
Dynamic Allocation of Reusable Resources:
Logarithmic Regret in Overloaded Networks

Xinchang Xie and Itai Gurvich
Northwestern University, Kellogg School of Management

Simge Küçükyavuz
Northwestern University, Industrial Engineering and Management Sciences

We study the problem of dynamically allocating reusable resources to customers of n types. There are d

pools of resources and a finite number of units from each resource. If a customer request is accepted, the

decision maker collects a type-dependent reward and the customer occupies, for a random service time, one

unit from each resource in a set of these. Upon service completion, these resource units become available

for future allocation. This is a loss network: requests that are not accepted leave immediately. The decision

maker’s objective is to maximize the long-run average reward subject to the resource-capacity constraint.

A natural linear programming (LP) relaxation of the problem serves as an upper bound on the performance

of any policy. We identify a condition that generalizes the notion of overload in single-resource networks (i.e.,

when d= 1). The LP guides our construction of a threshold policy. In this policy, the number of thresholds

equals the number of resource types (hence does not depend on the number of customer types). These

thresholds are applied to a “corrected” headcount process. In the case of a single resource the corrected

headcount is the same as headcount: the number of resource units that are occupied. We prove that in

overloaded networks, the additive loss (or regret) of this policy, benchmarked against the LP upper bound,

is logarithmic in the total arrival volume in the many-customer many-resource-units asymptotic regime. No

policy can achieve sub-logarithmic regret. Simulations showcase the performance of the proposed policy.

Key words : sequential resource allocation, regret, linear programming relaxation, loss networks, Lyapunov

function

History : This version: November 3, 2023.

1. Introduction

In dynamic resource allocation problems, a decision maker (DM) allocates a finite number of

resource units to sequentially arriving customers in order to maximize the revenue collected from

accepted customer requests. Customers leave immediately if their request is not accepted.

Dynamic Stochastic Knapsack is a family of resource allocation problems whereby, once a unit

of resource is consumed, it cannot be allocated again in the future. These have applications in

revenue management where, for example, the resources are seats on a specific flight.

In this paper, we focus on the case where resources are reusable. They are used by an accepted

request/customer for a (random) duration and are returned to the DM at the conclusion of service

(or processing). Rental services (hotels, cars, or cloud computing units) are often modeled as

networks of reusable resources. In its fullest (network) generality, our model is standard in the

1

2 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

study of telecommunication networks; see Hui (2012). In these networks, a communication (or a

call) requires, for its duration, the simultaneous occupation of multiple connected links leading

from a source node to a destination node; the links are the resources and the collection required

by a call is its route. If one of the links in the route is fully occupied, the call is lost.

Our study was motivated originally by problems of prioritizing the allocation of multiple re-

sources for military uses (Gurvich and Intelligent Automation, 2021). Such simultaneous occupation

of multiple resources is also relevant in consulting or IT services. Here, the types of resources would

correspond to the different professionals required to deliver the product. A service engagement

might require, for example, three database architects, five Java programmers, a network specialist,

and so on. These resources must be allocated to the client for the duration of the engagement; see

Hu et al. (2010); Cao et al. (2011) for a detailed description of models used for an IBM line of IT

services.

The fundamental tradeoff is the same in these applications: accepting a request—and occupy-

ing resources—may prevent the acceptance of a later request that requires an overlapping set of

resources; one might want to reserve some capacity for highly valuable requests.

In the simplest instance of these problems (see Figure 1(LEFT)) there is a single resource with

q units (say q hotel rooms) serving multiple types of customers. Type-i customers arrive according

to a Poisson(λi) process and request a single unit of the resource. If a type-i request is accepted,

the DM collects a reward ri > 0, and a unit of the resource is occupied for an Exp(µi) service time

after which the resource unit becomes available for future allocations. The objective of the DM is

to maximize the expected long-run average reward, subject to the constraint that no more than

the q units of the resource can be occupied at any given time.

Figure 1 Two examples of networks: (LEFT) a network with a single resource, and (RIGHT) a network with mul-

tiple resources where each type of customer requires the simultaneous possession of multiple resources.

1 2 3 4

a

1 2 3 4 5 6 7

a b c d

Customer Types

Resource Units

With homogeneous service-times (µi ≡ µ), the optimal policy is a trunk reservation policy (Miller,

1969; Lippman, 1975), wherein an arriving type-i customer is accepted if and only if there are more

than Ri ∈ N ∪ {∞} units of resource available; Ri = 1 means that type-i customers are accepted

whenever there is a resource unit available and Ri =∞ means that these customers’ requests

are always rejected, regardless of the number of available resource units. Some customer types

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 3

might have finite thresholds that are strictly greater than 1, these thresholds satisfy a natural

monotonicity: the higher the reward that type i brings, the lower the acceptance threshold.

With heterogeneous service times (µi 6= µj), the optimal decision is complex and generally de-

pends on the number of customers of each type present in the system, rather than the headcount

which tracks only the total number of occupied resource units (Örmeci et al., 2001).

A many-server high-volume asymptotic framework (λNi =Nλi, q
N =Nq) exposes characteristics

of “good” policies. The simplicity of good policies depends on the regime: underloaded, critically

loaded, or overloaded; see §1.1. A single-resource corollary of our general result is that, in the

overloaded regime, the appealingly simple trunk reservation policy, with a single threshold, has

a gap from a deterministic upper bound that is logarithmic in N . This means that no policy,

including the possibly complex optimal policy, can improve on this simple prescription by more

than logN. In fact, as we will prove, such logarithmic regret is the best one can hope for: no

policy can get closer than logN to the deterministic upper bound; in the overloaded regime, logN

captures precisely the cost of stochasticity.

In the single resource case, regardless of the number of types n, our policy would use a single

threshold applied to the class with the lowest value riµi. We are interested in networks where

different request/customer types consume different (subsets of) resources; see Figure 1(RIGHT).

The most intuitive generalization of trunk reservation to d resources suggests assigning # types

× # resources thresholds Rij so that a type-i customer is accepted only if there are more than

Rij available units of resource j. If the network is overloaded, we will show, a policy with only d

(=# resources) thresholds achieves a logarithmic regret. In Figure 1(RIGHT), requests of type 3

require a unit of resource b and a unit of resource c. Under our policy, a threshold is applied to

either b or c but not both: we accept a type-3 request whenever there are units available of resource

b (without any requirement on the number of such units) but demand that there are at least an

order of logN “nominal” units available of resource c. Nominal here refers to the fact that, instead

of applying the threshold directly to the number of busy (or available) units of a resource—the

resource’s headcount—we apply it to a corrected headcount.

Our proposed policy produces a regret that is logarithmic in N ; the formal statement appears

in Theorem 4.1 after we introduce the key building blocks of our policy. The key ingredients are:

1. We identify a network version of overload. We establish properties of the linear programming

(LP) relaxation of the problem under the network-overload condition. Overload guarantees

the existence of a perfect matching between “less-preferred” customer types—as identified

by the LP solution—and resources; this matching produces pairs of resources and customer

types: for each resource j, there is a single request type ij coupled with it.

We show that when this overload condition is violated, the gap of the optimal online policy

from the deterministic LP upper bound generally scales like
√
N .

