
SUPPORTING INFORMATION

Appendix for “Varieties of Clientelism: Machine Politics During Elections”

Proofs of Propositions 1 - 3

We refer to opposing voters as OV ; to supporting nonvoters as SNV ; and to opposing nonvoters as ONV .

Also, for notational simplicity, let h = g(c)f(x)dc dx, r = x− xM , and s = −x− xM .

The proofs to Propositions 1 and 3 make use of the following lemma:

Lemma 1: For any allocation of budget B, a machine could buy more citizens if it had additional resources

of any positive amount.

Proof. Let A be an allocation of budget B. Define M(A) to be the set of citizens who vote for a machine given

this allocation: M(A) ≡ {(xi, ci) : bi ≥ bi}, where bi is the payment received by citizen i under allocation

A and bi is the payment required to buy this citizen. Limited resources means that for any allocation A,

a machine cannot afford to buy all citizens:
∫ ∫

bih > B. It follows that there exists a set Q /∈ M(A) of

positive measure such that bi > bi for all (xi, ci) ∈ Q. Let (ẋi, ċi) be any point on the interior of Q and

select η sufficiently small such that ∆(η) ≡ [ẋi, ẋi + η]× [ċi, ċi + η] ⊂ Q. Let θ > 0 represent some nonzero

amount of resources. Then by the continuity of f(x) and g(c), there exists a η0 < η such that for any θ, a

machine can afford to buy all citizens in ∆(η0):
∫

∆(η0)
bih ≤ θ.

Proposition 1: In an optimal allocation of resources, a machine sets b∗V B = 2b∗TB = 2b∗DP = 2b∗AB .

Proof. We will show (i) b∗TB = b∗DP and (ii) b∗V B = 2b∗TB . (The proof to b∗TB = b∗AB follows identical logic).

(i) Let b∗TB and b∗DP be the upper bounds on a machine’s payments to SNV and ONV , respectively.

For contradiction, assume A is an optimal allocation in which b∗TB 6= b∗DP . Without loss of generality, say

b∗TB > b∗DP . We will show there exists an allocation A′ that is affordable and produces a strictly greater

number of net votes. Thus, A cannot be optimal.

Let S be a set with positive measure of SNV such that all citizens in set S have a required payment

bi = b∗TB . Let (x̂, ĉ) be any point on the interior of S and take δ small enough such that ∆(δ) ≡ [x̂, x̂ +

δ] × [ĉ, ĉ + δ] ⊂ S. Recall from Lemma 1 that Q is a set of citizens who remain unbought under allocation

A. Let R ⊂ Q be a set with positive measure of ONV such that all citizens in set R have a required

payment b∗TB > bi > b∗DP . Let (x̃, c̃) be any point on the interior of R. Take µ small enough such that

∆(µ) ≡ [x̃, x̃ + µ] × [c̃, c̃ + µ] ⊂ R. By the continuity of f(x) and g(c), there exists a δ0 < δ and a µ0 < µ

such that
∫

∆(δ0)
h =

∫
∆(µ0)

h (call this Equation A1). Observe that ∆(δ0) and ∆(µ0) have the same number

of citizens, so buying either set produces the same net votes. Let θ ≡
∫

∆(δ0)
bih−

∫
∆(µ0)

bih and note θ > 0

because citizens on ∆(δ0) are more expensive than those on ∆(µ0). Finally, let ∆(η0) be a set of citizens
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who are mutually exclusive of set ∆(µ0) and who do not receive rewards under allocation A. Formally,

∆(η0) ⊂ Q and ∆(µ0) ∩∆(η0) = ∅.

Consider an allocation A′ in which a machine buys all citizens in ∆(µ0), reduces payments to citizens

on ∆(δ0) to zero, and redistributes the savings to citizens in ∆(η0). Recall from Lemma 1 that citizens on

∆(η0) can be be bought with resources θ. Formally, define Ω ≡ [X,X]× [0, C]− (∆(δ0) ∪ ∆(µ0) ∪ ∆(η0)).

