SUPPORTING INFORMATION

Appendix for "Varieties of Clientelism: Machine Politics During Elections"

Proofs of Propositions 1-3

We refer to opposing voters as $O V$; to supporting nonvoters as $S N V$; and to opposing nonvoters as $O N V$. Also, for notational simplicity, let $h=g(c) f(x) d c d x, r=x-x^{M}$, and $s=-x-x^{M}$.

The proofs to Propositions 1 and 3 make use of the following lemma:
Lemma 1: For any allocation of budget B, a machine could buy more citizens if it had additional resources of any positive amount.

Proof. Let A be an allocation of budget B. Define $M(A)$ to be the set of citizens who vote for a machine given this allocation: $M(A) \equiv\left\{\left(x_{i}, c_{i}\right): b_{i} \geq \bar{b}_{i}\right\}$, where b_{i} is the payment received by citizen i under allocation A and \bar{b}_{i} is the payment required to buy this citizen. Limited resources means that for any allocation A, a machine cannot afford to buy all citizens: $\iint \bar{b}_{i} h>B$. It follows that there exists a set $Q \notin M(A)$ of positive measure such that $\bar{b}_{i}>b_{i}$ for all $\left(x_{i}, c_{i}\right) \in Q$. Let $\left(\dot{x}_{i}, \dot{c}_{i}\right)$ be any point on the interior of Q and select η sufficiently small such that $\Delta(\eta) \equiv\left[\dot{x}_{i}, \dot{x}_{i}+\eta\right] \times\left[\dot{c}_{i}, \dot{c}_{i}+\eta\right] \subset Q$. Let $\theta>0$ represent some nonzero amount of resources. Then by the continuity of $f(x)$ and $g(c)$, there exists a $\eta_{0}<\eta$ such that for any θ, a machine can afford to buy all citizens in $\Delta\left(\eta_{0}\right): \int_{\Delta\left(\eta_{0}\right)} \bar{b}_{i} h \leq \theta$.
Proposition 1: In an optimal allocation of resources, a machine sets $b_{V B}^{*}=2 b_{T B}^{*}=2 b_{D P}^{*}=2 b_{A B}^{*}$.
Proof. We will show (i) $b_{T B}^{*}=b_{D P}^{*}$ and (ii) $b_{V B}^{*}=2 b_{T B}^{*}$. (The proof to $b_{T B}^{*}=b_{A B}^{*}$ follows identical logic).
(i) Let $b_{T B}^{*}$ and $b_{D P}^{*}$ be the upper bounds on a machine's payments to $S N V$ and $O N V$, respectively. For contradiction, assume A is an optimal allocation in which $b_{T B}^{*} \neq b_{D P}^{*}$. Without loss of generality, say $b_{T B}^{*}>b_{D P}^{*}$. We will show there exists an allocation A^{\prime} that is affordable and produces a strictly greater number of net votes. Thus, A cannot be optimal.

Let S be a set with positive measure of $S N V$ such that all citizens in set S have a required payment $\bar{b}_{i}=b_{T B}^{*}$. Let (\hat{x}, \hat{c}) be any point on the interior of S and take δ small enough such that $\Delta(\delta) \equiv[\hat{x}, \hat{x}+$ $\delta] \times[\hat{c}, \hat{c}+\delta] \subset S$. Recall from Lemma 1 that Q is a set of citizens who remain unbought under allocation A. Let $R \subset Q$ be a set with positive measure of $O N V$ such that all citizens in set R have a required payment $b_{T B}^{*}>\bar{b}_{i}>b_{D P}^{*}$. Let (\tilde{x}, \tilde{c}) be any point on the interior of R. Take μ small enough such that $\Delta(\mu) \equiv[\tilde{x}, \tilde{x}+\mu] \times[\tilde{c}, \tilde{c}+\mu] \subset R$. By the continuity of $f(x)$ and $g(c)$, there exists a $\delta_{0}<\delta$ and a $\mu_{0}<\mu$ such that $\int_{\Delta\left(\delta_{0}\right)} h=\int_{\Delta\left(\mu_{0}\right)} h$ (call this Equation A1). Observe that $\Delta\left(\delta_{0}\right)$ and $\Delta\left(\mu_{0}\right)$ have the same number of citizens, so buying either set produces the same net votes. Let $\theta \equiv \int_{\Delta\left(\delta_{0}\right)} \bar{b}_{i} h-\int_{\Delta\left(\mu_{0}\right)} \bar{b}_{i} h$ and note $\theta>0$ because citizens on $\Delta\left(\delta_{0}\right)$ are more expensive than those on $\Delta\left(\mu_{0}\right)$. Finally, let $\Delta\left(\eta_{0}\right)$ be a set of citizens
who are mutually exclusive of set $\Delta\left(\mu_{0}\right)$ and who do not receive rewards under allocation A. Formally, $\Delta\left(\eta_{0}\right) \subset Q$ and $\Delta\left(\mu_{0}\right) \cap \Delta\left(\eta_{0}\right)=\emptyset$.