4 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

2. We introduce a policy based on corrected headcount processes, which are proxies for the true

headcounts. The thresholds are applied to these proxies. Informally speaking, the threshold

policy based on the corrected headcount guides the allocation to its desired levels as dictated

by the LP benchmark.

3. We prove that in overloaded networks, the regret of our policy—the additive reward loss (or

approximation gap) of our policy relative to the LP solution—is at most logarithmic in the

scaling factor N .

4. We show that this is the best possible: no other policy can get closer than logN to the LP

upper bound. We also prove that state-dependency of the policy is necessary: static policies

(e.g., randomized acceptance) induce a larger approximation gap.

1.1. Related Literature

Our work has natural connections to two overlapping streams of literature: queueing theory (loss

networks) and revenue management (networks of reusable resources).

Loss Networks. In the queueing literature, loss networks are a class of networks with no

buffers. If not accepted, a customer leaves the system immediately instead of being put on hold in a

queue. Customers of different types arrive sequentially and request a set of resource units (servers)

for a random duration (service time).

The study of loss networks was originally motivated by telecommunication networks and the

early focus has been on analyzing the blocking probabilities under specific practical control policies.

Complete sharing, for example, is a policy that accepts all arriving requests whenever feasible. It

induces a stationary distribution that has a so-called product-form structure which renders the

blocking-probability calculations tractable; see Kelly (1986) and the comprehensive review Kelly

(1991). See also Jung et al. (2019) and the references therein for more recent progress in this area.

The complete sharing policy is not optimal for reward maximization when customers are het-

erogeneous in the rewards they bring and/or the resources they consume. In the case of a single

resource and homogeneous service times, (Miller, 1969; Lippman, 1975) proved that the optimal

policy is a trunk reservation policy that reserves resource units for the more valuable customers

and rejects a less valuable customer if the number of available resource units upon arrival is below

the trunk reservation level for that customer. Key (1990) and Reiman (1991) show that the optimal

trunk reservation level is logarithmic in the number of servers (resource units).

In the heterogeneous variant of the single-resource model where either different customers request

different numbers of resource units, or customers have different service rates, the optimal policy is

generally not of a trunk reservation type (Ross and Tsang, 1989; Örmeci et al., 2001; Örmeci and

van der Wal, 2006).

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 5

Trunk reservation policies are practically appealing and, while not optimal, deliver asymptotically

optimal performance in certain conditions. A well-studied limiting regime is one where service rates

are fixed while both the arrival rates and the quantities of resource units scale up linearly at the

same rate. Puhalskii and Reiman (1998) consider a critically-loaded regime with a single resource

type and multiple types of customers with different (i.e., heterogeneous) service times. They prove

that the trunk reservation policy is asymptotically optimal (in a central-limit theorem sense) under

the requirement that the most valuable requests are also the ones with the longest service time.

Hunt and Kurtz (1994); Bean et al. (1997) prove that, under a large family of policies (that

includes trunk reservation), the number of customers in service—scaled in a strong-law scaling—

converges to the solution of an integral equation. Subsequent work by Bean et al. (1995) and Hunt

and Laws (1997) prove that—with a single resource—a trunk reservation policy is asymptotically

optimal in fluid scale (i.e., the optimality gap is o(N) where N is the scaling factor).

Iyengar and Sigman (2004) consider a problem that is more general than the one we study here.

The DM not only decides whether to accept a customer but also determines the resource allocation

(out of a type-dependent set of such). They devise a control policy that is asymptotically optimal

in the approximation ratio sense in the single resource case (d= 1). For d> 1 they establish a lower

bound on the approximation ratio. For our more restricted model, we obtain a logarithmic additive

gap, a stronger notion that implies, in particular, asymptotic optimality in the approximation-ratio

sense.

Pricing, when adjustable, adds a control lever. Paschalidis and Tsitsiklis (2000) study the pricing

problem in the case of a single resource and derive structural properties of the optimal policy.

They prove that static pricing is asymptotically optimal, in the fluid scaling sense, in the many-

server many-customer regime. Paschalidis and Liu (2002) extend this result to the network case of

multiple types of resource units (servers) with fixed routing, and show that a static pricing policy

remains asymptotically optimal. In our case, prices (and rewards) are fixed.

Revenue Management with Reusable Resources. Our work is closely related to the

canonical quantity-based (admission control) network revenue management (NRM) problems; see,

for example, Williamson (1992); Gallego and van Ryzin (1997); Reiman and Wang (2008); Jasin

and Kumar (2012); Bumpensanti and Wang (2020), as well as the book Talluri and van Ryzin

(2004). Motivated by airline revenue management problems, much of this work considers resource

units that are either perishable or are allocated at the end of the decision horizon.

The revenue-management literature on reusable resources is more recent and, hence, relatively

scarce. Levi and Radovanović (2010) consider the allocation of a single pool of reusable resources

to multiple types of customers and devise a class selection policy based on the linear programming

6 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

relaxation of the problem, with guarantees on its approximation ratio. Chen et al. (2017) consider

a variant where the customers request the resource units in advance with deterministic starting

time and duration. A modified class selection policy, they show, achieves asymptotic optimality in

the approximation ratio sense.

Regulation of arrivals through pricing is considered by Xu and Li (2013) who study pricing in

a cloud computing platform and characterize structural properties of the optimal policy. Lei and

Jasin (2020) study the pricing problem when customers have deterministic advance reservation

times and service times. They develop a policy that is based on a deterministic relaxation of the

problem and prove an upper bound on its regret. Besbes et al. (2021) consider a pricing problem

for a combined objective of revenue, market share, and service level. They prove that a static

pricing policy can simultaneously achieve 80% of all three metrics relative to the optimal dynamic

programming policy. Jia et al. (2022) tackle the problem of pricing when some of the parameters

must be learned.

Recent literature also considers the case where customers make choices and the DM can optimize

(dynamically) the assortment an arriving customer sees. Each arriving customer is shown a set of

different products and chooses one of them. Owen and Simchi-Levi (2018) devise pricing and as-

sortment optimization policies with provable approximation ratio lower bounds. Rusmevichientong

et al. (2020) take a different approach to produce a policy with a provable approximation ratio.

Baek and Ma (2019) generalize this guarantee to more general settings in which each product in an

assortment consists of multiple types of resource units. Policies for dynamic assortment optimiza-

tion with reusable resources are developed in Feng et al. (2019); Goyal et al. (2020); Gong et al.

(2021) together with approximation ratio guarantees.

In our setting, the assortment per customer type is fixed, but customers do not necessarily

consume a single resource unit (a single selection from the assortment); they might consume mul-

tiple resource units of different types. Our notion of optimality is stronger than (and implies)

approximation-ratio optimality. The policy we propose achieves the optimal approximation gap

scaling relative to the linear programming benchmark. The price we “pay” for this optimality is:

(i) the knowledge of the arrival rates (at least up to a small perturbation), (ii) a network overload

condition that is a natural generalization of the single-resource notion. The presence of overload

depends both on the graph and the other primitives (arrival rates, service rate, and rewards).

