

Kennan and Neumann 1988, Orme 1990, Taylor 1987).  The bootstrap often provides a tractable 

way to reduce or eliminate finite-sample errors in the RP’s of statistical tests. 

 The bootstrap was introduced by Efron (1979) and was the object of much research in the 

ensuing 25 years.  Most of the theory of the bootstrap and methods for implementing it were 

developed during this period.  The results of this research are synthesized in books by Beran and 

Ducharme (1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992), 
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Mammen (1992), and Shao and Tu (1995).  Hall (1994), Horowitz (1997, 2001), Jeong and 

Maddala (1993), and Vinod (1993) provide reviews with an econometric orientation.  In addition 

to topics in these books and reviews, this article summarizes several recent extensions of bootstrap 

methods.  These include methods for obtaining confidence bands in nonparametric estimation, 

methods for carrying out non-asymptotic inference in parametric models, and methods for high-

dimensional models.   

 This article explains and illustrates the usefulness and limitations of the bootstrap in contexts 

of interest in econometrics.  The presentation is informal and expository.  Its aim is to provide an 

intuitive understanding of how the bootstrap works and a feeling for its practical value in 

econometrics.  It does not provide a mathematically detailed or rigorous treatment of the theory of 

the bootstrap.  Mathematically rigorous treatments are available in the books by Beran and 

Ducharme (1991) and Hall (1992) and in references that are cited later in this article.   

 Although the bootstrap is often very accurate, it can be inaccurate and misleading if it is used 

incorrectly.  Examples include inference about a parameter that is on the boundary of the parameter 

set, inference about the maximum or minimum of random variables, and inference in the presence 

of weak instruments.  The difference between correct and incorrect use is not always intuitive.  A 

further objective of this article is to explain the difference between correct and incorrect use 

 The variety of different bootstrap methods and applications and the associated literature are 

very large.  A given bootstrap method typically works well in some settings but not in others.  It is 

not possible to provide an exhaustive review of bootstrap methods or the bootstrap literature in one 

article, and this article does not attempt to do so.  Instead, the article focusses on a few methods 

and settings that arise frequently in applied econometrics.  Owing to space limitations, this article 

does not present Monte Carlo or other illustrations of the numerical performance of the bootstrap.  
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Such illustrations are provided in Horowitz (2001) and other references cited throughout the 

article. 

 The remainder of this article is divided into eight sections.  Section 2 explains the bootstrap 

sampling procedure and gives conditions under which the bootstrap distribution of a statistic is a 

consistent estimator of the statistic’s asymptotic distribution.  Section 3 explains when and why the 

bootstrap provides asymptotic refinements.  This section concentrates on data that are independent 

random samples from a distribution and statistics that are either smooth functions of sample 

moments or can be approximated with asymptotically negligible error by such functions (the 

smooth function model).  Section 4 extends the results of Section 3 to statistics that do not satisfy 

the assumptions of the smooth function model. Section 5 describes the use of the bootstrap in 

nonparametric estimation of a conditional mean or quantile function.  Section 6 describes the 

multiplier and wild bootstraps.  Section 7 presents results on the application of the bootstrap to 

statistics based on LASSO and adaptive LASSO parameter estimates.  Section 8 discusses the 

application of the bootstrap to dependent data, and Section 9 presents concluding comments.   

2.  THE BOOTSTRAP WITH INDEPENDENTLY AND IDENTICALLY DISTRIBUTED 

DATA 

 Much research in empirical economics is based on data that are a random sample from a 

distribution.  This type of data includes panel-data based on randomly sampled individuals, where 

the data consist of observations of individuals and other relevant variables over time.  To minimize 

the complexity of the discussion in this section, let the data consist of a random sample of size n  

from the distribution of a possibly vector valued random variable X .  If the data are used in a 

model that has dependent and explanatory variables, both types of variables are included among 

the components of X .  Denote the data by { : 1,..., }iX i n= .  Let 0F  denote the distribution 
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function of X  and nF  denote the empirical distribution function of the sample.  That is, for any 

vector z  whose dimension is the same as that of X , 

 
1

1( ) ( )
n

n i
i

F z I X z
n =

= ≤∑ , 

where ( )I ⋅  is the indicator function and the inequality holds component-by-component.  Suppose 

that the object of interest is a statistic 1( ,... )n nT X X .  For example, if X  is a scalar, nT  might be 

the t -statistic for testing the null hypothesis 0 : ( ) 0H E X = , where E  is the expectation operator 

and ( )E X  is the population mean of X .  In this case,  

 1( ,..., ) /n n nT X X X s= , 

where X  is the sample average and ns  is the sample standard deviation: 

 2 2

1 1

1 1; ( )
1

n n

i n i
i i

X X s X X
n n= =

= = −
−∑ ∑ . 

 In most applications, the distribution of X  and, therefore, of nT  is unknown.  It is necessary 

to estimate the distribution of nT  to obtain a critical value for testing 0H .  Asymptotic distribution 

theory provides one way of estimating this distribution.  In this simple example, nT  is 

asymptotically distributed as (0,1)N .  Moreover, the (0,1)N  distribution provides a very accurate 

approximation to the unknown exact finite sample distribution of nT  with samples of the sizes 

typically encountered in empirical economics.  In more complicated settings, however, the 

asymptotic approximation may be inaccurate or the asymptotic distribution of nT  hard to compute.   

 2.1  The Nonparametric Bootstrap and Bootstrap Consistency  

 The nonparametric bootstrap estimates the distribution of nT  by treating the empirical 

distribution of the data as if it were the population distribution.  In other words, the nonparametric 
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bootstrap conditions on the data pretends that they were drawn from a population whose 

distribution function is nF  instead of 0F .  In this pretend world, X  has a known distribution (the 

empirical distribution of the data), and the exact finite-sample distribution of nT  can be computed 

with any desired accuracy by simulation.  The steps of this procedure are: 

 1.  Generate a bootstrap sample *{ : 1,..., }iX i n=  by sampling the original data randomly 

with replacement. 

 2.  Compute * * *
1( ,..., )n n nT T X X= . 

 3.  Use the results of many repetitions of steps 1 and 2 to compute the empirical probability 

of the event *
nT τ≤  for any τ .  This probability is the proportion of repetitions in which the event 

*
nT τ≤  occurs. 

Brown (2000) and Hall (1992, Appendix II) discuss simulation methods that take advantage of 

techniques for reducing Monte Carlo sampling variation.  Regardless of the simulation method that 

is used, however, the essential characteristic of the nonparametric bootstrap is treating nF  as if it, 

instead of 0F , were the distribution function of the population from which the data were sampled. 

 Now let ( , )nG F⋅  be the distribution function of nT  when the data are sampled randomly 

from a population whose distribution function is F .  Thus, the true but unknown distribution 

function of nT  is 0( ) ( , )n nP T G Fτ τ≤ = .  The bootstrap approximates 0( , )nG Fτ  by ( , )n nG Fτ .  

The Glivenko-Cantelli theorem ensures that 0| ( ) ( ) | 0nF z F z− →  almost surely uniformly over z .  

Therefore, intuition suggests that ( , )n nG Fτ  should be close to 0( , )nG Fτ  if n  is large and nG  is 

continuous at 0F  in the sense that ( , )nG Fτ  is close to 0( , )nG Fτ  whenever F  is close to 0F .  Let 

0( , )G Fτ∞  denote the asymptotic distribution function of nT .  Since 0( , )nG Fτ  converges to 
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0( , )G Fτ∞  as n →∞  by definition, one can hope that 0( , ) ( , )n nG F G Fτ τ∞→  as n →∞ .  In other 

words, the bootstrap estimate of the distribution function of nT  converges to the asymptotic 

distribution function of nT   as n →∞ .  This property of the bootstrap is called consistency.  The 

formal definition of bootstrap consistency is 

 Definition:  Let Pn denote the probability distribution of the sample {Xi:  i = 1, …, n}.  The 

bootstrap estimator ( , )n nG F⋅  is consistent if for each 0ε >  and 0F  

 0lim sup | ( , ) ( , ) | 0n n nn
P G F G F

τ
τ τ ε∞

→∞

 
− > = 

 
. 

Beran and Ducharme (1991) give general conditions under which the bootstrap is consistent, but 

these conditions are hard to check.  Mammen (1992) gives less general but much more useful 

conditions for bootstrap consistency.  Specifically, Mammen (1992) gives necessary and sufficient 

conditions for the bootstrap to consistently estimate the distribution of a linear functional of 0F .  

These conditions are important because they are often easy to check, and many econometric 

estimators and test statistics are asymptotically equivalent to linear functionals of some 0F .  Gill 

(1989) and Hall (1990) give related theorems.  Mammen’s (1992) theorem is: 

 Theorem 2.1 (Mammen 1992):  Let { : 1,..., |iX i n=  be a random sample from a 

population.  For a sequence of functions ng  and sequences of numbers nt  and nσ , define 

1
1

( )n
n n ii

g n g X−
=

= ∑  and ( ) /n n n nT g t σ= − .  For the bootstrap sample *{ : 1,..., }iX i n= , 

define * 1 *
1

( )n
n n ii

g n g X−
=

= ∑  and * *( ) /n n n nT g g σ= − .  Let ( ) ( )n nG P Tτ τ= ≤  and

* * * *( ) ( )n n n nG T P T τ= ≤ , where *
nP  is the probability distribution induced by bootstrap sampling 
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conditional on the original data { }iX .  Then *( )nG ⋅   consistently estimates ( )nG ⋅  if and only if 

(0,1)d
nT N→ .   

Bootstrap sampling is conditional on the original data { }iX .  Therefore, in bootstrap sampling 

and estimation, the original data and any functions of the data are non-stochastic.  Only functions 

of the bootstrap sample *{ }iX  are random in bootstrap sampling.   

 Maximum likelihood estimators, generalized method of moments estimators, and 

other commonly encountered extremum estimators and test statistics are asymptotically linear 

and asymptotically normal (or are asymptotically chi-square quadratic forms of asymptotic 

normal statistics) under the usual regularity conditions (e.g., Amemiya, 1985, Ch. 4).  Therefore, 

the nonparametric bootstrap estimates their asymptotic distributions consistently and can be 

applied to them.  Indeed, the bootstrap is often more accurate than asymptotic distribution 

theory, as will be discussed in Section 3 of this article.   

 There are, however, important settings in which a statistic is neither asymptotically 

linear nor normal and for which the nonparametric bootstrap is inconsistent.  These settings 

include: 

 1.  Manski’s (1975, 1985) maximum score estimator for a binary response model.  In this 

model, the binary dependent variable Y , vector of explanatory variables X , and vector of constant 

coefficients β  are related by 

 

1 if 0
1 if 0

( 0 | ) 0.5.