Consider an allocation A^{\prime} in which a machine buys all citizens in $\Delta\left(\mu_{0}\right)$, reduces payments to citizens on $\Delta\left(\delta_{0}\right)$ to zero, and redistributes the savings to citizens in $\Delta\left(\eta_{0}\right)$. Recall from Lemma 1 that citizens on $\Delta\left(\eta_{0}\right)$ can be be bought with resources θ. Formally, define $\Omega \equiv[\underline{X}, \bar{X}] \times[0, \bar{C}]-\left(\Delta\left(\delta_{0}\right) \cup \Delta\left(\mu_{0}\right) \cup \Delta\left(\eta_{0}\right)\right)$. Let $A^{\prime}=A$ for all $\left(x_{i}, c_{i}\right)$ on $\Omega, A^{\prime}=0$ for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\delta_{0}\right)$, and $A^{\prime}=\bar{b}_{i}$ for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\mu_{0}\right)$ and for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\eta_{0}\right)$. The cost of A^{\prime} is \leq the cost of allocation A, and A^{\prime} buys $\int_{\Delta\left(\eta_{0}\right)} h$ more citizens. Thus A cannot be an optimal allocation.
(ii) To show $b_{V B}^{*}=2 b_{T B}^{*}$ (or, equivalently, $b_{V B}^{*}=2 b_{D P}^{*}$ or $b_{V B}^{*}=2 b_{A B}^{*}$), we repeat the proof that $b_{T B}^{*}=b_{D P}^{*}$, replacing Equation (A1) with $\int_{\Delta\left(\delta_{0}\right)} h=2 \int_{\Delta\left(\mu_{0}\right)} h$, where $\Delta\left(\delta_{0}\right)$ is a subset of $O V$ for whom $\bar{b}_{i}=b_{V B}^{*}>2 b_{T B}^{*}$, and where $\Delta\left(\mu_{0}\right)$ is a subset of $S N V$ for whom $\frac{1}{2} b_{V B}^{*}>\bar{b}_{i}>b_{T B}^{*}$.

Proposition 2: If a machine engages in electoral clientelism, then optimally it allocates resources across all three strategies of vote buying, turnout buying, and double persuasion.

Proof. Let $b_{V B}^{*}=b^{* *}$ and $b_{T B}^{*}=b_{D P}^{*}=b_{A B}^{*}=b^{*}$. In an optimal allocation, the number of vote-buying recipients is $V B=N \int_{-\frac{b^{* *}}{2}}^{0} \int_{\underline{C}}^{x^{O}} h$ (Equation A2), the number turnout-buying recipients is $T B=N \int_{0}^{\bar{X}} \int_{r}^{r+b^{*}} h$ (Equation A3), the number of double-persuasion recipients is $D P=N \int_{-\frac{b^{*}}{2}}^{0} \int_{s}^{r+b^{*}} h$ (Equation A4), and the number of abstention buying recipients is $A B=N \int_{\underline{X}}^{-\frac{b^{* *}}{2}} \int_{s-b^{*}}^{s} h+N \int_{-\frac{b^{* *}}{2}}^{0} \int_{x^{\circ}}^{s} h$ (Equation A5). By Proposition $1, b^{* *}=2 b^{*}$, so $b^{*}>0 \Longleftrightarrow b^{* *}>0$. It then follows from equations A2, A3, A4, and A5 that $V B>0 \Longleftrightarrow T B>0 \Longleftrightarrow D P>0 \Longleftrightarrow A B>0$.