Organization of the Paper

The rest of the paper is organized as follows. Our model is described in Section 2, where we also

introduce the deterministic LP relaxation of the problem. In Section 3, we introduce the network-

overload condition and study its implications. We construct our corrected-headcount threshold

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 7

policy and state the main optimality result in Section 4. The main proofs appear in Sections 5 and

6; all lemmas are proved in the appendix. Simulation experiments are reported in Section 7.

Notation. Given a Markov chain X = (Xt, t ≥ 0), we let Px{B} be the likelihood of the event

B when X0 = x. Similarly, PΠ{B} is the likelihood of that event when X0 ∼ Π; Ex[·] and EΠ[·]

denote then the corresponding expectations. Throughout the remainder of the paper, for two non-

negative sequences aN , bN and a non-negative function h : R+→ R+, aN = bN +O(h(N)) means

that |aN − bN |=O(h(N)); the same is true for the scaling notation o(·) and Ω(·).

We will be introducing various process variables throughout the paper. For ease of reference, we

provide a notation index at the end of the paper.

2. The Model: Dynamic Allocation of Reusable Resources

There are n types of customers labeled by i ∈ [n]≡ {1, . . . , n} and d resources labeled by j ∈ [d].

The decision maker has qj reusable units of resource j.

Customers of type i ∈ [n] arrive following a Poisson process with rate λi > 0, and request the

simultaneous possession of a unit from each of multiple resources. The resource consumption is

encoded in an adjacency matrix A∈ {0,1}d×n such that Aji = 1 if type-i customers require a unit

of resource j. We visualize the network topology as in Figure 1(RIGHT). An edge between request

type i (a circle) and a resource (a rectangle) j corresponds to Aji = 1.

If a type-i customer’s request is accepted, the decision maker collects a reward ri, and the

requested resource units are allocated and occupied for an exponentially-distributed amount of

time with mean µ−1
i . For example, an accepted request of type 1 in Figure 1(RIGHT) occupies

simultaneously one unit from each of the resources b, c, and d. These three units are released

simultaneously after an exponential amount of time with mean µ−1
1 .

For each i ∈ [n], we denote by S(i) := {j ∈ [d] :Aji = 1} the set of resources required by type-i

customers and for each j ∈ [d], we denote by A(j) := {i ∈ [n] :Aji = 1} the set of customer types

requiring resource j. To avoid trivialities, we assume that S(i),A(j) 6= ∅ for all i ∈ [n], j ∈ [d]. A

customer’s request can be accepted—accepting it is feasible—only if all the required resources have

available units when the request is made. The decision maker can reject a request even if it is feasible

to accept it. Once a customer is accepted, the requested resource units are immediately occupied;

these resource units become simultaneously available at the conclusion of the customer’s service.

Preemption is not allowed: once accepted, a request is processed to completion. Arrival processes

are assumed independent across customer types, and resource occupation times are independent

across customers.

The objective of the decision maker is to maximize the long-run average collected reward subject

to the resource constraint. Let r = (r1, . . . , rn) be the reward vector and Dπ = (Dπ
1 (t), . . . ,Dπ

n(t))

8 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

where Dπ
i (t) is the number of type-i customers accepted by time t under policy π; both column

vectors. The performance of the optimal policy is given by

R∗ = sup
π

lim inf
t↑∞

1

t
E [r′Dπ(t)] ,

where the sup is taken over all non-anticipating non-preemptive policies.

The optimal policy can be obtained via dynamic programming. The state descriptor Xt is n-

dimensional and Xt
i tracks the number of customers of type-i customers in-service at time t.

The state space has
n∏
i=1

min
j∈S(i)

qj states which, except the simplest networks, is computationally

prohibitive.

Instead, our goals are: (i) to characterize (indirectly) the performance of the optimal poli-

cy—specifically its regret (or approximation gap): how close its performance is to a natural deter-

ministic upper bound, and (ii) to offer a simple policy that achieves the optimal regret scaling in

a high-volume many-server regime.

The linear programming relaxation of the problem is the starting point of our policy design.

Given a policy π, let zπi = lim inft↑∞
1
t
E[Dπ

i (t)]. Because no more type-i requests can be accepted

than those arriving, we must have zπi ≤ λi. By Little’s law, zπi /µi is the long-run average number

of type-i customers in service (occupying resources) so it must be the case that
∑

iAjiz
π
i /µi ≤ qj,

for all j ∈ [d].

Because each policy π must satisfy these constraints, the linear program below is an upper bound

on the long-run average reward of any admissible policy:

max
z∈Rn

+

r′z

s.t. A(z/µ)≤ q,

z ≤ λ.
Here z/µ= (z1/µ1, . . . , zn/µn). Changing variables y← z/µ we re-write this as

R(q,λ/µ) := max
y∈Rn

+

r′µy

s.t. Ay≤ q,

y≤ λ/µ,

(LP)

where rµ = (r1µ1, . . . , rnµn) and λ/µ is the vector with elements λi/µi, i∈ [n].

The value R(q,λ/µ) is an upper bound on the expected long-run average reward, Rπ, collected

by a non-anticipating non-preemptive policy π:

Rπ ≤R∗ ≤R(q,λ/µ).

The optimal solution y∗ of (LP) yields a partition of the customer types: it

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 9

• accepts all type-i customers with y∗i = λi/µi (the preferred types);

• accepts a fraction of type-i customers with y∗i ∈ (0, λi/µi) (less preferred types); and

• rejects all type-i customers with y∗i = 0 (rejected types).

The groups

Ap := {i∈ [n] : y∗i = λi/µi}, (preferred)

Alp := {i∈ [n] : y∗i ∈ (0, λi/µi)}, (less preferred)

A0 := {i∈ [n] : y∗i = 0}, (rejected)

form a partition of [n]: Ap ∪Alp ∪A0 = [n].

Example 2.1 (The single resource case) For d= 1, (LP) has a single capacity constraint and

a “packing” solution. Suppose that types are labeled in decreasing order of riµi: r1µ1 > r2µ2 . . . >

rnµn and let i∗ = max{i :
∑i

k=1 λk/µk ≤ q}. The optimal solution has y∗l = λl/µl for all l ≤

i∗, y∗i∗+1 = q −
∑i∗

l=1 λl/µl and yl = 0 otherwise. The optimal value is R(q,λ/µ) =
∑i∗

i=1 riλi +

ri∗+1µi∗+1

(
q−

∑i∗

l=1 λl/µl

)
.

We assume for the rest of the paper, and without loss of generality, that A0 = ∅. Our policy does

not serve those requests and achieves logarithmic regret relative to the LP-based upper bound.

The high-volume many-server regime. We study reward maximization in a standard (e.g.,

Puhalskii and Reiman (1998); Hunt and Kurtz (1994); Hunt and Laws (1997)) high-volume and

many-server regime. The customer arrival rates and the number of resource units scale at the same

rate:

λNi =Nλi, i∈ [n], and qNj =Nqj, j ∈ [d],

where λi, i∈ [n] and qj, j ∈ [d] are strictly positive.