X U
Y

X U

P U X

β
β
′ − ≥

=  ′− − <

≤ =
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Let { , : 1,..., }i iY X i n=  be a random sample from the distribution of ( , )Y X  and ⋅  denote the 2  

norm.  For any scalar v , define 

 
1 if 0

sgn( )
1 if 0.

v
v

v
≥

= − <
 

The maximum score estimator is  

 
1 1

ˆ arg max sgn( )
n

i i
b i

b Y b X
= =

′= ∑  

Manski (1975, 1985) gave conditions under which b̂  estimates β  up to an unidentified scale 

parameter, but the asymptotic distribution of a b̂  after suitable centering and scaling is that of the 

maximum of a multidimensional Gaussian process with quadratic drift (Cavanagh 1987, Kim and 

Pollard 1990).  The nonparametric bootstrap does not estimate this distribution consistently 

(Abrevaya and Huang 2005). 

 2.  Estimation when a parameter is on the boundary of the parameter set.  This situation 

arises in moment inequality models and estimation under shape restrictions, among other settings, 

where it is not known whether one or more inequality constraints is binding.  The following simple 

example illustrates the problem.  Let { : 1,..., }iX i n=  be a random sample from the ( ,1)N µ  

distribution, and suppose it is known that 0µ ≥ .  Let 1
1

n
iiX n X−

=
= ∑  be the sample average of 

X .  The maximum likelihood estimate of µ  is max(0, )m X= .  The exact finite-sample 

distribution of m  is given by 

 1/2 ( ) if 0
[ ( ) ]

0 if 0,
z m

P n m z
m

m
Φ ≥

− ≤ =  <
 

where Φ  is the standard normal distribution function.  This is a censored normal distribution with 

censoring at the boundary point  0m = .  If 0µ > , then the probability of censoring approaches 0 
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as n →∞ , and the limiting distribution of 1/2 ( )n m m−  is (0,1)N .  However, if 0µ = , the limiting 

distribution is 

 1/2 ( ) if 0
[ ]

0 if 0.
z z

P n m z
z

Φ ≥
≤ =  <

 

It follows from Theorem 2.1 that the nonparametric bootstrap estimates the distribution of 

1/2 ( )n m m−  consistently if 0µ > .  However, asymptotic normality of 1/2 ( )n m m−  is necessary for 

consistency according to Theorem 2.1.  Therefore, the nonparametric bootstrap does not estimate 

the distribution of 1/2 ( )n m m−  consistently if 0µ = .  Andrews (2000) describes several alternative 

resampling methods for estimating the distribution of 1/2 ( )n m m−  consistently when 0µ = .  

Andrews and Barwick (2012); Andrews and Han (2009); Bugni (2010, 2016); and Bugni, Canay, 

and Shi (2015, 2017) discuss bootstrap methods for moment inequality models. 

 3.  Distribution of the maximum of a sample.  The following example, which is due to 

Bickel and Freedman (1981), is a simplified version of a situation that occurs in empirical models 

of auctions and search models, among others.  Bowlus, Neumann, and Kiefer (2001); Donald and 

Paarsch (1996); Flinn and Heckman (1982); and Heckman, Smith, and Clements (1997) describe 

such models.  Chernozhukov and Hong (2004) and Hirano and Porter (2003) discuss some of the 

theoretical issues that are involved.   

 Let { : 1,..., }iX i n=  be a random sample from the uniform distribution on 0[0, ]θ , where 

0θ  is a positive constant whose true but unknown value is 0 1θ = .  The maximum likelihood 

estimator of 0θ  is 1
ˆ max( ,..., )n nX Xθ = .   Define ˆ( 1)n nT n θ= − .  As n →∞ , ( ) e z

nP T z −≤ − =  

for any 0z ≥ .  Moreover, ( 0) 0nP T = =  for all n .  Let *{ : 1,..., }iX i n=  be a bootstrap sample 

that is obtained by sampling the data { : 1,..., }iX i n=  randomly with replacement.  The 
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bootstrap analog of 0θ  is n̂θ , because the bootstrap samples the empirical distribution of the data 

and n̂θ  is the upper bound of the support of this distribution.  The bootstrap estimator of n̂θ  is 

* * *
1max( ,.... )n nX Xθ = .  The bootstrap analog of nT  is * * ˆ( )n n nT n θ θ= − .  Let *

nP  denote 

probability under bootstrap sampling conditional on the original data { }iX .  Then 

* * 1 1( 0) 1 (1 ) 1n
n nP T n e− −= = − − → −  as n →∞ .  Thus, the nonparametric bootstrap does not 

estimate the distribution of nT  consistently.  

 2.2  The Parametric and Residual Bootstraps 

 Sometimes the distribution of the random variable in a model is assumed to be known up to 

a finite-dimensional parameter.  This happens, for example, in maximum likelihood estimation and 

in ordinary least squares estimation of a normal linear model with a fixed design.  Let U  be the 

random variable or vector in a model and let ( , ) ( )F u P U uθ = ≤  be the cumulative distribution 

function of U , where F  is a known function and θ  is a finite-dimensional parameter whose true 

but unknown value is 0θ .  Let n̂θ  be a consistent estimator of 0θ .  If ( , )F u θ  is a continuous 

function of θ  in a neighborhood of 0θ  for all u , then bootstrap samples can be drawn randomly 

from the distribution whose cumulative distribution function is ˆ( , )nF u θ .   

 If the distribution of U  is not known, it may be possible to draw bootstrap samples from a 

model’s residuals.  As an example, consider the linear model 

(2.1) 0 ; 1,...,i i iY X U i nθ ′= + =   

where the iX ’s are fixed in repeated samples and the iU ’s are independently and identically 

distributed random variables with means of zero and finite variances.  Let n̂θ  be the ordinary least 
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squares (OLS) estimator of 0θ , and let ˆˆ
i i n iU Y Xθ= −  ( 1,...,i n= ) denote the OLS residuals.  

Bootstrap analogs *
iY  of the iY ’s can be generated from the equation 

 * *ˆ ; 1,..., ,i n i iY X U i nθ ′= + =   

where the *
iU ’s are sampled randomly with replacement from the ˆ

iU ’s.  This is called the residual 

bootstrap because it samples the residuals of the estimated model, not the original data.  The 

residual bootstrap sample is *{ , : 1,..., }i iY X i n= .  The bootstrap analog of 0θ  is n̂θ  and is non-

stochastic in bootstrap sampling, though it is random in sampling from the original population.  Let 

*
nθ  be the OLS estimator of n̂θ  based on the bootstrap sample.  Then the bootstrap distribution of 

1/2 * ˆ( )n nn θ θ−  estimates the population distribution of 1/2
0

ˆ( )nn θ θ−  consistently.  Specifically, 

 * 1/2 * 1/2 .
0

ˆ ˆlim sup | [ ( ) ] [ ( ) ] | 0a s
n n nn z

P n z P n zθ θ θ θ
→∞ −∞< <∞

− ≤ − − ≤ = ,  

where *
nP  is the probability induced by bootstrap sampling of the *

iU ’s conditional on the original 

data { , }i iY X .  

 The residual approach can also be used in nonparametric mean and quantile regression.  In 

a nonparametric mean regression, for example, 0 iXθ ′  in (2.1) is replaced by ( ) ( | )i ig X E Y X= , 

and n̂ iXθ ′  is replaced by a nonparametric estimate of ( )ig X .  Denote this estimate by ˆ( )ig X .  

Denote the residuals of the nonparametric model by ˆ( )i i iU Y g X= − , and let 

1
1

ˆ n
i i jj

U U n U−
=

= − ∑   denote residuals that are centered to have a sample average of zero.  

Residual bootstrap samples *{ , : 1,..., }i iY X i n=  are generated by setting 

 * *ˆ( )i i iY g X U= + , 
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where the *
iU ’s are sampled randomly from the ˆ

iU ’s.   

 2.3  Subsampling 

 The nonparametric bootstrap draws samples from the empirical distribution of the data, not 

the population distribution.  The nonparametric bootstrap is inconsistent in certain settings because 

the two distributions are not the same.  Although the empirical distribution of the data converges to 

the population distribution almost surely as the sample size increases, the distribution of the 

bootstrap analog of a statistic may not converge to the population distribution of the statistic.  This 

problem can be avoided by sampling the true population distribution instead of the empirical 

distribution of the data.  It is not possible to draw repeated samples of size n  from the population 

distribution, but it is possible to draw repeated samples of size m n< .  This is done by drawing 

samples of size m  randomly without replacement from the estimation data.  Each such sample is a 

subsample of the original data and is a random sample of size m  from the population distribution 

of the data.   

 This method of subsampling is called non-replacement subsampling.  It was originally 

proposed by Politis and Romano (1994), who show that it consistently estimates the distribution 

of a statistic under conditions that are much weaker than those required for consistency of the 

bootstrap estimator.  Politis, Romano, and Wolf (1997) extend the non-replacement subsampling 

method to heteroskedastic time series.  Politis, Romano, and Wolf (1999) provide a detailed 

description of non-replacement subsampling and examples of its application. Bertail, Politis, and 

Romano (1999) provide a data-based method for choosing a tuning parameter that occurs in non-

replacement subsampling. 

 To describe the non-replacement subsampling method, let 1( ,..., )n n nt t X X=  be an 

estimator of the population parameter θ, and set ( )n n nT tρ θ= − , where nρ  is a normalizing 
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factor that is chosen so that 0( , ) ( )n nG F P Tτ τ= ≤  converges to a nondegenerate limit 0( , )G Fτ∞  

at points τ  where  the latter function is continuous.  For example, if θ  is a population mean, 

nt X=  (the sample average), and 1/2
n nρ = .  Let { : 1,..., }

jiX j m=  be a subset of m n<  

observations taken from the original sample { : 1,..., }iX i n= .  Define nm
n

N
m
 

=  
 

 to be the total 

number of subsets of size m  that can be formed.  Let mkt  denote the estimator mt  evaluated at 

the k’th subset.  The non-replacement subsampling method estimates 0( , )nG Fτ  by 

 1

1
( ) [ ( ) ]

nmN

nm nm m mk n
k

G N I t tt ρ t−

=

= − ≤∑ .  

The intuition behind this method is as follows.  Each subsample { : 1,..., }
jiX j m=  is a random 

sample of size m  from the population distribution whose cumulative distribution function is 0F .  

Therefore, 0( , )mG Fτ  is the exact sampling distribution of ( )m mtρ θ− .  Moreover,  

(2.2) 0( , ) [ ( ) ]m m mG F EI tt ρ θ t= − ≤ . 

The quantity on the right-hand side of (2.2) cannot be calculated in an application because 0F  

and θ  are unknown.  ( )mnG τ  is the estimator of 0( , )mG Fτ  that is obtained by replacing the 

population expectation by the average over subsamples and θ  by nt .  If n   is large but /m n  is 

small, then random fluctuations in nt  are small relative to those in mt .  Accordingly, the 

sampling distributions of ( )m m nt tρ −  and ( )m mtρ θ−  are close.  Similarly, if nmN  is large, the 

average over subsamples is a good approximation to the population average.  These ideas are 

formalized by Politis and Romano (1994), who show that if /m nρ ρ  and / 0m n →  as ,m n →∞  

and if nT  has a well-behaved asymptotic distribution, then the non-replacement subsampling 
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method consistently estimates this distribution.  The non-replacement subsampling method also 

consistently estimates asymptotic critical values for nT  and asymptotic confidence intervals for 

nt .  Andrews and Guggenberger (2010) show that non-replacement subsampling is not 

uniformly consistent in a certain sense. Andrews and Guggenberger (2009) describe methods for 

overcoming this problem. 