Let A′ = A for all (xi, ci) on Ω, A′ = 0 for all (xi, ci) on ∆(δ0), and A′ = bi for all (xi, ci) on ∆(µ0) and for

all (xi, ci) on ∆(η0). The cost of A′ is ≤ the cost of allocation A, and A′ buys
∫

∆(η0)
h more citizens. Thus

A cannot be an optimal allocation.

(ii) To show b∗V B = 2b∗TB (or, equivalently, b∗V B = 2b∗DP or b∗V B = 2b∗AB), we repeat the proof that

b∗TB = b∗DP , replacing Equation (A1) with
∫

∆(δ0)
h = 2

∫
∆(µ0)

h, where ∆(δ0) is a subset of OV for whom

bi = b∗V B > 2b∗TB , and where ∆(µ0) is a subset of SNV for whom 1
2b
∗
V B > bi > b∗TB .

Proposition 2: If a machine engages in electoral clientelism, then optimally it allocates resources across all

three strategies of vote buying, turnout buying, and double persuasion.

Proof. Let b∗V B = b∗∗ and b∗TB = b∗DP = b∗AB = b∗. In an optimal allocation, the number of vote-buying re-

cipients is V B = N
∫ 0

− b∗∗
2

∫ xO

C
h (Equation A2), the number turnout-buying recipients is TB = N

∫X
0

∫ r+b∗
r

h

(Equation A3), the number of double-persuasion recipients is DP = N
∫ 0

− b∗
2

∫ r+b∗
s

h (Equation A4), and the

number of abstention buying recipients is AB = N
∫ − b∗∗

2

X

∫ s
s−b∗ h+N

∫ 0

− b∗∗
2

∫ s
xO h (Equation A5). By Propo-

sition 1, b∗∗ = 2b∗, so b∗ > 0 ⇐⇒ b∗∗ > 0. It then follows from equations A2, A3, A4, and A5 that

V B > 0⇐⇒ TB > 0⇐⇒ DP > 0⇐⇒ AB > 0.

Proposition 3: If b
V B

i ≤ b∗∗ and ci ≤ xO, a machine pays b
V B

i to a OV . If b
AB

i ≤ b∗ and ci > xO, a

machine pays b
AB

i to a OV . If b
TB

i ≤ b∗, a machine pays b
TB

i to a SNV . If b
DP

i ≤ b∗, a machine pays b
DP

i

to a ONV . All other citizens receive no payment.

Proof. We prove the TB case; identical logic holds for other strategies. We show (i) if b
TB

i ≤ b∗∗, a machine

pays b
TB

i to a SNV ; (ii) if b
TB

i > b∗, a machine offers bi = 0 to a SNV .

(i) Let b∗ be the upper bound on payments a machine makes to SNV . Define M(A) to be the set of

SNV who vote for the machine given the payment allocation A. For contradiction, assume A is an optimal

allocation in which the machine does not buy all SNV who are cheaper than b∗. Formally, there exists a set

Z with positive measure of SNV receiving bi < bi < b∗. We will show there exists a A′ that is affordable

and produces a strictly greater number of net votes. Thus, A cannot be optimal.

Let (x̂, ĉ) be any point on the interior of M(A) and take δ small enough such that ∆(δ) ≡ [x̂, x̂ +

δ] × [ĉ, ĉ + δ] ⊂ M(A). Let (x̃i, c̃i) be any point in Z and select µ sufficiently small such that ∆(µ) ≡

[x̃i, x̃i + µ]× [c̃i, c̃i + µ] ⊂ Z. By the continuity of f(x) and g(c) there exists a δ0 < δ and µ0 < µ such that∫
∆(δ0)

h =
∫

∆(µ0)
h. Observe that ∆(δ0) and ∆(µ0) have the same number of SNV , so buying either set
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produces the same net votes. Let θ ≡
∫

∆(δ0)
bih−

∫
∆(µ0)

bih and note that θ > 0 because citizens in ∆(µ0)

are cheaper than those in ∆(δ0). Consider an allocation A′ in which a machine buys all citizens in ∆(µ0),

reduces payments to citizens in ∆(δ0) to zero, and redistributes the savings to citizens in ∆(η0). Recall from