With this scaling, R(qN , λN/µ) =NR(q,λ/µ) so that

Rπ,N ≤R(qN , λN/µ) =NR(q,λ/µ),

for any policy π in the N th network. We add the superscript N , to denote quantities for the N th

network; R∗,N , for example, is the reward collected by the optimal policy in the N th network.

Remark 2.1 (An offline upper bound) The number of type-i customers in the system at a

given time t, it is easily seen, is bounded from above by that number in an infinite server queue

10 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

with arrival rate λi and service rate µi; this number is distributed, in steady state, as a Poisson

random variable with mean λNi /µi. Then R∗,N ≤E[R(qN , Y N)]≤R(qN , λN/µ). where

R(qN , Y N) :=

max
y∈Rn

+

r′µy

s.t. Ay≤ qN ,

y≤ Y N ,

(1)

with Y N
i a Poisson random variable with mean λNi /µi and Y N = (Y N

i , i ∈ [n]). It is easy to show

that, under Assumption 3.1, R(qN , λN/µ)−E[R(qN , Y N)] =O(1) so that the offline static upper

is as crude as the deterministic upper bound. Nevertheless, it is useful in showing that, when our

overload assumption is violated, the gap of the optimal policy from the deterministic LP upper

bound can be substantial; see Lemma 3.1.

3. Overloaded Networks

In the single resource case, a resource is, intuitively speaking, overloaded if there is more demand

than the server can handle: q <
∑

i∈[n] λi/µi. We require, in addition, that yi∗+1 > 0, which makes

the LP non-degenerate; recall Example 2.1. The following condition is a network generalization.

Assumption 3.1 (Network overload.) The linear program (LP) has a unique and non-

degenerate solution and at least one resource constraint is, at optimality, tight.

Two implications of this assumption justify referring to networks that satisfy this assumption as

overloaded. The obvious one is that there is a resource constraint held at equality. But this is not

all. Because of the uniqueness and non-degeneracy of the primal, the dual has a unique solution.

The unique solution pair (of the primal and the dual) must satisfy strict complementarity (see, e.g.,

Theorem 10.7 of Vanderbei, 1998). In turn, the dual variables of all binding resource constraints

are strictly positive: increasing the capacity of any of these binding resource constraints will lead to

an increase in objective function value. This means that the resource constraints held at equality

are binding in a strong sense.

Non-degeneracy implies dual uniqueness. The uniqueness of the dual variables corresponding to

the demand constraints is, in fact, necessary for a logarithmic regret. For the following recall hat

R∗,N ≤R(qN , λN/µ).

Lemma 3.1 (Necessity of dual uniqueness) Suppose that the dual to (LP) has two optimal

solutions that differ in the shadow prices of the demand constraints. Then,

R(qN , λN/µ)−R∗,N = Ω(
√
N).

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 11

The intuition here is simple and best understood through the offline upper bound (1). This upper

bound is a stochastic perturbation of the deterministic one (where the perturbations are centered

on the demand and service times, in turn on the maximal mean occupancy λ/µ). When the shadow

prices of the demand constraints are not unique, perturbations of the demand in different directions

have different effects on the dual (and hence primal) objective function value. The perturbation of

the Poisson right-hand side Y N in (1) around its mean is symmetric, and of the order of
√
N and,

because of the dual non-uniqueness, the effects of these stochastic perturbations on the objective

do not “average out”. Thus, R(qN , λN/µ)−R∗,N ≥R(qN , λN/µ)−E[R(qN , Y N)] = Ω(
√
N).

Assumption 3.1 allows for non-binding resource constraints at optimality, i.e., for the existence

of “underutilized” resources that have strictly positive slack. These resources and their constraints

can be removed from (LP) without affecting the optimal solution and its value. For the remainder

of the paper, we assume that all d resource constraints are binding. We re-visit this simplification

upon the conclusion of the proofs (see Remark 6.1).

Lemma 3.2 Suppose that Assumption 3.1 holds, then |Alp| = d. Moreover, the sub-matrix of A

that has only the columns for i∈Alp is full rank.

The optimization problem (LP) is defined on a bipartite graph, e.g., Figure 1(RIGHT) where

customer types are on one side of the partition and resources are on the other side. There is an

edge between customer type i∈ [n] and resource j ∈ [d] if Aji = 1.

Definition 3.1 (The lp-residual graph) The lp-residual graph, Glp, is the graph obtained by

removing all preferred types i∈Ap (and the edges that connect them to resources).

It follows from Lemma 3.2 that the lp-residual graph is bipartite with d vertices in each of its

constituent sets: d customer types and d resources. A perfect matching in a graph is a set of edges

such that each vertex is incident to exactly one edge. The incidence matrix of the lp-residual graph

is the sub-matrix of A that has only the columns for i ∈ Alp; by Lemma 3.2 it is full rank. This

guarantees the existence of a perfect matching in the lp-residual graph (see, e.g., Theorem 7.3 of

Motwani and Raghavan, 1995; Tutte, 1947).

If there exist multiple perfect matchings in the residual graph (see e.g., Figure 4) we pick one

arbitrarily. For each resource j, we write ij for the (less-preferred) request type that is matched

with resource j in this perfect matching. For each type i∈Alp, ji is the resource matched to i.

We will be using three network examples throughout this paper. Examples 3.1 and 3.2 have a

unique perfect matching in the residual graph. The former is the simplest possible example with

more than one resource and is useful to illustrate basic constructions and develop intuition. The

latter is a more elaborate example and is a useful test for the numerical performance of our proposed

12 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

algorithm. Example 3.3 has multiple perfect matchings. The corrected headcount process that we

introduce later, and that plays a role in our algorithm, takes on a less intuitive form in this case.

Example 3.1 Consider the network with two types of resource units {a, b}, and three types of

customers {1,2,3} in Figure 2. Type-2 customers request a unit of both type-a and type-b resources,

type-1 customers request a unit of type-a resource, and type-3 customers request a unit of type-b

resource.

We set the resource units to q = (7,6) and the customer type parameters to λ= (3,2,5), µ−1 =

(2,1,3) (λ/µ= (6,2,15)). The reward vector is r = (5,1,2) so that rµ = (5/2,1, 2/3). The (LP) has

the unique non-degenerate solution y∗ = (6,1,5)—y∗1 = λ1/µ1, y∗2 ∈ (0, λ2/µ2), y∗3 ∈ (0, λ3/µ3)—and

the dual variables for the resource constraints are α∗ = (1/3,2/3)> 0.

Figure 2 An example with three customer types and two resource types. Less preferred types are marked in red.

Edges corresponding to a type and its paired resource are marked with ||.

1 2 3

a b

In this case, types 2 and 3 are the less-preferred types (Alp = {2,3}), and are colored in red

in Figure 2. The residual graph contains types 2 and 3 and both resources. The unique perfect

matching is {(2, a), (3, b)} so that ia = 2, ib = 3.

Example 3.2 Consider the network with 7 customer types and 4 resource types in Figure

3(LEFT). We set the resource units to q = (11,19,14,7) and the customer type parameters to

λ= (2,3,5,1,6,2,3), µ−1 = (1,3,2,3,5,4,2), so that λ/µ= (2,9,10,3,30,8,6). Finally we take the

reward r= (2,1,3,5,1,6,5) so that rµ = (2, 1/3, 3/2,12/3, 1/5, 3/2, 5/2).