 In practice, nmN  is likely to be very large, which makes nmG  hard to compute.  This 

problem can be overcome by replacing the average over all nmN  subsamples with the average 

over a random sample of subsamples (Politis and Romano 1994).  These can be obtained by 

sampling the data { : 1,..., }iX i n=  randomly without replacement. 

 The non-replacement subsampling method enables the asymptotic distributions of statistics 

to be estimated consistently under very weak conditions.  However, the bootstrap is typically 

more accurate than non-replacement subsampling when the former is consistent.  Under 

conditions that are satisfied in most applications of the bootstrap, the error made by the 

nonparametric, parametric, and residual bootstrap estimators of a distribution are at most 

1/2( )pO n−  and can be much less.  In contrast, the error made by the non-replacement 

subsampling estimator is 1/3( )pO n−  (Bugni 2010; Politis and Romano 1994).  Bertail (1997); 

Hall and Jing (1996); and Politis, Romano, and Wolf (1999) describe extrapolation methods for 

improving this rate, though the improved rate is slower than that of the bootstrap under similar 

conditions.  Thus, the bootstrap estimator of 0( , )nG Fτ  is more accurate than the non-

replacement subsampling estimator in most applications in econometrics.  The subsampling 

method is useful, however, however, if characteristics of the sampled population or the statistic 
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of interest cause the bootstrap to be inconsistent or checking the consistency of the bootstrap is 

difficult.   

 Another method of subsampling called the m  out of n  bootstrap consists of drawing 

m n<  observations randomly with replacement from the estimation sample.  Except for the size 

of the bootstrap sample, the m  out of n  bootstrap is identical to the standard bootstrap.  The m  

out of n  bootstrap has properties similar to those of non-replacement subsampling.  Swanepoel 

(1986) gives conditions under which the m  out of n  bootstrap consistently estimates the 

distribution of the distribution of the maximum of a sample.  Andrews (2000) gives conditions 

under which it consistently estimates the distribution of a parameter on the boundary of the 

parameter set.  Bickel, Götze, and van Zwet (1997) provide a detailed discussion of the 

consistency and rates of convergence of the m  out of n  bootstrap and of an extrapolation 

method to increase the rate of convergence.  Chung and Lee (2001) describe a method for 

improving the accuracy of the m  out of n  bootstrap to that of the conventional bootstrap in 

certain situations. 

3.  ASYMPTOTIC REFINEMENTS 

 The term “asymptotic refinements” refers to the ability of the bootstrap to provide 

approximations to the distributions of statistics that are more accurate than the approximations of 

conventional asymptotic distribution theory.  This section explains how the bootstrap provides 

asymptotic refinements for a large class of statistics that are important in applied research.  We 

continue to assume that the data are an independent random sample from a distribution.  

Throughout this section and in Sections 4-5, the term “bootstrap” refers to the nonparametric 

bootstrap of Section 2.1 and the parametric and residual bootstraps of Section 2.2 unless otherwise 

stated. 
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 The class of statistics treated in this section is called the smooth function model.  To define 

this model, let { : 1,..., }iX i n=  be an independent random sample from the distribution of the 

random variable or vector X .  As in Section 2, it is not necessary to distinguish between 

dependent and explanatory variables in this section.  Accordingly, the components of X  and the 

iX ’s include any dependent variables.  Let ( )Z ⋅  be a possibly vector valued function on the 

support of X .  Define ( )EZ Xθ = , ( )i iZ Z X= , and 1
1

n
ii

Z n Z−
=

= ∑ .  Let ( )H z  be a “smooth” 

scalar-valued function whose argument has the same dimension as Z .  “Smooth” means that 

( )H z  has bounded partial derivatives of sufficiently high order with respect to any combination of 

the components of z .  The required order of the derivatives depends on the bootstrap application 

(e.g., bias reduction, a symmetrical confidence interval) and is not specified here.  Let 2
ns  be a 

consistent estimator of 1/2{ [ ( ) ( )]}Var n H Z H θ− .  The statistics in the smooth function model 

include  

 1.  ( )H Z , which estimates ( )H θ . 

 2.  1/2[ ( ) ( )]n H Z H θ−  and 1/2[ ( ) ( )] / nn H Z H sθ− , which can be used to form confidence 

intervals for and test hypotheses about ( )H θ .    

 These statistics are all smooth functions H  of the sample moments Z .  Many estimators 

and test statistics used in applied econometrics either are smooth functions of sample moments or 

can be approximated by such functions with an approximation error that decreases very rapidly as 

n  increases and, is negligible.  The ordinary least squares estimator of the slope coefficients in a 

linear regression model and the t statistic for testing a hypothesis about a coefficient are exact 

functions of sample moments.  Maximum-likelihood and generalized-method-of-moments 

estimators of the parameters of nonlinear models can be approximated with asymptotically 
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negligible error by smooth functions of sample moments if the log-likelihood function or moment 

conditions have sufficiently many derivatives with respect to the unknown parameters. 

 Some test statistics do not satisfy the assumptions of the smooth function model.  Quantile 

estimators, such as the least-absolute-deviations (LAD) estimator, do not satisfy the assumptions of 

the smooth function model because their objective functions are not sufficiently smooth.  

Nonparametric density and mean-regression estimators and semiparametric estimators that require 

kernel or other forms of smoothing also do not fit within the smooth function model.  Bootstrap 

methods for such estimators are discussed in Sections 4 and 5. 

 3.1  Bias Reduction 

 This section explains how the bootstrap can be used to reduce the finite-sample bias of an 

estimator.  To minimize the complexity of the discussion, it is assumed that θ  and Z  in the 

smooth function model are scalars.  However, the method outlined in this section applies to any 

estimator that satisfies the assumptions of the smooth function model. 

 To begin, define ( )Hµ θ= .  Observe that ( )nm H Z=  is a consistent estimator of µ  but 

nm  is biased if H  is a nonlinear function.  That is, . .a s
nm m→  but ( )nE m m≠ .  A Taylor series 

expansion of ( )H Z  about Z θ=  yields 

 2( ) ( ) ( )( ) (1 / 2) ( )( ) nH Z H H Z H Z rθ θ θ θ θ′ ′′= + − + − + ,  

where nr  is a remainder term that satisfies 2( ) ( )nE r O n−= .  Therefore, the bias of nm  is 

 2 2( ) (1 / 2) ( ) ( ) ( )nE m H E Z O nm θ θ −′′− = − + .  

The leading term of the bias is  

 2 1(1 / 2) ( ) ( ) ( )nB H E Z O nθ θ −′′≡ − = . 

Therefore, the bias of nm  through 1( )O n−  is nB .  
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 Now consider the bootstrap.  Let *{ : 1,..., }iX i n=  be a bootstrap sample that is obtained by 

sampling the iX ’s randomly with replacement.  Define * 1 *
1

( )n
ii

Z n Z X−
=

= ∑ .  The bootstrap 

analog of µ  is nm , and the bootstrap estimator of nm  is * *( )nm H Z= .  A Taylor series expansion 

of *( )H Z  about *Z Z=  gives the bootstrap bias through 1( )O n−  almost surely as 

 * * * 2(1 / 2) ( ) ( )n n nB H Z E m m′′= − ,  

where *E  denotes the expectation under bootstrap sampling, (i.e., the expectation relative to the 

empirical distribution of the estimation data and conditional on the estimation data).  Because the 

distribution that the bootstrap samples is known, *
nB  can be computed with arbitrary accuracy by 

Monte Carlo simulation.  Thus, *
nB  is a feasible estimator of the bias of nm .   

 The differences between nB  and *
nB  are that Z  replaces θ  and *E  replaces E  in in *

nB .  

Moreover, * 2( ) ( )n nE B B O n−= + .  Therefore, through 1( )O n−  the bootstrap bias estimate *
nB  

provides the same bias reduction that would be obtained if the infeasible population value nB  

could be used.  This is the source of the bootstrap's ability to reduce the bias of nm .  The resulting 

bias-corrected estimator of µ  is *
,n Corr n nm m B= −  .  It satisfies 2

,( ) ( )n CorrE m O nm −− = .  Thus, 

the bias of ,n Corrm  is 2( )O n− , whereas the bias of nm  is 1( )O n− . 

 3.2  Asymptotic Refinements to the Distributions of Test Statistics 

 This section explains the bootstrap’s ability to provide approximations to the distributions of 

test statistics that are more accurate than the approximations of conventional asymptotic 

distribution theory such as the asymptotic normal approximation.   We assume that the estimators 
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and test statistics of interest  belong to the smooth function model.  Specifically, we work with 

statistics of the form 

 1/2[ ( ) ( )]n n H Z H θ∆ = −  and  

 1/2[ ( ) ( )] /n nt n H Z H sθ= − , 

where Z  and θ , respectively, are the sample average and population mean of the random variable 

or vector Z ; 2
ns  is a consistent estimator of the variance of the asymptotic distribution of n∆ ; and 

H  has sufficiently many derivatives with respect to the components of its argument.  As was 

explained in the introduction to Section 3, many estimators and test statistics used in applied 

econometrics are either smooth functions of sample moments or can be approximated by such 

functions with a negligible error.  We add a further assumption, which is called the Cramér 

condition. 

 Cramér Condition:  Let τ  be a vector of constants with the same dimension as Z .  Let 

1i = − .  Z  satisfies the Cramér condition if 

 lim sup | exp( ) | 1E i Z
τ

τ
→∞

′ < . 

The Cramér condition is satisfied if Z  is continuously distributed (that is, has a conventional 

probability density) but not if Z  is discrete.  ( )Z Z X=  is a function of the observed random 

variable X .  The Cramér condition is satisfied even if some components of X  are discretely 

distributed if ( )Z X is continuously distributed. 

 Under the assumptions of the smooth function model and the Cramér condition, n∆ , nt , and 

their bootstrap analogs have higher-order asymptotic expansions called Edgeworth expansions.  

Let 0( , )nG F⋅  and 0( , )G F∞ ⋅ , respectively, denote the distribution and asymptotic distribution 
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functions of either n∆  or nt  when X  is sampled from a population whose cumulative distribution 

function is 0F .  The Edgeworth expansions of n∆  and nt  are 

(3.1) 1/2 1 3/2 2
0 0 1 1 2 2 3 3( , ) ( , ) ( , ) ( , ) ( , ) ( )nG F G F n g n g n g O nτ τ τ κ τ κ τ κ− − − −

∞= + + + +  

uniformly over τ , where the κ ’s are vectors of cumulants through order 4 of the distribution of 

;Z  G∞  is the asymptotic distribution function of n∆  or nt ; 1g  and 3g  are even functions of their 

first arguments; 2g  is an odd function of its first argument; and 1g , 2g , and 3g  are differentiable 

functions of their second arguments.  The Edgeworth expansions for the bootstrap analogs of n∆  

and nt  are 

(3.2) 1/2 1 3/2 2
1 1 2 2 3 3( , ) ( , ) ( , ) ( , ) ( , ) ( )n n n n n nG F G F n g n g n g O nτ τ τ κ τ κ τ κ− − − −

∞= + + + +  

almost surely uniformly over τ , where nF  is the empirical distribution of X  and the nκ ’s are 

vectors of cumulants of the empirical distribution of Z . 