Proposition 3: If $\bar{b}_{i}^{V B} \leq b^{* *}$ and $c_{i} \leq x^{O}$, a machine pays $\bar{b}_{i}^{V B}$ to a $O V$. If $\bar{b}_{i}^{A B} \leq b^{*}$ and $c_{i}>x^{O}$, a machine pays $\bar{b}_{i}^{A B}$ to a $O V$. If $\bar{b}_{i}^{T B} \leq b^{*}$, a machine pays $\bar{b}_{i}^{T B}$ to a $S N V$. If $\bar{b}_{i}^{D P} \leq b^{*}$, a machine pays $\bar{b}_{i}^{D P}$ to a $O N V$. All other citizens receive no payment.
Proof. We prove the TB case; identical logic holds for other strategies. We show (i) if $\bar{b}_{i}^{T B} \leq b^{* *}$, a machine pays $\bar{b}_{i}^{T B}$ to a $S N V$; (ii) if $\bar{b}_{i}^{T B}>b^{*}$, a machine offers $b_{i}=0$ to a $S N V$.
(i) Let b^{*} be the upper bound on payments a machine makes to $S N V$. Define $M(A)$ to be the set of $S N V$ who vote for the machine given the payment allocation A. For contradiction, assume A is an optimal allocation in which the machine does not buy all $S N V$ who are cheaper than b^{*}. Formally, there exists a set Z with positive measure of $S N V$ receiving $b_{i}<\bar{b}_{i}<b^{*}$. We will show there exists a A^{\prime} that is affordable and produces a strictly greater number of net votes. Thus, A cannot be optimal.

Let (\hat{x}, \hat{c}) be any point on the interior of $M(A)$ and take δ small enough such that $\Delta(\delta) \equiv[\hat{x}, \hat{x}+$ $\delta] \times[\hat{c}, \hat{c}+\delta] \subset M(A)$. Let $\left(\tilde{x}_{i}, \tilde{c}_{i}\right)$ be any point in Z and select μ sufficiently small such that $\Delta(\mu) \equiv$ $\left[\tilde{x}_{i}, \tilde{x}_{i}+\mu\right] \times\left[\tilde{c}_{i}, \tilde{c}_{i}+\mu\right] \subset Z$. By the continuity of $f(x)$ and $g(c)$ there exists a $\delta_{0}<\delta$ and $\mu_{0}<\mu$ such that $\int_{\Delta\left(\delta_{0}\right)} h=\int_{\Delta\left(\mu_{0}\right)} h$. Observe that $\Delta\left(\delta_{0}\right)$ and $\Delta\left(\mu_{0}\right)$ have the same number of $S N V$, so buying either set
produces the same net votes. Let $\theta \equiv \int_{\Delta\left(\delta_{0}\right)} b_{i} h-\int_{\Delta\left(\mu_{0}\right)} \bar{b}_{i} h$ and note that $\theta>0$ because citizens in $\Delta\left(\mu_{0}\right)$ are cheaper than those in $\Delta\left(\delta_{0}\right)$. Consider an allocation A^{\prime} in which a machine buys all citizens in $\Delta\left(\mu_{0}\right)$, reduces payments to citizens in $\Delta\left(\delta_{0}\right)$ to zero, and redistributes the savings to citizens in $\Delta\left(\eta_{0}\right)$. Recall from Lemma 1 that $\Delta\left(\eta_{0}\right)$ is a set of citizens who remain unbought under allocation A, and who could be bought with resources θ. Formally, define $\Omega \equiv[\underline{X}, \bar{X}] \times[0, \bar{C}]-\left(\Delta\left(\delta_{0}\right) \cup \Delta\left(\mu_{0}\right) \cup \Delta\left(\eta_{0}\right)\right)$. Let $A^{\prime}=A$ for all $\left(x_{i}, c_{i}\right)$ on $\Omega, A^{\prime}=0$ for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\delta_{0}\right)$, and $A^{\prime}=\bar{b}_{i}$ for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\mu_{0}\right)$ and for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\eta_{0}\right)$. The cost of A^{\prime} is less than or equal to the cost of allocation A and A^{\prime} buys $\int_{\Delta\left(\eta_{0}\right)} h$ more citizens. Thus A cannot be an optimal allocation.
(ii) Recall that b^{*} is the upper bound on payments a machine makes to $S N V$. Offering b^{*} to a citizen for whom $\bar{b}_{i}^{T B}>b^{*}$ is insufficient to induce turnout (i.e., it is an underpayment). Formally, underpayment can be defined as a set of positive measure P of $S N V$ receiving rewards b_{i} such that $\bar{b}_{i}>b_{i}>0$. For contradiction, assume A is an optimal allocation in which a machine underpays some $S N V$. We show there exists an affordable allocation $A^{\prime \prime}$ that produces strictly more net votes than A. Thus, A cannot be optimal.