The LP has the unique non-degenerate solution y∗ = (1,8,5,3,5,8,6), with the resource-

constraint dual variables equal to α∗ = (2/15, 1/5, 13/10, 1/2). The unique perfect matching in the

residual graph is {(1, d), (2, a), (3, c), (5, b)}.

Example 3.3 Consider the network with 6 customer types and 3 resource types in Figure

4(LEFT). We set the resource units to q = (2,2,2) and the customer type parameters to λ =

(2,2,2,1/2,1/3,1/4), µ−1 = (1,1,1,2,3,4), so that λ/µ = (2,2,2,1,1,1). Finally we take the re-

ward r= (1,1,1,4,6,8) so that rµ = (1,1,1,2,2,2). The LP has the unique non-degenerate solution

y∗ = (1,1,1,1,1,1) and the dual variables for the resource constraints are α∗ = (1/2, 1/2, 1/2). This

network has two perfect matchings: one is (1, a),(2, b) and (3, c) and the other is (1, b), (2, c) and

(3, a).

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 13

Figure 3 An example with 7 customer types and 4 resource types. (LEFT) Less preferred types are marked in

red. Edges corresponding to a type and its paired resource are marked with ||. (RIGHT) The lp-residual

graph.

1 2 3 4 5 6 7

a b c d

1 2 3 5

a b c d

Figure 4 Example with either multiple perfect matchings or none. In the network on the left, λ =

(2,2,2, 1/2, 1/3, 1/4), µ= (1,1,1, 1/2, 1/3, 1/4), r = (1,1,1,4,6,8) and q = (2,2,2). The LP solution satisfies

Assumption 3.1 and the less-preferred types are 1, 2, and 3. The lp-residual graph has two perfect

matchings: {(1, a),(2, b), (3, c)} and {(1, b), (2, c), (3, a)}. On the right is an expanded network with the

addition of a type 7 and a resource d that have λ7 = µ7 = 1, r7 = 10, qd = 2; all other parameters remain

the same. In this network, there is no perfect matching. The LP for this network has a degenerate LP

solution where the slack variable for the binding resource d is zero. For visibility, we draw the preferred

types at the bottom of the graph.

1 2 3

4 5 6

a b c

1 2 3

4 5 6 7

a b c d

The target allocation levels. Let Alp be the incidence matrix of the lp-residual graph. This

is the square d× d sub-matrix of A that has all d rows and the d columns corresponding to the

less-preferred types i ∈ Alp; Alp is a non-singular matrix by Lemma 3.2. Similarly, let Ap be the

matrix with the columns corresponding to the preferred types. The residual resource-j capacity,

after allocation to the preferred types, is qNj −
∑

i∈Ap
Ajiλ

N
i /µi or, in vector form, qN−Ap(λN/µ)Ap .

The optimal deterministic allocation to the less-preferred types is then

Ny∗Alp
=A−1

lp

(
qN −Ap(λN/µ)Ap

)
. (2)

The solution to (LP) is non-degenerate so that for a small perturbation ζ of (λN/µ)Ap , we have

the same optimal basis and, in turn,

x∗(ζ) :=A−1
lp

(
qN −Apζ

)
(3)

14 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

is the optimal allocation of residual capacity among less-preferred types given a load ζ from the

preferred types. Using (2), we write this target allocation as

x∗(ζ) = y∗Alp
N +A−1

lp Ap[(λ
N/µ)Ap − ζ]; (4)

because |Alp|= d, x∗(ζ) is a d-dimensional vector.

We use x∗(ζ) as a definition regardless of whether or not ζ is a sufficiently small perturbation of

(λNl /µ)Ap .

4. The Corrected-Headcount Threshold (CHT) Policy and the Regret Bound

For each i ∈ [n], we use Xt
i to denote the number of type-i customers occupying resource unit(s)

at time t. We let

Σt
j =

∑
i∈A(j)

Xt
i =
∑
i∈A

AjiX
t
i , (resource j headcount)

be the number of customers that are occupying resource-j units at time t.

Our policy uses, dynamically, the target allocation levels (3). At time t, and with Xt
Ap

being the

real-time allocation to preferred types, the target allocation to less-preferred type i is

X∗,ti := x∗i (X
t
Ap

); (5)

it is a random quantity that depends on the real-time count of preferred-type customers in service.

Recall that ij ∈ [n] is the customer type matched to resource j ∈ [d] under the chosen perfect

matching. The corrected-headcount threshold policy (CHT, see Algorithm 1) is applied to corrected

headcount processes

Σ∗,tj := Σt
j +

∑
i∈Alp\ij

Aji(X
∗,t
i −Xt

i),

where the correction process

Z∗,tj =
∑

i∈Alp\ij

Aji(X
∗,t
i −Xt

i),

captures the difference between targeted occupancy levels and actual levels for less preferred types.

A threshold on the corrected headcount process at resource ji (the resource matched with i∈Alp)

determines whether a type-i request can be accepted or not. Thresholds are placed only on the

edges (i, ji) for i∈Alp; these are the edges marked with || in Figures 2 and 3. There is one threshold

per i∈Alp and hence, by Lemma 3.2, a total of d= |Alp| thresholds.

Conceptually, the use of the corrected headcount process helps network alignment. Resource ji

will be more conservative in accepting type i if types k ∈ Alp(ji)\i are significantly below their

targeted levels and, in doing so, will be reserving capacity for their arrivals.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 15

Algorithm 1 Corrected-Headcount Threshold Policy (CHT)

Require: Threshold constants δi for every less-preferred customer type i∈Alp.

1: Accept an arriving request of type i∈Ap (preferred types) whenever feasible.

2: Accept an arriving type i ∈Alp at time t if and only if it is feasible (Σt
j < qNj for all j ∈ S(i)),

and there are—in terms of the corrected headcount—more than Ri := δi logN units of resource

ji available:

qNji −Σ∗,tji ≥Ri = δi logN.

The vector δ = (δ1, . . . , δd) is not arbitrary. These must be chosen to be sufficiently large (but

independent of N). We provide some guidance on the choice of thresholds in §B of the Appendix.

Given the identification of the threshold placement, a more natural threshold policy would be one

that uses the headcount Σt
j instead of its corrected counterpart Σ∗,tj , but the corrected headcount

has significant mathematical benefits. Except Xt
i , all less-preferred types requiring ji appear in the

corrected headcount only through their targeted amounts. We further discuss the mathematical

implications of the policy design in Section 5 and compare CHT and the natural threshold policy

in our numerical experiments in Section 7; see also Example 4.1.

Example 4.1 Let’s spell out the policy implementation in Examples 3.1, 3.2, and 3.3. In Example

3.1, the unique perfect matching is {(2, a), (3, b)}. The policy is spelled out in Figure 5. In Example

3.2, the unique perfect matching is {(1, d), (2, a), (3, c), (5, b)}, and Figure 6 spells out the policy

for this network. In Example 3.3, there are two perfect matchings; we use the perfect matching

{(1, a), (2, b), (3, c)} and the policy is spelled out in Figure 7.