 To evaluate the accuracy of the bootstrap distribution function ( , )n nG Fτ  as an 

approximation to the population distribution function 0( , )nG Fτ , subtract (3.2) from (3.1) to obtain 

1/2
0 0 1 1 1 1

1 3/2
2 2 2 2

(3.3) ( , ) ( , ) ( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )] ( )

n n n n n

n

G F G F G F G F n g g

n g g O n

τ τ τ τ τ κ τ κ

τ κ τ κ

−
∞ ∞

− −

− = − + −

+ − +

 

almost surely uniformly over τ .  The leading term on the right-hand side of (3.3) is 

0( , ) ( , )nG F G Fτ τ∞ ∞− , whose size is 1/2( )O n−  almost surely because 1/2
0 ( )nF F O n−− =  almost 

surely uniformly over the support of 0F .  Thus, the bootstrap makes an error of size 1/2( )O n−  

almost surely, which is the same as the size of the error made by conventional asymptotic 
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approximations.  In terms of the rate of convergence of the approximation error to zero, the 

bootstrap has the same accuracy as conventional approximations. 

 Now focus on nt .  This statistic is asymptotically pivotal, meaning that 0( , )G Fτ∞  does not 

depend on 0F .  Most test statistics are asymptotically pivotal, but most estimators are not.  

Usually, G∞  for an asymptotically pivotal statistic is the standard normal distribution function.  

Asymptotic chi-square statistics are quadratic forms of asymptotically normal statistics and have 

properties that are straightforward modifications of the properties of asymptotic normal statistics. 

 When a statistic is asymptotically pivotal, the first term on the right-hand size of (3.3) is 

zero.  The second term is 1( )O n−  almost surely because cumulants can be written as smooth 

functions of moments and, therefore, 1/2
1 1 ( )n O nκ κ −− = .  Thus, the error of the bootstrap 

approximation to the distribution function of an asymptotically pivotal statistic converges to zero 

more rapidly than the conventional asymptotic approximation.  In this sense, the bootstrap is more 

accurate than conventional asymptotic approximations. 

 The bootstrap approximation to the symmetrical distribution function (| | )nP t t≤  is even 

more accurate.  Because G∞  does not depend on 0F  or nF , 1g  and 3g  are even functions, and 2g  

is an odd function, 

(3.4) 2
0 0 2 2

2(| | ) ( , ) ( , ) ( , ) ( )n n nP t G F G F g O n
n

tttt    κ −≤ = − − = +  

uniformly over τ .  The bootstrap analog is 

(3.5) * * 2
2 2

2(| | ) ( , ) ( , ) ( , ) ( )n n n n n nP t G F G F g O n
n

tttt    κ −≤ = − − = +  

almost surely, where *
nt  is the bootstrap analog of nt .  Because 1/2

2 2 ( )n O nκ κ −− =  almost surely, 

it follows from (3.4) and (3.5) that 
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(3.6) * * 3/2(| | ) (| | ) ( )n nP t P t O ntt  −≤ − ≤ =  

almost surely.  In contrast, the error made by conventional asymptotic approximations such as the 

normal approximation is 1( )O n− .   

 In summary, the error in the bootstrap approximation to a one-sided distribution function of 

an asymptotically pivotal statistic is almost surely 1( )O n− .  The error in the bootstrap 

approximation to a symmetrical distribution function is almost surely 3/2( )O n− .  In contrast, the 

errors made by conventional asymptotic approximations to one-sided and symmetrical distribution 

functions are 1/2( )O n−  and 1( )O n− , respectively. 

 Now suppose that the asymptotically pivotal statistic nt  is a statistic for testing a null 

hypothesis 0H  about the sampled population.  Let 1z α−  denote the 1 α−  quantile of the 

distribution of | |nt .  Thus, 1(| | ) 1nP t z α α−≤ = − .  A symmetrical test based on nt  rejects 0H  at 

the α  level if 1| |nt z α−> .  However, 1z α−  is unknown in most settings.  Let *
1z α− be the 1 α−  

quantile of the bootstrap distribution of *| |nt .  Then * * *
1(| | ) 1nP t z α α−≤ = − .  The quantity *

1z α−  can 

be estimated with any desired accuracy through Monte Carlo simulation.  Therefore, *
1z α− can be 

treated as known.  A simulation algorithm is given at  the end of this section.  A feasible test rejects 

0H  if *
1| |nt z α−> .  If 0H  is correct, the probability that it is rejected is *

1(| | )nP t z α−> .  The 

difference between this probability and the nominal rejection probability of α1−  (the error in the 

rejection probability or ERP) is 

 * * * * * * * *
1 1 1 1(| | ) (| | ) (| | ) (| | )n n n nP t z P t z P t z P t zα α α α− − − −> − > = ≤ − ≤ . 
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This difference is not given by (3.6) because *
1z α−  is a function of the original data and, therefore, a 

random variable relative to the population distribution of the data.  It is not a random variable 

relative to the bootstrap distribution.  A lengthy argument based on an Edgeworth expansion of the 

distribution of *
1| |nt z α−−  (see, for example, Hall 1992) shows that if 0H  is correct, then 

 * 2
1(| | ) ( )nP t z O nα α −
−> − = . 

Thus, the ERP based on the bootstrap critical value *
1z α−  is 2( )O n− . In contrast, the ERP based on 

the asymptotic critical value (e.g., the 1 / 2α−  quantile of the (0,1)N  distribution) is 1( )O n− .  The 

ERP based on the bootstrap critical value converges to zero more rapidly than the ERP based on 

the asymptotic critical value.  In samples of practical size, a test based on the bootstrap critical 

value usually has a smaller ERP than a test based on the asymptotic critical value.  The reduction 

in the ERP can be dramatic.  See, for example, Horowitz (1994, 1998a).  

 A one-sided upper tailed test rejects 0H  if nt  is too much greater than zero.  A one-sided 

lower-tailed test rejects 0H  if nt  is too much less than zero.  The bootstrap versions of the two 

tests have similar properties, so we consider only the upper-tailed test.  Define *
1z α−  as the 1 α−  

quantile of the bootstrap distribution of *
nt .  That is, * * *

1( ) 1nP t z α α−≤ = − .  A one-sided upper-

tailed test based on nt  and the bootstrap critical value rejects 0H  if *
1nt z α−>  .  Then if 0H  is 

correct 

 * 1
1( ) ( )nP t z O nα α −
−> − = . 

The ERP in a one-tailed test with a bootstrap critical value is 1( )O n− .  In contrast, the error with a 

conventional asymptotic critical value is 1/2( )O n−  (Hall 1992).   
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 There are, however, circumstances in which the ERP with a bootstrap critical value is 

3/2( )O n− .  Hall (1992) shows that this is true for a one-sided t test of a hypothesis about a slope 

(but not intercept) coefficient in a homoskedastic, linear, mean-regression model.  Davidson and 

MacKinnon (1999) show that it is true whenever nt  is asymptotically independent of 

2 1 /2 2( , )ng z α κ− , where 1 /2z α−  is the asymptotic 1 α−  quantile of nt .  Many familiar test statistics 

satisfy this condition.  Pretorius and Swanepoel (2018) describe a method that combines bootstrap 

estimates with results obtained from analytic Cornish-Fisher expansions, which are inversions of 

Edgeworth expansions.  The method of Pretorius and Swanepoel (2018) achieves an ERP of 

3/2( )O n−  and, in some cases, 2( )O n− .  However, its need for analytic Cornish-Fisher expansions 

makes it intractable for most statistics of interest in econometrics. 

 The foregoing results also apply to symmetrical and one-sided confidence intervals for a 

parameter.  In the smooth function model, define ( )Hµ θ= .  Then 

 1/2[ ( ) ] /n nt n H Z sµ= − . 

A symmetrical 1 α−  confidence interval for µ  based on the bootstrap critical value *
1z α−  is  

 1/2 * 1/2 *
1 1( ) ( )n nH Z n s z H Z n s zα αµ− −
− −− ≤ ≤ + . 

A one-sided upper confidence interval is 

 1/2 *
1( ) nH Z n s z αµ −
−≤ +  .  

A one-sided lower confidence interval can be defined similarly.  The difference between the 

nominal coverage and true coverage probabilities (errors in the coverage probability or ECPs) of 

the symmetrical confidence interval is 2( )O n−  and 1( )O n−  for the one-sided interval with the 

qualifications noted in the previous paragraph.  The ECPs based on conventional asymptotic 
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critical values are 1( )O n−  and 1/2( )O n− , respectively, for symmetrical and one-sided confidence 

intervals.  

 Tests based on statistics that are asymptotically chi-square distributed behave like 

symmetrical, two-tailed tests.  Therefore, their ERP’s under a correct 0H  are 1( )O n−  with 

conventional asymptotic critical values and 2( )O n−  with bootstrap critical values. 

 The results presented in this section show that the bootstrap reduces the ERPs of hypothesis 

tests and the ECPs of confidence intervals based on smooth, asymptotically pivotal statistics.  

These include many asymptotically normal and asymptotically chi-square test statistics that are 

used for testing hypotheses about the parameters of econometric models.  Models that satisfy the 

required smoothness conditions include linear and nonlinear mean-regression models, error-

components mean-regression models for panel data, logit and probit models that have at least one 

continuously distributed explanatory variable, and tobit models.  The smoothness conditions are 

also satisfied by parametric sample-selection models in which the selection equation is a logit or 

probit model with at least one continuously distributed explanatory variable.  Asymptotically 

pivotal statistics based on median-regression models do not satisfy the smoothness conditions.  

Bootstrap methods for such statistics are discussed in Section 4.  Statistics based on nonparametric 

estimators also have different properties.  These are treated in Section 5. 

 The ability of the bootstrap to provide asymptotic refinements for smooth, asymptotically 

pivotal statistics provides a powerful argument for using them in applications of the bootstrap 

whenever possible.  The bootstrap may be applied to statistics that are not asymptotically pivotal, 

but it does not provide higher-order approximations to their distributions.  Estimators of the 

structural parameters of econometric models (e.g., slope and intercept parameters, including 

regression coefficients; standard errors, covariance matrix elements, and autoregressive 
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coefficients) usually are not asymptotically pivotal.  The asymptotic distributions of centered 

structural parameter estimators are often normal with means of zero but have variances that depend 

on the unknown population distribution of the data.  The errors of bootstrap estimates of the 

distributions of statistics that are not asymptotically pivotal converge to zero at the same rate as the 

errors made by first-order asymptotic approximations. 