Define $\theta \equiv \int_{P} b_{i} h$ as the resources the machine devotes to citizens in set P. In allocation $A, \theta>0$. Observe that since the machine underpays these citizens, it receives 0 net votes in return. Recall from Lemma 1 that a machine can purchase all citizens on set $\Delta\left(\eta_{0}\right)$ for resources θ, where $\Delta\left(\eta_{0}\right)$ are citizens who remain unbought under allocation A. Consider an allocation $A^{\prime \prime}$ in which a machine reduces payments to citizens on set P to 0 and uses the savings to purchase citizens on set $\Delta\left(\eta_{0}\right)$. Formally, define $\Omega \equiv$ $[\underline{X}, \bar{X}] \times[0, \bar{C}]-\left(P \cup \Delta\left(\eta_{0}\right)\right)$. Let $A^{\prime \prime}=A$ for all $\left(x_{i}, c_{i}\right)$ on $\Omega, A^{\prime \prime}=0$ for all $\left(x_{i}, c_{i}\right)$ on P, and $A^{\prime \prime}=\bar{b}_{i}$ for all $\left(x_{i}, c_{i}\right)$ on $\Delta\left(\eta_{0}\right)$. Then the costs of $A^{\prime \prime}$ are \leq the costs of A, and $A^{\prime \prime}$ buys $\int_{\Delta\left(\eta_{0}\right)} h$ more citizens. Thus A cannot be an optimal allocation.

Comparative Statics

For analysis of comparative statics, we assume f and g are distributed uniformly. The machine's constrained optimization problem, where λ is the Lagrangian multiplier, is: $\max _{b_{\mathrm{TB}}, b_{\mathrm{DP}}, b_{\mathrm{VB}}, b_{\mathrm{AB}}} V^{M}-V^{O}-\lambda(E-B)$.