Lemma 1 that ∆(η0) is a set of citizens who remain unbought under allocation A, and who could be bought

with resources θ. Formally, define Ω ≡ [X,X]× [0, C]− (∆(δ0)∪ ∆(µ0)∪ ∆(η0)). Let A′ = A for all (xi, ci)

on Ω, A′ = 0 for all (xi, ci) on ∆(δ0), and A′ = bi for all (xi, ci) on ∆(µ0) and for all (xi, ci) on ∆(η0). The

cost of A′ is less than or equal to the cost of allocation A and A′ buys
∫

∆(η0)
h more citizens. Thus A cannot

be an optimal allocation.

(ii) Recall that b∗ is the upper bound on payments a machine makes to SNV . Offering b∗ to a citizen

for whom b
TB

i > b∗ is insufficient to induce turnout (i.e., it is an underpayment). Formally, underpayment

can be defined as a set of positive measure P of SNV receiving rewards bi such that bi > bi > 0. For

contradiction, assume A is an optimal allocation in which a machine underpays some SNV . We show there

exists an affordable allocation A′′ that produces strictly more net votes than A. Thus, A cannot be optimal.

Define θ ≡
∫
P
bih as the resources the machine devotes to citizens in set P . In allocation A, θ > 0.

Observe that since the machine underpays these citizens, it receives 0 net votes in return. Recall from

Lemma 1 that a machine can purchase all citizens on set ∆(η0) for resources θ, where ∆(η0) are citizens

who remain unbought under allocation A. Consider an allocation A′′ in which a machine reduces payments

to citizens on set P to 0 and uses the savings to purchase citizens on set ∆(η0). Formally, define Ω ≡

[X,X]× [0, C]− (P ∪ ∆(η0)). Let A′′ = A for all (xi, ci) on Ω, A′′ = 0 for all (xi, ci) on P , and A′′ = bi for

all (xi, ci) on ∆(η0). Then the costs of A′′ are ≤ the costs of A, and A′′ buys
∫

∆(η0)
h more citizens. Thus

A cannot be an optimal allocation.

Comparative Statics

For analysis of comparative statics, we assume f and g are distributed uniformly. The machine’s con-

strained optimization problem, where λ is the Lagrangian multiplier, is: max
bTB, bDP, bVB, bAB

VM−V O−λ(E−B).

The machine maximizes the difference between its votes (VM ) and opposition votes (V O), given that

total expenditures (E) must be less than or equal to its budget B. Note that V O =
∫ − bV B

2

X

∫ s−bAB

C
h and

VM = V B+TB+DP+S, where: Vote Buying (VB) =
∫ 0

− bV B

2

∫ xO

C
h, Turnout Buying (TB) =

∫X
0

∫ r+bTB

r
h,

Double Persuasion (DP) =
∫ 0

− bDP

2

∫ r+bDP

s
h, and Supporters (S) =

∫X
0

∫ r
0
h. Total expenditures for the

machine party are E = EV B + ETB + EDP + EAB , where: VB Expenditures (EV B) =
∫ 0

− bV B

2

∫ xO

C
b
V B

i h,

TB Expenditures (ETB) =
∫X

0

∫ r+bTB

r
b
TB

i h, DP Expenditures (EDP ) =
∫ 0

− bDP

2

∫ r+bDP

s
b
DP

i h, and AB

Expenditures (EAB) =
∫ − bV B

2

X

∫ s
s−bAB b

AB

i h +
∫ 0

− bV B

2

∫ s
xO b

AB

i h. Solving the problem yields four first order

conditions. Solving all first order conditions for λ yields the results from Proposition 1: b∗VB = 2b∗TB =
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2b∗DP = 2b∗AB. For the following analyses, let Γ = 1
(X−X)(C−C)

. Recall that C < 0, X < 0, and X = −X.

Compulsory Voting: Substitute b∗ = 1
2b
∗∗ from the FOCs into the budget constraint. Implicit

differentiation yields: ∂b∗∗

∂a = −4b∗∗

8(a+X−xM−C)−b∗∗ < 0. Substitute b∗∗ = 2b∗ into the budget constraint.