 Bootstrap hypothesis tests and confidence intervals based on the asymptotically pivotal 

statistic nt  have smaller ERPs and ECPs than tests and confidence intervals based on conventional 

asymptotic critical values because the bootstrap estimate of the distribution of nt  is a form of low-

order Edgeworth expansion that accounts for skewness and kurtosis of the distribution.  Normal 

and chi-square distributional approximations do not account for skewness or kurtosis.  The 

bootstrap based on an asymptotically pivotal statistic should be used to obtain hypothesis tests or 

confidence intervals, not standard errors.  Standard errors are not asymptotically pivotal, and the 

bootstrap does not provide asymptotic refinements for them.  More importantly, standard errors are 

related in a simple way to quantiles of the normal distribution and, therefore, to confidence 

intervals based on the asymptotic normal distribution of nt .  However, the bootstrap estimate of 

the distribution of nt  is non-normal, and there is no simple relation between standard errors and 

quantiles of non-normal distributions.  The use of the bootstrap to estimate standard errors when an 

asymptotically pivotal statistic is available fails to take advantage the bootstrap’s ability to provide 

asymptotic refinements and results that are numerically more accurate than those provided by 

asymptotic normal or chi-square approximations. 

 The following is an algorithm for Monte Carlo computation of symmetrical bootstrap critical 

values and confidence intervals.  The algorithm for one-sided critical values and confidence 

intervals is similar and not given. 
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Monte Carlo Procedure for Computing the Bootstrap Critical Value for Testing a 

Hypothesis about or Forming a Symmetrical  Confidence Interval for a Parameter μ   

 Step 1:  Use the estimation data to compute a consistent, asymptotically normal estimate of  

ˆnµ  of µ  and its standard error ns  . 

 Step 2:  Generate a bootstrap sample of size n by sampling the empirical distribution of the 

data randomly with replacement, sampling a parametric estimate of the distribution of the data, or 

using the residual bootstrap.  Estimate µ  and its standard error from the bootstrap sample.  Call 

the results *
nµ  and *

ns .  The bootstrap version of of the asymptotically pivotal statistic nt  is 

* 1/2 * *ˆ( ) /n n n nt n sµ µ= − . 

 Step 3:  Use the results of many repetitions of Step 2 to compute the empirical distribution of 

*| |nt .  Set *
1z α−  equal to the 1 α−   quantile of this distribution. 

 Step 4:  Reject the hypothesis 0 0:H µ µ=  at the 1 α−  level if 1/2 *
0 1ˆ| ( ) / |n nn s z αµ µ −− > . 

 Step 5:  A symmetrical 1 α−  confidence interval for µ  is  

 1/2 * 1/2 *
1 1ˆ ˆn n n nn s z n s zα αµ µ µ− −
− −− ≤ ≤ + . 

_______________________________________________________________________________ 

4.  NON-SMOOTH STATISTICS 

 Some important estimators and test statistics do not satisfy the assumptions of the smooth 

function model.  Quantile estimators and Manski’s (1975, 1985) maximum score estimator for a 

binary response model are two examples.  The objective function for quantile estimation has cusps, 

so its first derivative is discontinuous.  The objective function for maximum score estimation is a 
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step function, so its first derivative is either zero or infinity.  This section outlines the properties of 

bootstrap methods for quantile and maximum score estimators. 

 4.1  Quantile Estimators 

 We restrict attention here to the least absolute deviations (LAD) estimator of a linear median 

regression model.  Similar ideas and methods apply to nonlinear quantile models and estimators for 

other quantiles.  The model is 

 ; ( 0 | ) 0.5Y X U P U Xβ ′= + ≤ = , 

where β  is a vector of constant parameters, X  is a vector of explanatory variables, and U  is an 

unobserved random variable.  Let { , : 1,..., }i iY X i n=  be an independent random sample from the 

distribution of ( , )Y X .  The LAD estimator of β  is 

1

1

ˆ arg min | |

(4.1) arg min ( )[2 ( 0) 1].

n

i ib i

n

i i i ib i

b Y b X

Y b X I Y b X

=

=

′= −

′ ′= − − ≥ −

∑

∑

 

Bassett and Koenker (1978) and Koenker and Bassett (1978) give conditions under which 

1/2 ˆ( )n b b−  is asymptotically normal with mean zero.  The bootstrap estimates the distribution of 

1/2 ˆ( )n b b−  consistently (De Angelis, Hall, and Young 1993; Hahn 1995), but the non-smoothness 

of the LAD objective function causes the difference between bootstrap approximation to the 

distribution function of 1/2 ˆ( )n b b−  and the true distribution function to converge to zero slowly.  

Depending on how the bootstrap is implemented and certain other conditions, the rate is either 

1/4( )O n−  or 2/5( )O n−  (De Angelis, Hall, and Young 1993).  In addition, the Edgeworth expansion 
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of the distribution of 1/2 ˆ( )n b b−  is very complicated.  It is not known whether bootstrap sampling 

applied to (4.1) provides asymptotic refinements for hypothesis tests and confidence intervals. 

 Horowitz (1998b) proposed smoothing the cusp in the LAD objective function to make it 

differentiable.  To state the smoothed objective function, let ( )H ⋅  be a function with sufficiently 

many continuous derivatives such that ( ) 1H v = if 1v ≥  and ( ) 0H v =  if 1v ≤ − .  For example, 

( )H v  might be the cumulative distribution function of a random variable whose support is [ 1,1]− . 

Let { }nh  be a decreasing sequence of positive constants that converges to zero as n →∞ .  The 

smoothed LAD (SLAD) estimator is 

(4.2) 
1

arg min ( ) 2 1
n

i i
i ib ni

Y b Xb Y b X H
h=

  ′−′= − −  
  

∑ . 

The objective function (4.2) is identical to the LAD objective function (4.1) if | |i i nY b X h′− ≥ , but 

it smooths the discontinuities in the indicator function at 0i iY b X′− = .  The interval over which 

smoothing occurs decreases as 0nh → .  This is necessary to make b  a consistent estimator of β . 

 Because the objective function in (4.2) is differentiable, standard Taylor series methods can 

be used to obtain the asymptotic distribution of 1/2 ( )n b b− .  Horowitz (1998b) gives conditions 

under which 1/2 ( ) (0, )dn b N Vb− →  where V  is a covariance matrix.  Let V̂  be a consistent 

estimator of V , ˆ
jjV  denote the ( , )j j  component of V̂ , and jb  and jβ  denote the j ’th 

components of b  and β , respectively.  Then a t  statistic for testing the hypothesis 0 0: j jH β β=  

is  

 
1/2

0
1/2

( )
ˆ
j j

n
jj

n b
t

V

b−
=



. 



30 
 

 A bootstrap version of nt  can be obtained by replacing the original sample 

{ , : 1,..., }i iY X i n=  with the bootstrap sample * *{ , : 1,..., }i iY X i n=  in (4.2).  Let *b  denote the 

estimate of β  obtained from the bootstrap sample and *
jjV  denote the bootstrap analog of ˆ

jjV .  

The bootstrap analog of nt  is 

 
1/2 *

*
* 1/2

( )

( )
j j

n
jj

n b b
t

V

−
=

 

. 

Horowitz (1998b) shows that nt  and *
nt  have Edgeworth expansions that are identical almost 

surely through 1[( ) ]nO nh − .  Therefore, arguments similar to those in Section 3.2 show that the 

bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based on 

the SLAD estimator.  For example, consider a symmetrical t  test of 0H .  Let *
1z α−  be the 1 α−  

quantile of the bootstrap distribution of *| |nt .  Then 

 * 1
1(| | ) [( ) ]n nP t z o nhα α −
−> = +  

if 0H  is true.  In contrast, the asymptotic normal approximation makes an error of 1[( ) ]nO nh − .  

Use of the bootstrap critical value reduces the approximation error because the bootstrap captures a 

higher order term in the Edgeworth expansion of | |nt , whereas the asymptotic normal 

approximation drops this term.  The bootstrap also provides asymptotic refinements for one-sided 

hypothesis tests and confidence intervals and for asymptotic chi-square tests of hypotheses about 

several components of β .  In addition, the bootstrap provides asymptotic refinements for a 

smoothed version of Powell’s (1984, 1986) censored LAD estimator. 
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 4.2  The Maximum Score Estimator 

 Manski’s (1975, 1985) maximum score estimator applies to the binary response model 

( 0)Y I X Uβ ′= + ≥ , where Y  is an observed random variable, X  is an observed random vector, 

U  is an unobserved random variable satisfying ( 0 | ) 0.5P U X≤ = , and β  is an unknown vector 

of constant parameters to be estimated.  The vector β  is identified only up to scale, so a scale 

normalization is needed.  Here, scale normalization will consist of setting 1| | 1β = , where 1β  is the 

first component of β .  Assume that the first component of X  is continuously distributed.  Define 

the set 1{ : | | 1}B b b= = .  Let { , : 1,..., }i iY X i n=  be an independent random sample of ( , )Y X .  

The maximum score estimator of β  is 

(4.3) 
1

ˆ arg max (2 1) ( 0)
n

MS i i
b B i

b Y I b X
∈ =

′= − ≥∑ . 

Manski (1975, 1985) gives conditions under which ˆ
MSb b→  almost surely.  Cavanagh (1987) and 

Kim and Pollard (1990) show that ˆ
MSb  converges to β  at the rate 1/3n−  and that 1/3 ˆ( )MSn b b−  

has a complicated, non-normal asymptotic distribution.  Abrevaya and Huang (2005) show that the 

nonparametric bootstrap does not provide a consistent estimate of this distribution. 

 The maximum score estimator converges slowly and has a complicated limiting distribution 

because it is obtained by maximizing a step function.  Several authors have proposed bootstrap 

sampling procedures and/or modifications of the maximum score objective function that make the 

bootstrap consistent (Cattaneo, Jansson, and Nagasawa 2018; Hong and Li 2015; Horowitz 1992, 

2002; Patra, Seijo, and Sen 2018).  The method of Horowitz (1992, 2002), which provides 

asymptotic refinements, is described in this section.  Horowitz (1992) proposed replacing the 
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indicator function on the right-hand side of (4.3) with a differentiable function.  Let H  and nh  be 

defined as in (4.2).  The resulting smoothed maximum score (SMS) estimator is 

 
1

ˆ arg max (2 1)
n

i
SMS i

b B ni

b Xb Y H
h∈ =

 ′
= −  

 
∑ . 

Horowitz (1992) gives conditions under which ŜMSb  converges to β  at a rate that is at least as fast 

as 2/5n−  and 1/2 ˆ( ) ( )n SMSnh b b−  is asymptotically normally distributed.  Asymptotic normality 

makes it possible to form asymptotically pivotal t  statistics for testing hypotheses about β  and 

obtain asymptotic refinements with the bootstrap (Horowitz 2002).  Let nt  be a t  statistic, and let 

*
nt  be the bootstrap analog that is obtained by smoothed maximum score estimation based on the 

bootstrap sample * *{ , : 1,..., }i iY X i n= .  Now consider a symmetrical t  test of the hypothesis

0 0: j jH β β= .  Let *
1z α−  be the 1 α−  quantile of the bootstrap distribution of *| |nt .  Then 

 * 1
1(| | ) [( ) ]n nP t z o nhα α −
−> = +  

if 0H  is true.  In contrast, the asymptotic normal approximation makes an error of 1[( ) ]nO nh − .  As 

in smoothed LAD estimation, the bootstrap captures a higher order term in the Edgeworth 

expansion of | |nt , whereas the asymptotic normal approximation drops this term.  Also as in 

smoothed LAD estimation, the bootstrap also provides asymptotic refinements for one-sided 

hypothesis tests and confidence intervals and for asymptotic chi-square tests of hypotheses about 

several components of β .   
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 5.  NONPARAMETRIC ESTIMATION 

 This section is concerned with inference about the unknown function g  in the 

nonparametric mean regression model 

(5.1) ( ) ; ( | ) 0Y g X E Xε ε= + =  

and the nonparametric quantile regression model 

(5.2) ( ) ; ( 0 | ) ; 0 1Y g X P Xε ε τ τ= + ≤ = < < . 