The machine maximizes the difference between its votes $\left(V^{M}\right)$ and opposition votes $\left(V^{O}\right)$, given that total expenditures (E) must be less than or equal to its budget B. Note that $V^{O}=\int_{\underline{X}}^{-\frac{b^{V B}}{2}} \int_{\underline{C}}^{s-b^{A B}} h$ and $V^{M}=V B+T B+D P+S$, where: Vote Buying $(\mathrm{VB})=\int_{-\frac{b^{2} B}{2}}^{0} \int_{\underline{C}}^{x^{O}} h$, Turnout Buying $(\overline{\mathrm{TB}})=\int_{0}^{\bar{X}} \int_{r}^{r+b^{T B}} h$, Double Persuasion (DP) $=\int_{-\frac{b^{D P}}{2}}^{0} \int_{s}^{r+b^{D P}} h$, and Supporters $(\mathrm{S})=\int_{0}^{\bar{X}} \int_{0}^{r} h$. Total expenditures for the
 TB Expenditures $\left(E_{T B}\right)=\int_{0}^{\bar{X}} \int_{r}^{r+b^{T B}} \bar{b}_{i}^{T B} h$, DP Expenditures $\left(E_{D P}\right)=\int_{-\frac{b^{D P}}{2}}^{0} \int_{s}^{r+b^{D P}} \bar{b}_{i}^{D P} h$, and AB Expenditures $\left(E_{A B}\right)=\int_{\underline{X}}^{-\frac{b^{V B}}{2}} \int_{s-b^{A B}}^{s} \bar{b}_{i}^{A B} h+\int_{-\frac{b V B}{2}}^{0} \int_{x^{O}}^{s} \bar{b}_{i}^{A B} h$. Solving the problem yields four first order conditions. Solving all first order conditions for λ yields the results from Proposition $1: b_{\mathrm{VB}}^{*}=2 b_{\mathrm{TB}}^{*}=$
$2 b_{\mathrm{DP}}^{*}=2 b_{\mathrm{AB}}^{*}$. For the following analyses, let $\Gamma=\frac{1}{(\bar{X}-\underline{X})(\bar{C}-\underline{C})}$. Recall that $\underline{C}<0, \underline{X}<0$, and $\underline{X}=-\bar{X}$. Compulsory Voting: Substitute $b^{*}=\frac{1}{2} b^{* *}$ from the FOCs into the budget constraint. Implicit differentiation yields: $\frac{\partial b^{* *}}{\partial a}=\frac{-4 b^{* *}}{8\left(a+\bar{X}-x^{M}-\underline{C}\right)-b^{* *}}<0$. Substitute $b^{* *}=2 b^{*}$ into the budget constraint. Implicit differentiation yields: $\frac{\partial b^{*}}{\partial a}=\frac{-2 b^{*}}{4\left(a+\bar{X}-x^{M}-\underline{C}\right)-b^{*}}<0$. Comparative statics follow: (1) $\frac{\partial V B}{\partial a}=\frac{\Gamma}{4}\left[2 b^{* *}+\left(2\left(a-x^{M}-\underline{C}\right)+b^{* *}\right) \frac{\partial b^{* *}}{\partial a}\right]-b^{*} \frac{\partial b^{* *}}{\partial a}-b^{* *} \frac{\partial b^{*}}{\partial a}=$ $\frac{\Gamma}{4}\left[2 b^{* *}-2 b^{* *}\left(\frac{4\left(a-x^{M}-\underline{C}\right)+2 b^{* *}}{8\left(a+\bar{X}-x^{M}-\underline{C}\right)-b^{* *}}\right)\right]-b^{*} \frac{\partial b^{* *}}{\partial a}-b^{* *} \frac{\partial b^{*}}{\partial a}>0$. (2) $\frac{\partial T B}{\partial a}=\Gamma \bar{X} \frac{\partial b^{*}}{\partial a}<0$. (3) $\frac{\partial D P}{\partial a}=\Gamma \frac{b^{*}}{2} \frac{\partial b^{*}}{\partial a}<0$. (4) $\frac{\partial A B}{\partial a}=-\frac{\Gamma}{4}\left[b^{*} \frac{\partial b^{* *}}{\partial a}+\left(4 \underline{X}+b^{* *}\right) \frac{\partial b^{*}}{\partial a}\right]=-\frac{\Gamma}{4}\left[b^{* *} \frac{\partial b^{* *}}{\partial a}+2 \underline{X} \underline{\partial b^{* *}} \partial<0\right.$ (recall that $\underline{X}<0$ and that under an optimal allocation of resources, $b^{*}=\frac{1}{2} b^{* *}$ and $\frac{\partial b^{*}}{\partial a}=\frac{1}{2} \frac{\partial b^{* *}}{\partial a}$).