It is useful to use the simple Example 3.1 to highlight a benefit of the corrected headcount

process. Suppose that, at a time t, Xt
2 +Xt

3 ≤ qNb −δ3 logN , but Xt
2 <X

∗,t
2 and X∗,t2 +Xt

3 > δ3 logN .

In this state, the “standard” threshold policy, acting on the true headcount, accepts type-3 requests.

CHT, in contrast, is more conservative in accepting type-3, effectively reserving capacity for type-2

so that it can be brought back to its targeted level X∗,t2 . While the regular threshold policy might

eventually “correct itself”, CHT acts forcefully to align allocation levels with their targeted values.

Under CHT, Xt ∈Nn+ forms an n-dimensional continuous-time Markov chain with a finite state

space. It is easy to check that the chain is irreducible1 and, as a consequence, conclude that

1 Take states x, y ∈X where X =XN ≡
{
x∈Nn :Ax≤ qN

}
∩{x∈Nn : xi ≤ qNji − δi logN, for all i∈Alp} is the state

space of the chain. Then, there is a path from x to 0, through xi service completions of type i. There is then a path
from 0 to y, through yi arrivals of type i.

16 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Figure 5 Policy implementation for Example 3.1.

1 2 3

a b

Accept a request of type
• 1 when feasible
• 2 when feasible and qa−Σ∗,ta > δ2 logN with

Σ∗,ta = Σt
a =Xt

1 +Xt
2

• 3 when feasible and qb−Σ∗,tb > δ3 logN where

Σ∗,tb = Σt
b +X∗,t2 −Xt

2 =Xt
3 +X∗,t2

The target allocation for type 2 is X∗,t2 = qNa −Xt
1.

Figure 6 Policy implementation for Example 3.2.

1 2 3 4 5 6 7

a b c d

Accept a request of type
• 4,6,7 when feasible
• 1 when feasible and qd−Σ∗,td > δ1 logN with

Σ∗,td = Σt
d =Xt

7 +Xt
1

• 2 when feasible and qa−Σ∗,ta > δ2 logN where

Σ∗,ta = Σt
a =Xt

4 +Xt
2

• 3 when feasible and qc−Σ∗,tc > δ3 logN where

Σ∗,tc = Σt
c +X∗,t1 −Xt

1 =Xt
6 +Xt

3 +X∗,t1

• 5 when feasible and qb−Σ∗,tb > δ5 logN where

Σ∗,tb = Σt
b +

3∑
i=1

(X∗,ti −Xt
i) =Xt

5 +
3∑
i=1

X∗,ti

The target allocations for types 1, 2, and 3 are given
by

X∗,t1 = qNd −Xt
7, X

∗,t
2 = qa−Xt

4, and X∗,t3 = qNc −Xt
6−X

∗,t
1 .

there exists a unique stationary distribution Π which is also the steady-state distribution. When

considering stationary variables, we omit the time superscript t. By Little’s law, the number of

type-i requests accepted per unit of time in stationarity equals µiEΠ[Xi] so the performance of

CHT is RCHT = r′µEΠ[X] =
∑

i riµiEΠ[Xi].

Theorem 4.1 (Main result) Suppose that Assumption 3.1 holds. Let Π be the stationary distri-

bution induced by CHT. Then,

R∗,N − r′µEΠ [X]≤R(qN , λN/µ)− r′µEΠ [X] =O (logN) .

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 17

Figure 7 Policy implementation for Example 3.3.

1 2 3

4 5 6

a b c

Accept a request of type
• 4,5,6 when feasible
• 1 when feasible and qa−Σ∗,ta > δ1 logN with

Σ∗,ta =Xt
1 +X∗,t3 +Xt

4

• 2 when feasible and qb−Σ∗,tb > δ2 logN where

Σ∗,tb =Xt
2 +X∗,t1 +Xt

5

• 3 when feasible and qc−Σ∗,tc > δ3 logN where

Σ∗,tc =Xt
3 +X∗,t2 +Xt

6

The target allocations for types 1, 2, and 3 are given
by

X∗,t1 =
1

2
(qNa + qNb − qNc)− 1

2
(Xt

4 +Xt
5−Xt

6),

X∗,t2 =
1

2
(−qNa + qNb + qNc)− 1

2
(−Xt

4 +Xt
5 +Xt

6), and

X∗,t3 =
1

2
(qNa − qNb + qNc)− 1

2
(Xt

4−Xt
5 +Xt

6).

Moreover, for any network that satisfies Assumption 3.1 with Ap 6= ∅, and any family of admissible

policies (πN ,N ∈N+),

R(qN , λN/µ)−RπN ,N = Ω(logN).

Remark 4.1 (The case d= 1) If there is a single resource, then by Lemma 3.2, |Alp|= 1 (a single

less-preferred type). In this case, the corrected headcount process is the same as the headcount

itself: Σ∗,t = Σt =
∑

i∈Ap
Xt
i +Xt

i0
, where i0 is the unique less preferred type. Our policy reduces in

this case to the simple threshold policy that:

1. accepts any request of types i∈Ap whenever there are units of the resource available, and

2. accepts a request of type i0 arriving at time t, if qN −Σt ≥ δi logN.

It follows from Theorem 4.1 that the approximation-gap of standard trunk reservation with a

logarithmic threshold is logarithmic in N . For the special case with equal service rates (µi ≡ µ), the

logarithmic lower bound is implied by the literature. Reiman (1991); Morrison (2010) proved that

the optimal policy’s threshold for the class with the smallest reward is logarithmic in N . It then

follows, from arguments similar to our proofs, that the approximation gap of the optimal policy in

the overloaded regime is logarithmic in N ; no policy can do better than the optimal one. In this

paper, we prove that this lower bound is generally true in overloaded networks.

Remark 4.2 (Why a logarithmic threshold?) Having the thresholds scale logarithmically in

N , is the sufficient (and necessary) “capacity reservation” to protect the preferred-type requests.

18 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

For intuition, it suffices to consider the case of a single resource (d= 1) and with a common service

rate across types (µi ≡ µ). When the number of occupied servers is greater qN −R, only customers

of types Ap are accepted. In these states, the headcount goes up at rate
∑

i∈Ap
λNi and down, at

approximately, rate µqN . Approximately, the headcount behaves in these states like an M/M/1

queue with utilization

ρ− :=

∑
i∈Ap

λNi

µqN
< 1.

It is the non-degeneracy assumption that guarantees that ρ− < 1. The likelihood that all servers

are busy—at which point preferred customers will be rejected—is roughly ρR. Choosing R to be

of the order of logN , guarantees that this probability is of the order of 1/N . A threshold that

is an order of magnitude smaller would not suffice; a constant threshold (i.e., one that does not

scale with N) in particular would result in a non-negligible fraction of preferred customers being

rejected.

Remark 4.3 (the lower bound when Ap = ∅) For the lower bound in Theorem 4.1 we assume

that Ap 6= ∅. This is generally necessary. To see this, consider a single resource (d= 1) and suppose

that types are labeled in decreasing order of riµi: r1µ1 > r2µ2 . . . > rnµn. Recalling the structure

of (LP)’s solution in Example 2.1, we note that if Ap = ∅, then that y∗1 = q < λ1/µ1, y∗i = 0 for all

i 6= 1, and R(q,λ/µ) = r1µ1q.