Nonparametric estimators of g  and their properties are described by Fan and Gijbels 1996; Fan, 

Hu, and Truong (1994); Härdle (1990); and Yu and Jones (1997) among many others.  

 Any method for testing a hypothesis about g  or constructing a confidence interval or 

band for g  based on a nonparametric estimate must deal with the problem of asymptotic bias.  

Let ĝ  denote a nonparametric estimate of g .  The expected value of ĝ  does not equal g , the 

asymptotic normal distribution of the scaled estimate is not centered at g , and the true coverage 

probability of an asymptotic confidence interval for g  (or rejection probability of a hypothesis 

test) that is constructed from the normal distribution in the usual way is less than the nominal 

probability.  This problem is usually overcome by undersmoothing or explicit bias reduction.  

Undersmoothing consists of making the bias asymptotically negligible by using a bandwidth 

whose rate of convergence is faster than the asymptotically optimal rate.  In explicit bias 

reduction, an estimate of the asymptotic bias is used to construct an asymptotically unbiased 

estimate of g .  Most explicit bias reduction methods involve some form of oversmoothing, that 

is using a bandwidth whose rate of convergence is slower than the asymptotically optimal rate.  

Hall (1992) and Horowitz (2001) describe the ability of the bootstrap to provide asymptotic 

refinements for hypothesis tests and confidence intervals based on nonparametric estimators with 

undersmoothing or explicit bias correction. 
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 Methods based on undersmoothing or oversmoothing require a bandwidth whose rate of 

convergence is faster or slower than the asymptotically optimal rate.  However, there are no 

effective empirical ways to choose these bandwidths.  Hall and Horowitz (2013) (HH) and 

Horowitz and Krishnamurthy (2018) (HK) describe bootstrap methods for overcoming this 

problem in models (5.1) and (5.2), respectively.  These methods use bandwidths chosen by 

standard empirical methods such as cross validation or a plug-in rule.  Instead of under- or 

oversmoothing, the methods use the bootstrap to estimate the bias of ĝ .  The bootstrap estimate 

of the bias can be obtained using the procedure of Section 3.1.  However, in this nonparametric 

setting, the bootstrap bias estimate has stochastic noise that is comparable in size to the bias 

itself.  HH and HK give conditions under which combining a suitable quantile of the 

“distribution” of the bootstrap bias estimate with ĝ  provides pointwise confidence intervals and 

uniform confidence bands with asymptotic coverage probabilities that equal or exceed the 

nominal probabilities.  The methods of HH and HK use the bootstrap to select critical values that 

are larger than those obtained from the usual asymptotic normal approximations and, therefore, 

yield wider confidence intervals that achieve the desired coverage probabilities asymptotically 

without the need for bias correction through undersmoothing or explicit bias estimation.  The 

same methods can also be used to form hypothesis tests.  In contrast to the use of the bootstrap in 

Sections 3 and 4, the objective here is not to obtain asymptotic refinements.  Rather, the 

bootstrap is  used to overcome a problem in constructing first-order asymptotic confidence bands 

and hypothesis tests. 

HH and HK provide the details of the methods, which are lengthy, though not difficult to 

implement.  As an illustration, the method for obtaining a pointwise confidence band for the 
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mean-regression model (5.1) with a scalar covariate X  with compact support   and a 

homoskedastic ε  consists of the following steps. 

 Step 1:  Form an estimate ĝ  of g  by using a kernel-based method such as a local 

polynomial estimator.  Use a standard empirical method such as cross-validation or plug-in to 

choose the bandwidth.  Form an estimate 2σ̂  of 2 2( )E Uσ =  by using a standard method such as 

that of Rice (1984).  Let 2ˆ( )x σ  denote an estimate of the variance of ˆ ( )g x .  In local 

polynomial estimation, ( )x  is a known function of the iX ’s in the data.  HH provide details.  

 Step 2:  Compute residuals ˆ ( )i i iY g Xε = −  ( 1,...,i n= ).  Set 1
1

n
ii

nε ε−
=

= ∑  , and 

compute centered residuals îε  defined by î iε ε ε= − .   

 Step 3:  Form the residual bootstrap sample *{ , : 1,..., }i iY X i n= , where * *ˆ ( )i i iY g X ε= +  

and the *
iε ’s are obtained by sampling the îε ’s randomly with replacement.  The iX ’s are the 

same as in the original data and are not resampled. 

 Step 4:  Use the estimation methods and bandwidth of Step 1 with the bootstrap sample 

from Step 3 to obtain bootstrap estimates of g  and 2σ .  Denote these by *g  and *2σ .  This step 

uses the bandwidth obtained in Step 1.  It does not use the bootstrap sample to obtain a new 

bandwidth.  Form the bootstrap pointwise 1 α− confidence band 

 * * * * *
1 /2 1 /2ˆ( ) {( , ) : ( ) ( ) ( ) ( ) ( ) }y x g x x z g x g x x zα αα σ σ− −= − ≤ ≤ +   , 

where 1 /2z α−  is the 1 / 2α−  quantile of the (0,1)N  distribution. 

 Step 5:  Repeat Step 4 B  times, where B  is a large positive integer (e.g., 1000B = ).  Let 

*( )b α  denote the confidence band obtained on the b ’th out of B  repetition.  For supp( )x X∈ , 

compute the bootstrap coverage probability 
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 * 1 *

1

ˆ( , ) [( , ( ) ( )]
B

b
b

x B I x g xπ α α−

=

= ∈∑  . 

 Step 6:  Let 01 α−  be the desired coverage probability of a pointwise confidence band.  

Define *
0( , )xβ α  to be the solution in α  of *

0( , ) 1xπ α α= − .  For (0,.5]ξ ∈ , let *
0( )ξα α  denote 

the ξ -level quantile of points in the set *
0{ ( , ) : }x xβ α ∈ .  In practice, it suffices to find the 

quantile over a closely space grid of discrete points in  .  Asymptotically, the confidence band  

 ( ) 000 1 ( )/21 /2ˆ ˆ ˆ ˆ[ ( )] {( , ) : ( ) ( ) ( ) ( ) ( ) }y x g x x z g x g x x z
xxx α αα αα α σ σ −−= − ≤ ≤ +�    

covers all but a fraction 1 ξ−  of points in x∈ .  The exceptional points are in regions where 

( )g x  has sharp peaks or troughs that cause the bias of ĝ  to be unusually large.  These regions 

are typically visible in a plot of ĝ .  HH provide a theoretical analysis of this phenomenon and 

Monte Carlo illustrations of the numerical performance of the method for the mean regression 

model (5.1).  HK illustrate the performance of the method for the quantile regression model 

(5.2).   

6.  THE MULTIPLIER AND WILD BOOTSTRAPS 

 The multiplier and wild bootstraps are methods for generating bootstrap samples that do 

not consist of resampling the original data or residuals as in Sections 2-5.  Rather, the multiplier 

and wild bootstraps combine the data with random variables drawn from a known distribution to 

form a bootstrap sample.  The multiplier and wild bootstraps provide ways to deal with issues 

such as heteroskedasticity of unknown form in fixed-design regression models or random-design 

models in which one conditions on the covariates.  They also provide methods for obtaining non-

asymptotic bounds on the ERPs of certain hypothesis tests. 
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 6.1  The Wild Bootstrap 

 The wild bootstrap enables accurate inference to be carried out in regression models with 

heteroskedasticity of unknown form.  This section focusses on the linear model 

(6.1) ; 1,...,i i iY X i nβ ε′= + =  

where the iX ’s are fixed in repeated samples or random but inference is conditional on the 

observed iX ’s; ( ) 0iE ε =  for all 1,...,i n= ; 2 2( ) ( )i iE Xε σ= ; and 2 ( )σ ⋅  is an unknown function.  

Asymptotic inference about β  can be carried out by using the heteroskedasticity-consistent 

covariance matrix estimator (HCCME) of Eicker (1963, 1967) and White (1980), but this 

estimator can be severely biased downward in finite samples with the consequence that the true 

finite-sample probability of rejecting a correct null hypothesis can be significantly larger than the 

nominal probability (Chesher and Jewitt 1987).  If the iX ’s are treated as random, the bootstrap 

can be implemented for model (6.1) by sampling the data { , : ,..., }i iY X i n=  randomly with 

replacement.  However, this method can be inaccurate because it does not impose the moment 

condition ( | ) 0i iE Xε = . 

 The wild bootstrap imposes the moment restriction.  It was introduced by Liu (1988) 

following a suggestion of Wu (1986).  Mammen (1993) establishes the ability of the wild bootstrap 

to provide asymptotic refinements for the model (6.1).  Cao-Abad (1991), Härdle and Mammen 

(1993), and Härdle and Marron (1991) use the wild bootstrap in nonparametric regression.  To 

describe the method for a linear model, let b̂  be the ordinary least squares (OLS) estimate of the 

vector of slope coefficients, β , based on data { , : 1,..., }i iY X i n=  in the model 

(6.2) 2 2; ( 0); ( )i i i i i iY X E Eβ ε ε ε σ′= + = = . 
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The variances 2
iσ  are unknown and not necessarily equal.  The wild bootstrap generates bootstrap 

samples *{ , : 1,..., }i iY X i n=  from  

(6.3) * *ˆ
i i iY b X ε′= + . 

As in the residual bootstrap method of Section 2.2, the wild bootstrap uses the iX ’s from the 

original data.  The iX ,s are not resampled.  The *
iε ’s are generated by either of the following two 

methods:  

 1.  Let ˆ
î i iY b Xε ′= −  ( 1,...,i n=  ) be the OLS residuals from model (6.2).  For each 

1,...,i n= , let iF  be the unique 2-point distribution that satisfies ( ) 0iE η = ; 2 2ˆ( | )i i iE Fη ε= ; and 

2 3ˆ( )i iE η ε= ; where iη  is a random variable with the cumulative distribution function iF .  Then, 

ˆ(1 5)i iη ε= −  with probability ( ) / ( )1 5 2 5+ , and ˆ(1 5) / 2i iη ε= +  with probability 

1 1 5 2 5− +( ) / ( ) .  Set *
i iε η=  for each i .  Mammen (1993) provides a detailed discussion of the 

properties of this method.  

 2.  This method is an example of the multiplier bootstrap, meaning that the *
iε ’s are 

multiples of transformations of the residuals îε  and independent random variables.  Specifically, 

let iU  ( 1,...,i n= ) be random variables that are independent of each other and the OLS residuals 

such that ( ) 0iE U =  and 2( ) 1iE U = .  One possibility is ~ (0,1)iU N .  Let ˆ( )if ε  be a 

transformation of the OLS residuals, possibly ˆ ˆ( )i if ε ε= .  Set * ˆ( )i i iU fε ε= .  Davidson and 

Flachaire (2008) discuss properties of this method.  