Ballot Secrecy: In the constrained optimization problem above, replace E_{VB} with βE_{VB} and E_{DP} with βE_{DP}. The FOCs become $\beta b_{\mathrm{VB}}^{*}=2 \beta b_{\mathrm{DP}}^{*}=2 b_{\mathrm{TB}}^{*}=2 b_{\mathrm{AB}}^{*}$. Substitute $b_{\mathrm{DP}}^{*}=\frac{1}{2} b_{\mathrm{VB}}^{*}$ and $b_{\mathrm{TB}}^{*}=b_{\mathrm{AB}}^{*}=\frac{\beta}{2} b_{\mathrm{VB}}^{*}$ from the FOCs into the budget constraint. Implicit differentiation yields:
$\frac{\partial b_{\mathrm{VM}}^{*}}{\partial \beta}=\frac{b_{\mathrm{VB}}^{*}\left((5-12 \beta) 2 b_{\mathrm{VB}}^{*}-12\left(\beta x^{M}+\underline{C}-2 \beta \bar{X}\right)\right)}{3 \beta\left(4 \beta \overline{\bar{X}}(6 \beta-5) b_{\mathrm{VB}}^{*}+8\left(x^{M}+\underline{C}\right)\right)}<0$. Substitute $b_{\mathrm{VB}}^{*}=2 b_{\mathrm{DP}}^{*}$ and $b_{\mathrm{TB}}^{*}=b_{\mathrm{AB}}^{*}=\beta 2 b_{\mathrm{DP}}^{*}$ and implicit differentiation yields: $\frac{\partial b_{\mathrm{DP}}^{*}}{\partial \beta}=\frac{b_{\mathrm{VB}}^{*}\left(\overline{(5-12 \beta)} b_{\mathrm{VB}}^{*}-6\left(\beta x^{M}+\underline{C}-2 \beta \bar{X}\right)\right)}{3 \beta\left(2 \beta \bar{X}(6 \beta-5) b_{\mathrm{VB}}^{*}+4\left(x^{M}+\underline{C}\right)\right)}<0$. Let $b_{\mathrm{TB}}=b_{\mathrm{AB}}$ and substitute
$b_{\mathrm{VB}}^{*}=\frac{2}{\beta} b_{\mathrm{TB}}^{*}$ and $b_{\mathrm{DP}}^{*}=\frac{1}{\beta} b_{\mathrm{TB}}^{*}$ and implicit differentiation yields:
$\frac{\partial b_{\mathrm{TB}}^{*}}{\partial \beta}=\frac{\partial b_{\mathrm{AB}}^{*}}{\partial \beta}=\frac{2 b_{\mathrm{TB}}^{*}\left((3 \beta-5) b_{\mathrm{TB}}^{*}+3 \beta\left(x^{M}+\underline{C}\right)\right)}{3 \beta\left((6 \beta-5) b_{\mathrm{TB}}^{*}+2 \beta\left(2\left(x^{M}+\underline{C}\right)-2 \beta \bar{X}\right)\right)}>0$. Comparative statics follow: (1)
$\frac{\partial V B}{\partial \beta}=\frac{\Gamma}{4}\left[\left(b_{\mathrm{VB}}^{*}-2\left(x^{M}+\underline{C}\right)\right) \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}-b_{\mathrm{AB}}^{*} \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}-b_{\mathrm{VB}}^{*} \frac{b_{\mathrm{AB}}^{*}}{\partial \beta}\right]=$
$\frac{\Gamma}{4}\left[\left(b_{\mathrm{VB}}^{*}-2\left(x^{M}+\underline{C}\right)\right) \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}-\frac{\beta}{2} b_{\mathrm{VB}}^{*} \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}-b_{\mathrm{VB}}^{*}\left(\frac{1}{2}\left(b_{\mathrm{VB}}^{*}+\beta \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}\right)\right]<0\right.$ (using the fact that in an optimal
allocation of resources, $b_{\mathrm{AB}}^{*}=\frac{\beta}{2} b_{\mathrm{VB}}^{*}$ and $\frac{\partial b_{\mathrm{AB}}^{*}}{\partial \beta}=\frac{1}{2}\left(b_{\mathrm{VB}}^{*}+\beta \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}\right)$). (2) $\frac{\partial T B}{\partial \beta}=\Gamma \bar{X} \frac{\partial b_{\mathrm{TB}}^{*}}{\partial \beta}>0$. (3)