The policy, that accepts a type-1 request whenever there is capacity available and rejects all

other requests, achieves constant regret. Indeed, under this policy Xt
1 has the law of a single-

class M/M/qN/qN queue with arrival rates λN1 , service rate µ1 with load ρ =
λN1
µ1qN

= λ1
µ1
/q > 1.

It is a simple fact that this “overloaded” single-class loss queue has EΠ[qN −X1] = O(1) where

Π is the steady-state distribution. In turn, r1µ1EΠ[X1] = r1µ1q
N +O(1) =R(qN , λN/µ) +O(1) =

R(qN , λN/µ) + o(logN).

Remark 4.4 (state-dependence in the policy is necessary) Our proposed policy is state-

dependent, meaning that the decision to accept or reject a request depends on the state of the

system (beyond the mere availability of resource units). In Section C of the Appendix we prove that

state-dependence is necessary: there is no static randomization policy that achieves the logarithmic

regret.

5. Proof of the upper bound in Theorem 4.1

Recall that R(qN , λN/µ) = r′µNy
∗ and RCHT = r′µEΠ[X], so that

R(qN , λN/µ)−RCHT = r′µ(Ny∗−EΠ [X]),

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 19

where EΠ[X] = (EΠ[X1], . . . ,EΠ[Xn])′. Accordingly, we focus our analysis on bounding the gap

Ny∗i −EΠ[Xi].

The vector EΠ[X] is a non-trivial entity to study directly because of the dependencies between

customer types. In the network of Figure 3, whether a type-3 request can be accepted depends on

both the number of available units of resource c and the number of available units of resource b,

which is in turn affected by the number of types 1 and 2 customers in the system.

Instead of studyingXt directly, we introduce a network where the resource constraints are relaxed

in a way that facilitates analysis but, at the same time, has a provably close performance to that

of CHT in the original network.

A network with relaxed constraints

The network, operated by CHT, has the state space

X =XN ≡
{
x∈Nn :Ax≤ qN

}
∩{x∈Nn : xi ≤ qNji − δi logN, for all i∈Alp}. (6)

Because no type-i (i ∈Alp) requests are accepted when more than qNji − δi logN units of resource

ji are occupied, there can be no more than this number of these in the system; this is captured by

the second set in the intersection that defines X . In the auxiliary network, we remove all but these

constraints; it has the state space

X̃ = X̃N ≡
{
x∈Nn : xi ≤ qNji − δi logN for all i∈Alp

}
. (7)

In the auxiliary system, there is an infinite number of units of each resource, and access of types

i∈Alp is restricted only by the threshold on the headcount of resource ji (and not by the occupancy

of any other resource j 6= ji). Access to types i∈Ap is not restricted at all. This localizes admission

decisions. Whether or not we accept a type-i request depends only on the corrected headcount of

resource ji, not that of any other resource.

Auxiliary system notation: We superscript with ∼ processes associated with the auxiliary

system: X̃t
i counts the number of type-i customers in the relaxed network under the policy π̃ in

Algorithm 2, Σ̃t
j is the resource-j headcount process in the auxiliary system, Z̃∗,tj is the correction

process, and Σ̃∗,tj is the corrected headcount process. We use Π̃ for the steady-state distribution in

the auxiliary system using the policy π̃; Π̃(B) for B ⊆ X̃ is the probability that this distribution

assigns to the set B of states. The existence of this distribution is established in Proposition 5.1.

How the relaxation supports the analysis of CHT? In Example 4.1, we illustrated how

CHT, in contrast to the “regular” threshold policy (one that acts directly on the true, rather than

corrected headcount), acts forcefully to bring the allocations toward their optimally targeted levels.

The mathematical benefit of the corrected headcount becomes evident in the relaxed network.

20 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Algorithm 2 The policy π̃ in the relaxed network

Require: Threshold constants δi for every less-preferred customer type i ∈Alp (same as those of

CHT).

1: Accept all preferred customer types i∈Ap (even if it violates any resource constraint).

2: Accept an arriving type i ∈Alp if and only if the corrected headcount, Σ̃∗,tji = Σ̃t
ji

+ Z̃∗,tji , with

resource ji has

qNji − Σ̃∗,tji ≥Ri = δi logN.

Take the network in Figure 3 and recall the policy implementation as spelled out in Figure

6. In the relaxed network, requests of preferred types, in particular of type 7, face no resource

constraints — all are accepted and, in turn, their number-in-system evolves like an infinite server

queue and is straightforward to analyze; the same is true for type 6. Consider now type-3 requests;

these are matched with resource c (ji = c). We note two things: (i) in the auxiliary system, their

acceptance/rejection does not depend on the real-time headcount of resource b which they also

require, and (ii) the corrected headcount of their matched resource c is given by Σ̃∗c = X̃t
3 +X̃t

6 +X̃∗,t1 .

Here, less-preferred type 1 appears only through its targeted value X̃∗1 = qNd − X̃t
7 where X̃t

7, as we

just explained, is straightforward to analyze; so is X̃t
6.

In this way, the analysis can be localized to each pair of resource j and its coupled request type

ij. Through this localized analysis we show that, in the relaxed network,

(AX̃)j = Σ̃j ≈ Σ̃∗j ≈ qNj − δij logN ≤ qNj ,

so that, while the auxiliary network has the large state space X̃ , it effectively remains within the

smaller state space X of the original network. Because the policies CHT and π̃ take the same

actions in states within X the auxiliary network and policy—while easier to analyze—capture

(approximately) the behavior of the original network and CHT.

Crucially, the auxiliary network is hardly a relaxation from a performance perspective. The

reward collected by CHT in the original network and of π̃ in the relaxed network are, as we will

prove, close to each other. In this way, we are able to bound the performance of CHT in the network

by analyzing a simpler one.

Proof Steps

Step 1. In the relaxed network, the gap between the performance of π̃ and the (LP) optimal value

is logarithmic in N . That is,

r′µEΠ̃[X̃] =R(qN , λN/µ) +O(logN).

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 21

Step 2. In the original network, the Markov chain Xt, induced by CHT, has a 1/N -mixing time

that is polynomial in N . This would imply that for all time t greater than t0 = t0(N) that is

polynomial in N , and regardless of the initial (at t= 0) state x, the distribution of Xt is close

to the steady-state distribution Π,

r′µEx[Xt0] = r′µEΠ[X] +O(1), for all t≥ t0.

Step 3. “Late decoupling”: Xt and X̃t, suitably initialized (at t= 0)2 with the stationary distribu-

tion Π̃ induced by π̃, decouple later than the mixing time of Xt. That is, with high probability,

Xt = X̃t until a time t1 > t0 (with t0 as in the previous item).

At time t0—where Xt is close to its stationary distribution Π—it is also equal to X̃t which has

(and is initialized at time t= 0 with) the stationary distribution Π̃ induced by π̃. This implies that

the two stationary distributions—of CHT and of π̃ are close—and so are their collected rewards:

RCHT = r′µEΠ[X]
Step 2
≈ r′µEΠ̃[Xt0]

Step 3
≈ r′µEΠ̃[X̃t0]

Stationarity
= r′µEΠ̃[X̃]

Step 1
≈ R(qN , λN/µ)+O(logN).