 Regardless of the method used to generate *
iε , implementation of the wild bootstrap 

proceeds as follows: 
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 Step 1:  Generate a bootstrap sample *{ , : 1,..., }i iY X i n=  from (6.3).  Estimate β  by OLS 

using this sample.  Compute the resulting bootstrap t  statistic, *
nt  by using the HCCME or a 

variant such as that of MacKinnon and White (1985). . 

 Step 2:  Obtain the empirical distribution of *
nt  by repeating step 1 many times.  Obtain the 

critical value of *
nt .  Use this critical value with the t  statistic from the original data to test 

hypotheses about and form confidence intervals for the components of β .   

 Horowitz (2001) and Davidson and Flachaire (2008) provide examples of the numerical 

performance of the wild bootstrap. 

 6.2  Non-Asymptotic Inference in Maximum Likelihood Estimation 

 This section describes the use of the multiplier bootstrap to carry out a likelihood ratio test of 

a finite-dimensional parameter dθ ∈  for some finite integer 1d ≥ .  The hypothesis is 

0 0:H θ θ=  for some known 0θ .  Let the data { : 1,..., }iX i n=  be an independently but not 

necessarily identically distributed random sample from some population..  As in Section 2, the 

components of iX  include any dependent variables as well as explanatory variables.  Let ( , )if θ⋅  

denote the probability density function of the i ’th observation.  Technically, if  is a Radon-

Nikodym density, so the some components of iX  may be discretely distributed or have probability 

distributions that are continuous in some regions and discrete in others, but this section uses 

ordinary probability density notation to minimize the complexity of the discussion.  The log-

likelihood function is 

 
1

log ( ) log ( , )
n

i i
i

L f Xθ θ
=

=∑ . 

The maximum likelihood estimate of θ  is 
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 ˆ arg max log ( )L
θ

θ θ
∈Θ

= ,  

where dΘ⊂   is the parameter set.  Under 0 0:H θ θ= ,  

 0 arg max [log ( )]E L
θ

θ θ
∈Θ

= . 

The likelihood ratio statistic for testing 0H  is 

 0
ˆ2[log ( ) log ( )]LR L Lθ θ= − .  

 To construct the multiplier bootstrap version of LR , let { : 1,..., }iU i n=  be scalar random 

variables that are independent of each other and the iX ’s such that 2( ) ( ) 1i iE U E U= =  and 

exp( )iE U < ∞  for all 1,...,i n= .  The multiplier bootstrap version of the log-likelihood function is 

 *

1
log ( ) log ( , )

n

i i i
i

L U f Xθ θ
=

=∑ . 

The multiplier bootstrap parameter estimate is 

 * *arg max log ( )L
θ

θ θ
∈Θ

= . 

Let *E  denote the expectation with respect to the distribution of the iU ’s with the iX ’s held 

constant.  Then under 0H  

 * *
0 arg max [log ( )]E L

θ
θ θ

∈Θ
= , 

and the multiplier bootstrap version of the likelihood ratio statistic is 

 * *
02[log ( ) log ( )]LR L Lθ θ= − . 

 Let *
nP  denote the probability distribution induced by sampling the iU ’s while holding the 

iX ’s constant.  Let *
1z α−  denote the 1 α−  quantile of the distribution of *LR  under *

nP  

probability.  That is 
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 * * *
1 0

inf{ : ( ) }nz
z z P LR zα α−

≥
= > ≤ . 

The quantity *
1z α−  can be estimated with any desired accuracy by repeated sampling of the iU ’s 

and computation of *LR .  Spokoiny and Zhilova (2015) give condtions under which  

(6.4) ( )
1/8

*
1

dP LR z C
nα
nα−

+ > − ≤  
 

  

for any ν  such that 1 8e να −≤ − , where C  is a constant.  The right-hand side of (6.4) is small only 

if n  is very large.  Nonetheless, (6.4) is important because it is a finite-sample result showing that 

a version of the bootstrap can be used to carry out non-asymptotic inference with a familiar and 

frequently used statistic.  In addition, the right-hand side of (6.4) is a worst case bound that 

accommodates the most extreme distributions of { : 1,..., }iX i n= .  Spokoiny and Zhilova (2015) 

provide Monte Carlo evidence indicating that the bound is much tighter than (6.4) suggests in less 

extreme cases.  

 6.3  Inference with the Multiplier Bootstrap in High-Dimensional Settings 

 Let { : 1,..., }iX i n=  be independent 1p×  random vectors with means of zero and finite 

covariance matrices.  Define the 1p×  random vector 

 1/2

1

n

i
i

X n X−

=

= ∑ , 

and let ( )jX  denote the j ’th component of X .  Chernozhukov, Chetverikov, and Kato (2013) 

(CCK) consider the problem of estimating the probability distribution of 

 ( )
1
max j

j p
Z X

≤ ≤
=  

when p  may be greater than n .  This problem arises in testing multiple hypotheses and certain 

high-dimensional estimation methods, among other applications.   
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 If p  is fixed and certain other conditions are satisfied, a standard central limit theorem 

shows that X  is asymptotically multivariate normal.  The asymptotic distribution of Z  can be 

obtained from this result.  However, standard central limit theorems do not apply if p n> .  

 CCK define a multiplier bootstrap version of Z .  Let { : 1,..., }ie i n=  denote a sequence of 

(0,1)N  random variables that are independent of each other and the iX ’s.  Let *( )jX  be the j ’th 

component of the 1p×  random vector 

 * 1/2

1

n

i i
i

X n X e−

=

= ∑ . 

Define the following multiplier bootstrap version of Z : 

 * 1/2 *( )
1
max j

j p
Z n X−

≤ ≤
= . 

Let *
1z α−  denote the 1 α−  quantile of the distribution of *Z  under sampling of the ie ’s while 

holding the iX ’s fixed at the values in the data.  CCK give conditions under which 

*
1| ( ) (1 ) | 0P X z α α−≤ − − →  as n →∞  even if p n> .  CCK also show that their version of the 

multiplier bootstrap provides consistent estimates of the distributions of statistics related to Z .  

Finally, CCK give examples of the application of their results to certain problems in high-

dimensional estimation and testing. 

7.  THE LASSO 

 The LASSO (Least Absolute Shrinkage and Selection Operator) is a method for parameter 

estimation in settings in which the number of unknown parameters is comparable to or may exceed 

the sample size.  The LASSO was introduced by Tibshirani (1996).  It has been the object of much 

subsequent research and has generated a vast literature.  Bühlmann and van de Geer (2011) 
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synthesize the results of this research.  The LASSO is applicable to a wide variety of models.  

Here, however, we treat only the homoskedastic linear model 

(7.1) 
1

; 1,...,
p

i j ij i
j

Y X i nβ ε
=

= + =∑ , 

where { : 1,..., }j j pβ =  are constant parameters to be estimated, { : 1,..., ; 1,..., }ijX i n j p= =  are 

covariates that may be fixed in repeated samples or random, and { : 1,..., }i i nε =  are unobserved 

random variables that are independently and identically distributed with means of zero and finite 

variances.  Model (7.1) is assumed to be sparse in the sense that most of the jβ ’s are zero or close 

to zero in a certain sense but a relatively small number are non-zero.  It is possible that p n> , in 

which case the jβ ’s cannot be estimated by OLS.   

 The LASSO consists of estimating the jβ ’s by solving the penalized least squares problem 

 
2

1
1 1 1

ˆ ˆ ˆ( ,..., ) arg min | |
p pn

p i j ij jb i j j
b b b Y b X bλ

= = =

 
′  ≡ = − +

 
 

∑ ∑ ∑ ,  

where 0λ >  is a constant penalization parameter.  This estimator has a complicated, non-normal 

asymptotic distribution even if p n<  (Knight and Fu 2000).  The bootstrap does not estimate this 

distribution consistently (Chatterjee and Lahiri 2011). 

 The adaptive Lasso (Zou 2006) is a variant of the LASSO that overcomes these problems.  

The adaptive LASSO (ALASSO) estimates β  in two steps.  The first step consists of obtaining a 

1/2n− -consistent initial estimate of β .  For example, b  can be the OLS estimate if p n<  and the 

LASSO estimate if p n> .  Denote the initial estimate by 1( ,..., )pb b b=   .  The second step 

estimate is 
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2

1 1 1
0 0

| |ˆ arg min
| |

j j

p pn
j

AL i j ijb ji j j
b b

b
b Y b X

b
λ

= = =
≠ ≠

 
 
 = − +
 
 
 

∑ ∑ ∑
 



, 

where ,
ˆ 0AL jb =  if 0jb = .  The ALASSO estimate is asymptotically normal.  In particular, let 

number of non-zero components of β  be fixed.  Define { : 0}jA j β+ = ≠ , { : }j j Aβ β+ += ∈ , 

and ,
ˆ ˆ{ : }AL AL jb b j A+ += ∈ .  Then 1/2 ˆ( ) (0, )d

ALn b N Vb+ + +− → , where V+  is the covariance 

matrix of the OLS estimate of β+  obtained from a model that contains only explanatory variables 

ijX  for which j A+∈ .  This property is called oracle efficiency. 

 To implement the bootstrap with the ALASSO, let ˆ
i i AL iY b Xε ′= −  ( 1,...,i n= ) be the 

ALASSO residuals, 1
1

n
ii

nε ε−
=

= ∑  , and î iε ε ε= −  be the centered residuals.  Define  

 * *
,

1

ˆ ; 1,...,
p

i AL j ij i
j

Y b X i nε
=

= + =∑ ,  

where the *
iε ’s are drawn randomly with replacement from the îε ,s.  The bootstrap sample is 

*{ , : 1,..., }i iY X i n= .  Let *
ALb  denote the AL estimate of β  based on the bootstrap sample.  

Chatterjee and Lahiri (2013) give conditions under which the bootstrap provides asymptotic 

refinements for the ALASSO.  As an illustration of their results, let c  be a 1p ×  vector of 

constants.  Let nt  and *
nt , respectively, be t  statistics for testing the hypothesis 0c β′ =  and its 

bootstrap analog ˆ 0ALcb = .  Specifically, 

 
1/2 ˆ( )AL

n
n

n c bt
s

b′ −
=  

and 
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1/2 *

*
*

ˆ( )AL AL
n

n

n c b bt
s

′ −
= , 

where ns  is a consistent estimate of the standard error of 1/2 ˆ
ALn c b′  and *

ns  is its bootstrap 

analog.  Let *P  denote probability under bootstrap sampling of the *
iε ’s conditional on the  

ijX ’s.  Chatterjee and Lahiri (2013) give conditions under which 

 * * 1/2sup | ( ) ( ) | ( )n n pP t P t o n
t

tt  −≤ − ≤ = .  

This is more accurate than the error made by the asymptotic normal approximation, which is 

1/2( )O n− .  Chatterjee and Lahiri (2013) also give conditions under which the bootstrap estimates 

the distribution of a modified t  statistic with an accuracy of 1( )pO n− .   