$\frac{\partial D P}{\partial \beta}=\frac{\Gamma b_{\mathrm{DP}}^{*}}{2} \frac{\partial b_{\mathrm{DP}}^{*}}{\partial \beta}<0$. (4)
$\frac{\partial A B}{\partial \beta}=-\frac{\Gamma}{4}\left[b_{\mathrm{AB}}^{*} \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}+\left(4 \underline{X}+b_{\mathrm{VB}}^{*}\right) \frac{\partial b_{\mathrm{AB}}^{*}}{\partial \beta}\right]=-\frac{\Gamma}{4}\left[\frac{\beta}{2} b_{\mathrm{VB}}^{*} \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}+\frac{1}{2}\left(4 \underline{X}+b_{\mathrm{VB}}^{*}\right)\left(b_{\mathrm{VB}}^{*}+\beta \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}\right)\right]>0$ (again substituting $b_{\mathrm{AB}}^{*}=\frac{\beta}{2} b_{\mathrm{VB}}^{*}$ and $\left.\frac{\partial b_{\mathrm{AB}}^{*}}{\partial \beta}=\frac{1}{2}\left(b_{\mathrm{VB}}^{*}+\beta \frac{\partial b_{\mathrm{VB}}^{*}}{\partial \beta}\right)\right)$.
Salience of Political Preferences: Substituting FOCs into the budget constraint and implicitly
differentiating yields: $(1) \frac{\partial b^{* *}}{\partial \kappa}=\frac{b^{* *}\left(b^{* *}+12 C\right)}{3 \kappa\left(8\left(x^{M}+\kappa(\underline{\bar{X}})\right)+b^{* *}\right)}>0$ and $(2) \frac{\partial b^{*}}{\partial \kappa}=\frac{b^{*}\left(b^{*}+6 \underline{C}\right)}{3 \kappa\left(4\left(x^{M}+\kappa(\underline{C}-\bar{X})\right)+b^{*}\right)}>0$.
Comparative statics follow: (1) $\frac{\partial V B}{\partial \kappa}=-\frac{\Gamma}{8 \kappa^{2}}\left[2 b^{* *}\left(b^{* *}+2 \underline{C}\right)+2 \kappa\left(2\left(\kappa x^{M}+\underline{C}\right)+b^{*}-\kappa b^{* *}\right) \frac{\partial b^{* *}}{\partial \kappa}\right]<0$
(using the fact that in an optimal allocation of resources, $\frac{\partial b^{*}}{\partial \kappa}=\frac{1}{2} \frac{\partial b^{* *}}{\partial \kappa}$. (2) $\frac{\partial T B}{\partial \kappa}=\Gamma\left[\bar{X}\left(\frac{\partial b^{*}}{\partial \kappa}\right)\right]>0$. (3)
$\frac{\partial D P}{\partial \kappa}=\frac{\Gamma}{4 \kappa^{2}}\left[2 \kappa \frac{\partial b^{*}}{\partial \kappa}-b^{*}\right]=\frac{\Gamma}{4 \kappa^{2}}\left[2 \kappa b^{*} \frac{\left(b^{*}+6 \underline{C}\right)}{3 \kappa\left(4\left(x^{M}+\kappa(\underline{C}-\bar{X})\right)+b^{*}\right)}-b^{*}\right]>0$. (4) $\frac{\partial A B}{\partial \kappa}=$
$\frac{\Gamma}{4 \kappa^{2}}\left[b^{*}\left(b^{* *}-\kappa \frac{\partial b^{* *}}{\partial \kappa}\right)-\kappa\left(4 \underline{X}+b^{* *}\right) \frac{\partial b^{*}}{\partial \kappa}\right]=\frac{\Gamma}{4 \kappa^{2}}\left[b^{*}\left(b^{* *}-b^{* *} \frac{\kappa\left(b^{* *}+12 \underline{C}\right)}{3 \kappa\left(8\left(x^{M}+\kappa(\underline{C}-\bar{X})\right)+b^{* *}\right)}\right)-\kappa\left(4 \underline{X}+b^{* *}\right) \frac{\partial b^{*}}{\partial \kappa}\right]>0$.