Implicit differentiation yields: ∂b∗

∂a = −2b∗

4(a+X−xM−C)−b∗ < 0. Comparative statics follow: (1)

∂V B
∂a = Γ

4

[
2b∗∗ + (2(a− xM − C) + b∗∗)∂b

∗∗

∂a

]
− b∗ ∂b

∗∗

∂a − b
∗∗ ∂b∗

∂a =

Γ
4

[
2b∗∗ − 2b∗∗

(
4(a−xM−C)+2b∗∗

8(a+X−xM−C)−b∗∗

)]
− b∗ ∂b

∗∗

∂a − b
∗∗ ∂b∗

∂a > 0. (2) ∂TB
∂a = ΓX ∂b∗

∂a < 0. (3) ∂DP
∂a = Γ b∗

2
∂b∗

∂a < 0.

(4) ∂AB
∂a = −Γ

4

[
b∗ ∂b

∗∗

∂a + (4X + b∗∗)∂b
∗

∂a

]
= −Γ

4

[
b∗∗ ∂b

∗∗

∂a + 2X ∂b∗∗

∂a

]
< 0 (recall that X < 0 and that under

an optimal allocation of resources, b∗ = 1
2b
∗∗ and ∂b∗

∂a = 1
2
∂b∗∗

∂a ).

Ballot Secrecy: In the constrained optimization problem above, replace EVB with βEVB and EDP with

βEDP. The FOCs become βb∗VB = 2βb∗DP = 2b∗TB = 2b∗AB. Substitute b∗DP = 1
2b
∗
VB and b∗TB = b∗AB = β

2 b
∗
VB

from the FOCs into the budget constraint. Implicit differentiation yields:

∂b∗VM

∂β =
b∗VB((5−12β)2b∗VB−12(βxM+C−2βX))

3β(4βX(6β−5)b∗VB+8(xM+C))
< 0. Substitute b∗VB = 2b∗DP and b∗TB = b∗AB = β2b∗DP and implicit

differentiation yields:
∂b∗DP

∂β =
b∗VB((5−12β)b∗VB−6(βxM+C−2βX))

3β(2βX(6β−5)b∗VB+4(xM+C))
< 0. Let bTB = bAB and substitute

b∗VB = 2
β b
∗
TB and b∗DP = 1

β b
∗
TB and implicit differentiation yields:

∂b∗TB

∂β =
∂b∗AB

∂β =
2b∗TB((3β−5)b∗TB+3β(xM+C))

3β((6β−5)b∗TB+2β(2(xM+C)−2βX))
> 0. Comparative statics follow: (1)

∂V B
∂β = Γ

4

[
(b∗VB − 2(xM + C))

∂b∗VB

∂β − b
∗
AB

∂b∗VB

∂β − b
∗
VB

b∗AB

∂β

]
=

Γ
4

[
(b∗VB − 2(xM + C))

∂b∗VB

∂β −
β
2 b
∗
VB

∂b∗VB

∂β − b
∗
VB( 1

2 (b∗VB + β
∂b∗VB

∂β )
]
< 0 (using the fact that in an optimal

allocation of resources, b∗AB = β
2 b
∗
VB and

∂b∗AB

∂β = 1
2 (b∗VB + β

∂b∗VB

∂β )). (2) ∂TB
∂β = ΓX

∂b∗TB

∂β > 0. (3)

∂DP
∂β =

Γb∗DP

2
∂b∗DP

∂β < 0. (4)

∂AB
∂β = −Γ

4

[
b∗AB

∂b∗VB

∂β + (4X + b∗VB)
∂b∗AB

∂β

]
= −Γ

4

[
β
2 b
∗
VB

∂b∗VB

∂β + 1
2 (4X + b∗VB)(b∗VB + β

∂b∗VB

∂β )
]
> 0 (again

substituting b∗AB = β
2 b
∗
VB and

∂b∗AB

∂β = 1
2 (b∗VB + β

∂b∗VB

∂β )).