8.  TIME SERIES DATA 

 Bootstrap sampling with time series data must capture the dependence of the data-generation 

process (DGP) in a suitable way.  Methods for doing this depend on what assumes about the form 

of the dependence and can be complex if one assumes little.  This section summarizes several 

methods for implementing the bootstrap with time series data.  The details of some methods are 

lengthy.  More thorough presentations are provided in Härdle, Horowitz, and Kreiss (2003); 

Horowitz (2001); and the references therein and in this section.   

 Bootstrap sampling can be carried out relatively easily if there is a parametric model, such as 

an ARMA model, that reduces the DGP to a transformation of independent random variables.  For 

example, suppose that the time series { : 1,..., }tX t T=  is generated by the stationary, invertible, 

finite-order ARMA model 

(8.1) ( , ) ( , )t tA L X B L Uα β= ,  
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where A  and B  are known functions, L  is the backshift operator, α  and β  are vectors of 

parameters, and { }tU  is a sequence of independently and identically distributed random variables 

with means of zero.  Let α̂  and β̂  be 1/2T -consistent, asymptotically normal estimators of α  and 

β , and let {  }Ut  be the residuals of the estimated model (8.1) centered so that 1
1

ˆ 0T
tt

T U−
=

=∑ .  

Then a bootstrap sample *{ }tX  can be generated as 

 * *ˆˆ( , ) ( , )t tA L X B L Uα β= , 

where *{ }tU  is an independent random sample from the empirical distribution of the centered 

residuals ˆ{ }tU .  If the distribution of tU  is assumed to belong to a known parametric family (e.g., 

the normal distribution), then *{ }tU  can be generated by independent sampling from the estimated  

distribution.  Bose (1988) provides a rigorous discussion of the use of the bootstrap with 

autoregressions.  Bose (1990) treats moving average models. 

 Another possibility is that the data are generated by a stationary, linear process. That is, the 

DGP has the form 

(8.2) 
1

( )i j i j i
j

X X Uµ α µ
∞

−
=

− = − +∑ , 

where ( )iE Xµ =  for all i , { }iU  is a sequence of independently and identically distributed 

random variables, and { }iX  may be a scalar or a vector process.  Assume that 2
1 jj
α

∞

=
< ∞∑  and 

that all of the roots of the power series 
1

1 j
jj
zα

∞

=
−∑  are outside of the unit circle.  Bühlmann 

(1997, 1998), Kreiss (1988, 1992), and Paparoditis (1996) proposed approximating (7.2) by an 

AR(p) model in which ( )p p n=  increases with increasing sample size n .  Let { : 1,..., }nja j p=  
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denote least squares or Yule-Walker estimates of the coefficients of the approximating process, 

and let ˆ{ }njU  denote the centered residuals.  This procedure, which is called the sieve bootstrap, 

consists of generating bootstrap samples according to the process 

(8.3) 
1

ˆ ˆ ˆ( )
p

i nj i j j
j

X m a X m U−
=

− = − +∑ , 

where 1
1

n
ii

m n X−
=

= ∑  and the ˆ
jU ’s are sampled randomly with replacement from the njU ’s.  

Bühlmann (1997), Kreiss (1992, 2000), and Paparoditis (1996) give conditions under which this 

procedure consistently estimates the distributions of sample averages, sample autocovariances and 

autocorrelations, and the regression coefficients nja  among other statistics.   

Choi and Hall (2000) investigated the ability of the sieve bootstrap to provide asymptotic 

refinements to the coverage probability of a one-sided confidence interval for the mean of a linear 

statistic when the iX ’s are scalar random variables.  A linear statistic has the form 

1
1

1
1

( 1) ( ,..., )
n q

n i i q
i

n q G X Xq
− +

−
+ −

=

= − + ∑ , 

where 1q ≥  is a fixed integer and G  is a known function.  Define 1[ ( ,..., )]qG X Xq = E .  Choi and 

Hall (2000) considered the problem of finding a one-sided confidence interval for θ .  They gave 

conditions under which the difference between the true an nominal coverage probability of this 

interval is 1( )O n ε− +  for any 0ε > .  This is only slightly larger than the difference of 1( )O n−  that 

is available with independent data.   

 A third possibility is that the DGP is a Markov process or can be approximated by such a 

process.  The class of Markov and approximate Markov processes contains ARCH, GARCH, and 

many other processes that are important in applications.  The assumption that the DGP is a Markov 
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or approximate Markov process is weaker and, therefore, more general than the assumption that 

the DGP belongs to a finite-dimensional parametric family or is linear.   

 When the DGP is a stationary Markov process, the bootstrap can be implemented by 

estimating the Markov transition density nonparametrically.  Bootstrap samples are generated by 

the stochastic process implied by the estimated transition density.  Call this procedure the Markov 

bootstrap (MB).  The MB was proposed by Rajarshi (1990), who gave conditions under which it 

consistently estimates the asymptotic distribution of a statistic.  Datta and McCormick (1995) gave 

conditions under which the error in the MB estimator of the distribution function of a normalized 

sample average is almost surely 1/2( )o n− .   

 Horowitz (2003) investigates the ability of the MB to provide asymptotic refinements for 

confidence intervals and tests based on Studentized statistics of the form 

 1/2[ ( ) ( )] /n Tt T H m H sm= − , 

where H  is a smooth function, 1( )E Xµ = , 1

1

T

t
t

m T X−

=

= ∑ , and 2
Ts  is a consistent estimator of 

the variance of the asymptotic distribution of 1/2[ ( ) ( )]T H m H m− .  Thus, for example, a 

symmetrical 1 α−  confidence interval for ( )H µ  is  

 1 1( ) ( ) ( )T TH m z s H H m z sα αm− −− ≤ ≤ + , 

where 1z α−  is a critical value.  Horowitz (2003) gives conditions under which the difference 

between the true and nominal coverage probabilities of a symmetrical confidence interval is 

3/2( )O n ε− +  for any 0ε > .  The difference for a one-sided confidence interval is 1( )O n ε− + .  In 

contrast, the asymptotic normal approximation makes errors of size 1( )O n−  and 1/2( )O n− , 

respectively, for symmetrical and one-sided confidence intervals. 
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 The block bootstrap is a method that makes even weaker assumptions about the DGP.  This 

method consists of dividing the data into blocks and sampling the blocks randomly with 

replacement.  The blocks may be non-overlapping (Carlstein 1986, Hall 1985) or overlapping (Hall 

1985, Künsch 1989, Politis and Romano 1993).  Andrews (2004) and Politis and Romano (1993) 

describe variants of these blocking schemes.  Details of the various blocking schemes are presented 

in the foregoing references and in Härdle, Horowitz, and Kreiss (2003); Hall and Horowitz (1996); 

and Lahiri (2003).  The root mean-square errors of bootstrap estimators of distribution functions 

are smaller with overlapping blocks than with non-overlapping ones.  This suggests that 

overlapping blocks are preferred for applications, although the differences between the numerical 

results obtained with the two types of blocking are often very small (Andrews 2004).  The rates of 

convergence of the errors made with overlapping and non-overlapping blocks are the same. 

 Regardless of the blocking method that is used, the block length must increase with 

increasing sample size n to make bootstrap estimators of moments and distribution functions 

consistent.  The block length that minimizes mean square estimation error depends on what is 

being estimated.  Hall, Horowitz, and Jing (1995) showed that with either overlapping or non-

overlapping blocks, the optimal block-length is rl n∝ , where 1 / 3r =  for estimating bias or 

variance, 1 / 4r =  for estimating a one-sided distribution function (e.g., ( )nP t t≤ ) , and 1 / 5r =  

for estimating a symmetrical distribution function (e.g., (| | )nP t t≤ ).  The results obtained with the 

block bootstrap can be sensitive to the choice of block length.  Hall, Horowitz, and Jing (1995) and 

Lahiri (2003) describe data-based methods for choosing the block length in applications. 

 Block bootstrap sampling does not exactly replicate the dependence structure of the original 

data-generation process.  For example, if nonoverlapping blocks are used, bootstrap observations 

that belong to the same block are deterministically related, whereas observations that belong to 
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different blocks are independent.  This dependence structure is unlikely to be present in the original 

data-generation process.  As a result, the finite-sample covariance matrices of the asymptotic forms 

of parameter estimators obtained from the original sample and from the bootstrap sample are 

different.  The practical consequence of this difference is that asymptotic refinements cannot be 

obtained by applying the usual formulae for test statistics to the block-bootstrap sample.  It is 

necessary to develop special formulae for the bootstrap versions of test statistics.  These formulae 

contain factors that correct for the differences between the asymptotic covariances of the original-

sample and bootstrap versions of test statistics without distorting the higher-order terms of 

asymptotic expansions that produce refinements.  Härdle, Horowitz, and Kreiss (2003); Hall and 

Horowitz (1996); and Lahiri (2003), among other references cited in this section, describe the 

appropriate versions of test statistics and explain why they are needed.  

 The asymptotic refinements provided by the block bootstrap depend in a complicated way 

on what is being estimated.  Andrews (2004), Härdle, Horowitz, and Kreiss (2003); Hall and 

Horowitz (1996); and Hall, Horowitz, and Jing (1995), among other references cited in this section, 

provide details and numerical illustrations.  The estimation errors made by the block bootstrap 

converge more slowly than the errors made by methods that make stronger assumptions about the 

DGP but more rapidly than the errors made by asymptotic normal approximations. 

9.  CONCLUSIONS 

 The bootstrap consistently estimates the asymptotic distributions of econometric 

estimators and test statistics under conditions that are sufficiently general to accommodate most 

applications.  To achieve consistency, however, the bootstrap sampling procedure must be 

matched to the application.  Often, it suffices to sample one’s data randomly with replacement, 

but there are important cases that require sampling procedures that are more complex and/or 
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modifications of the estimation procedure.  This article has reviewed several examples of such 

cases.  When used properly, the bootstrap provides a way to substitute computation for 

mathematical analysis if analytical calculation of the asymptotic distribution of an estimator or 

test statistic is difficult or impossible.  The bootstrap is more accurate than subsampling in 

settings where the bootstrap is consistent and the relative accuracy of the two methods is known. 

 Under conditions that are stronger than those required for consistency but still general 

enough to accommodate many econometric applications, the bootstrap provides a more accurate 

approximation to the finite-sample distribution of an estimator or test statistic than does first-

order asymptotic theory.  The approximations of first-order asymptotic theory are often 

inaccurate with samples of the sizes encountered in applications.  As a result, the errors in the 

rejection probabilities of hypothesis tests and the coverage probabilities of confidence intervals 

based on first-order approximations can be very large.  The bootstrap can provide dramatic 

reductions in these errors.  In many cases of practical importance, the bootstrap essentially 

eliminates finite-sample errors in rejection and coverage probabilities. 

 This article has emphasized the need for care in applying the bootstrap and the 

importance of asymptotically pivotal statistic for obtaining asymptotic refinements.  However, 

even if asymptotic refinements are not available or not desired, the bootstrap should be used to 

obtain confidence intervals and critical values for hypothesis tests, not standard errors.  Standard 

errors are important because they bear a simple relation to quantiles of the normal distribution, 

but bootstrap distributional approximations are non-normal.  There is no simple relation between 

standard errors and quantiles of bootstrap distributions. 
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