Political Polarization: Note that by the assumption of symmetric party platforms, $x^{M}-x^{O}=2 x^{M}$.
Substitute $b^{*}=\frac{1}{2} b^{* *}$ from the FOCs into the budget constraint. Implicit differentiation yields:
$\frac{\partial b^{* *}}{\partial x^{M}}=\frac{4 b^{* *}}{8\left(\bar{X}-x^{M}-\underline{C}\right)-b^{* *}}>0$. Substitute $b^{* *}=2 b^{*}$ into the budget constraint. Implicit differentiation yields:
(2) $\frac{\partial b^{*}}{\partial x^{M}}=\frac{2 b^{*}}{4\left(\bar{X}-x^{M}-\underline{C}\right)-b^{*}}>0$. Comparative statics then follow: (1).
$\frac{\partial V B}{\partial x^{M}}=\frac{\Gamma}{4}\left[-\left(2 b^{* *}+\left(2\left(x^{M}+\underline{C}\right)+b^{* *}\right)\right) \frac{\partial b^{* *}}{\partial x^{M}}\right]-b^{*} \frac{\partial b^{* *}}{\partial x^{M}}+b^{* *} \frac{\partial b^{*}}{\partial x^{M}}=\frac{\Gamma}{4}\left[-\left(2 b^{* *}+\left(2\left(x^{M}+\underline{C}\right)+b^{* *}\right)\right) \frac{\partial b^{* *}}{\partial x^{M}}\right]<0$
(where the last two terms of the first equation cancel after substituting $b^{*}=\frac{1}{2} b^{* *}$ and $\frac{\partial b^{*}}{\partial a}=\frac{1}{2} \frac{\partial b^{* *}}{\partial a}$). (2)
$\frac{\partial T B}{\partial x^{M}}=\Gamma\left[\bar{X}\left(\frac{\partial b^{*}}{\partial x^{M}}\right)\right]>0$. (3) $\frac{\partial D P}{\partial x^{M}}=\frac{\Gamma}{2}\left[b^{*} \frac{\partial b^{*}}{\partial x^{M}}\right]>0$. (4)
$\frac{\partial A B}{\partial x^{M}}=-\frac{\Gamma}{4}\left[b^{*} \frac{\partial b^{* *}}{\partial x^{M}}+\left(4 \underline{X}+b^{* *}\right) \frac{\partial b^{*}}{\partial x^{M}}\right]=-\frac{\Gamma}{4}\left[b^{* *} \frac{\partial b^{* *}}{\partial x^{M}}+2 \underline{X} \frac{\partial b^{* *}}{\partial x^{M}}\right]>0$ (recall that $\underline{X}<0$ and that under an optimal allocation of resources, $b^{*}=\frac{1}{2} b^{* *}$ and $\left.\frac{\partial b^{*}}{\partial x^{M}}=\frac{1}{2} \frac{\partial b^{* *}}{\partial x^{M}}\right)$.
Machine Support: Substituting FOCs into the budget constraint and implicitly differentiating yields:
$\frac{\partial b^{* *}}{\partial \bar{x}}=\frac{\partial b^{*}}{\partial \bar{x}}=0$. Comparative statics follow: (1) $\frac{\partial V B}{\partial \bar{x}}=-\frac{\Gamma}{4}\left[\left(2\left(x^{M}+\underline{C}\right)-b^{* *}+b^{*}\right) \frac{\partial b^{* *}}{\partial \bar{x}}+b^{* *} \frac{\partial b^{*}}{\partial \bar{x}}\right]=0$. (2)
$\frac{\partial T B}{\partial \bar{x}}=\Gamma\left[b^{*}+(\bar{X}+\bar{x}) \frac{\partial b^{*}}{\partial \bar{x}}\right]=\Gamma b^{*}>0$. (3) $\frac{\partial D P}{\partial \bar{x}}=\frac{\Gamma}{2}\left[b^{*}\left(\frac{\partial b^{*}}{\partial \bar{x}}\right)\right]=0$. (4)
$\frac{\partial A B}{\partial \bar{x}}=-\frac{\Gamma}{4}\left[b^{*}\left(4+\frac{\partial b^{* *}}{\partial \bar{x}}\right)+\left(4(\underline{X}+\underline{x})+b^{* *}\right) \frac{\partial b^{*}}{\partial \bar{x}}\right]=-\Gamma b^{*}<0$.