Salience of Political Preferences: Substituting FOCs into the budget constraint and implicitly

differentiating yields: (1)∂b
∗∗

∂κ = b∗∗(b∗∗+12C)

3κ(8(xM+κ(C−X))+b∗∗)
> 0 and (2)∂b

∗

∂κ = b∗(b∗+6C)

3κ(4(xM+κ(C−X))+b∗)
> 0.

Comparative statics follow: (1) ∂V B
∂κ = − Γ

8κ2

[
2b∗∗(b∗∗ + 2C) + 2κ(2(κxM + C) + b∗ − κb∗∗)∂b

∗∗

∂κ

]
< 0

(using the fact that in an optimal allocation of resources, ∂b
∗

∂κ = 1
2
∂b∗∗

∂κ ). (2) ∂TB
∂κ = Γ

[
X(∂b

∗

∂κ )
]
> 0. (3)

∂DP
∂κ = Γ

4κ2

[
2κ∂b

∗

∂κ − b
∗
]

= Γ
4κ2

[
2κb∗ (b∗+6C)

3κ(4(xM+κ(C−X))+b∗)
− b∗

]
> 0. (4) ∂AB

∂κ =

Γ
4κ2

[
b∗(b∗∗ − κ∂b

∗∗

∂κ )− κ(4X + b∗∗)∂b
∗

∂κ

]
= Γ

4κ2

[
b∗(b∗∗ − b∗∗ κ(b∗∗+12C)

3κ(8(xM+κ(C−X))+b∗∗)
)− κ(4X + b∗∗)∂b

∗

∂κ

]
> 0.

Political Polarization: Note that by the assumption of symmetric party platforms, xM − xO = 2xM .

Substitute b∗ = 1
2b
∗∗ from the FOCs into the budget constraint. Implicit differentiation yields:

∂b∗∗

∂xM = 4b∗∗

8(X−xM−C)−b∗∗ > 0. Substitute b∗∗ = 2b∗ into the budget constraint. Implicit differentiation yields:

(2) ∂b∗

∂xM = 2b∗

4(X−xM−C)−b∗ > 0. Comparative statics then follow: (1).

∂V B
∂xM = Γ

4

[
−(2b∗∗ + (2(xM + C) + b∗∗)) ∂b

∗∗

∂xM

]
−b∗ ∂b

∗∗

∂xM +b∗∗ ∂b
∗

∂xM = Γ
4

[
−(2b∗∗ + (2(xM + C) + b∗∗)) ∂b

∗∗

∂xM

]
< 0

(where the last two terms of the first equation cancel after substituting b∗ = 1
2b
∗∗ and ∂b∗

∂a = 1
2
∂b∗∗

∂a ). (2)
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∂TB
∂xM = Γ

[
X( ∂b

∗

∂xM )
]
> 0. (3) ∂DP

∂xM = Γ
2

[
b∗ ∂b

∗

∂xM

]
> 0. (4)

∂AB
∂xM = −Γ

4

[
b∗ ∂b

∗∗

∂xM + (4X + b∗∗) ∂b
∗

∂xM

]
= −Γ

4

[
b∗∗ ∂b

∗∗

∂xM + 2X ∂b∗∗

∂xM

]
> 0 (recall that X < 0 and that under an

optimal allocation of resources, b∗ = 1
2b
∗∗ and ∂b∗

∂xM = 1
2
∂b∗∗

∂xM ).

Machine Support: Substituting FOCs into the budget constraint and implicitly differentiating yields:

∂b∗∗

∂x = ∂b∗

∂x = 0. Comparative statics follow: (1) ∂V B
∂x = −Γ

4

[
(2(xM + C)− b∗∗ + b∗)∂b

∗∗

∂x + b∗∗ ∂b
∗

∂x

]
= 0. (2)

∂TB
∂x = Γ

[
b∗ + (X + x)∂b

∗

∂x

]
= Γb∗ > 0. (3) ∂DP

∂x = Γ
2

[
b∗(∂b

∗

∂x )
]

= 0. (4)

∂AB
∂x = −Γ

4

[
b∗(4 + ∂b∗∗

∂x ) + (4(X + x) + b∗∗)∂b
∗

∂x

]
= −Γb∗ < 0.
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