Sections 5.1-5.3 formalize steps 1 through 3. These are combined in Section 5.4 to obtain the upper

bound in Theorem 4.1.

Throughout the proofs, we use ηl, l = 1,2, . . . to denote strictly positive constants that do not

depend on N . The exact values of these constants might change from one proof to the next.

5.1. Step 1: The Performance of the Relaxed Policy π̃

We use symbols such as X̃, Σ̃ to denote quantities associated with the relaxed network and the

relaxed policy π̃. Recall that X and X̃ are the state space of CHT and the relaxed policy, π̃

respectively in (6) and (7).

Proposition 5.1 shows that the stationary reward collected by the relaxed policy π̃ is logarithmi-

cally close to the optimal value R from (LP). The second statement of the proposition stipulates

that, while allowing for a larger state space, the process X̃t spends most of its time in the smaller

state space X of Xt.

Proposition 5.1 (Performance of π̃.) The Markov chain X̃t has a unique stationary distribu-

tion Π̃ that satisfies

r′µEΠ̃[X̃] =R(qN , λN/µ) +O(logN) and Π̃(X̃ \X) =O
(
N−mδmin

)
,

where δmin = mini δi and m> 0 does not depend on δ and N .

2 Because X̃t has a strictly larger state space than Xt the latter cannot be strictly speaking initialized with Π̃; this
initialization is formalized in Section 5.4.

22 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

We use two preliminary lemmas in the proof of Proposition 5.1. We start with the observation

that, for i ∈ Ap, X̃t
i has the law of an M/M/∞ queue and, in particular, its stationary distribu-

tion is Poisson with mean λNi /µi; the probability bound in the next lemma follows from standard

concentration results for Poisson random variables.

Lemma 5.1 (Concentration of preferred types) The Markov chain X̃t has a unique station-

ary distribution Π̃ and, for every fixed ε > 0,

PΠ̃

{
X̃ /∈ΩN

ε

}
≤m1e

−m2N , and EΠ̃[X̃i] = λNi /µi, for i∈Ap,

where

ΩN
ε :=

{
x∈ X̃ :

∣∣xi− λNi /µi
∣∣≤ εN for all i∈Ap

}
, (8)

and m1,m2 > 0 may depend on ε but not on N .

The (random) target allocations (X̃∗i , i ∈Alp), defined in terms of X̃Ap , inherit properties from

this lemma. By construction, X̃∗ = y∗N +A−1
lp Ap[(λ

N/µ)Ap − X̃Ap], so by Lemma 5.1,

EΠ̃[X̃∗i] = y∗iN. (9)

For each j ∈ [d], define the function

σj(x) =
∑
k∈A(j)

xk +
∑

i∈Alp\ij

Aji(x
∗
i −xi)

= xij +
∑

l∈Ap(j)

xl +
∑

l∈Alp(j)\ij

x∗l , (10)

where we recall x∗Alp
(x) = y∗Alp

N +A−1
lp Ap[(λ

N/µ)Ap − xAp]; see equation (4). In particular, Σ̃∗,tj =

σj(X̃
t). We define also the functions

fi(x) = |σji(x)− q̂Nji |, and gθi (x) = exp(θfi(x)), (11)

where we use the shorthand notation

q̂Nj = qNj − δij logN.

Lemma 5.2 There exists θ > 0 (not depending on N) such that for all i∈Alp∑
x∈X̃

Π̃(x)|Q(x,x)||gθi (x)|<∞,

where Q is the transition-rate matrix of the Markov chain X̃t. In turn,

EΠ̃[(Qgθi)(X̃)] = 0.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 23

Lemma 5.3 Under the assumptions of Theorem 4.1 there exists θ,m1,m2 > 0 (that do not depend

on N but may depend on ε) such that

(Qgθi)(x)≤−2m1Ng
θ
i (x) +m2N, for all x∈ΩN

ε .

Lemma 5.3 shows that the process g(X̃t) has a centering drift property; when g(X̃t) is large

(meaning σji(X̃
t) is far from q̂Nji) it decreases in expectation (σji(X̃

t) is pushed back towards q̂Nji).

Proof of Proposition 5.1. We first show that, for each i,

PΠ̃

{
|X̃∗i − X̃i| ≥ δi logN +x

}
≤ η1e

−η2x, and EΠ̃[X̃i] = y∗iN +O(logN). (12)

Fix i∈Alp, θ > 0 and let f(x) and g(x) (with the corresponding subscript/superscript dropped)

be as in (11) for this fixed i, θ. Recall that Q stands for the infinitesimal generator (the transition-

rate matrix) of the n-dimensional process X̃t. By Lemma 5.2

0 =EΠ̃

[
(Qg)(X̃)

]
=EΠ̃

[
(Qg)(X)1

{
X̃ ∈ΩN

ε

}]
+EΠ̃

[
(Qg)(X̃)1

{
X̃ /∈ΩN

ε

}]
. (13)

Lemma 5.3 immediately implies that

EΠ̃

[
(Qg)(X̃)1

{
X̃ ∈ΩN

ε

}]
≤−η1NEΠ̃

[
g(X̃)1

{
X̃ ∈ΩN

ε

}]
+ η2N, (14)

and we turn to consider the second term on the right-hand side of (13). By Hölder’s inequality

EΠ̃

[
|(Qg)(X̃)|1

{
X̃ /∈ΩN

ε

}]
≤
√
EΠ̃

[
((Qg)(X̃))2

]√
PΠ̃

{
X̃ /∈ΩN

ε

}
.

The transition-rate matrix satisfies |Q(x, y)| ≤
∑

l∈[n](λ
N
l +µlxl) and Q(x, y) 6= 0 only for y = x or

|y − x|= el for some l ∈ [n]. Recalling (10), and that x∗i (ζ) = y∗iN +
∑

l∈Ap
αli(ζl − λNl /µl), where

αli = [A−1
lp Ap]i,l, i∈Alp, l ∈Ap, we have that

σji(x)≤ dqmaxN + (1∨ ᾱ)
∑
k∈Ap

xl, and |σji(x+ el)−σji(x)| ≤ 1∨ ᾱ,

where ᾱ = maxi,l |αi,l|, and we use the fact that xi ≤ qmaxN for all i ∈ Alp, with qmax := maxj qj.

Combining these we have that

|(Qg)(x)| ≤
∑
y

|Q(x, y)||g(y)| ≤ eθ(σji (x)+1∨ᾱ)
∑
l∈[n]

(λNl +µlxl)

≤ η3e
θ(dqmaxN+(1∨ᾱ)

∑
l∈Ap

xl+1∨ᾱ)
(N +

∑
l∈Ap

xl).

24 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

In particular,

((Qg)(x))2 ≤ η4e
2θ(dqmaxN+(1∨ᾱ)

∑
l∈Ap

xl+1∨ᾱ)
(N 2 +

∑
l∈Ap

x2
l).

We recall that under the steady-state distribution Π̃, X̃l ∼ Poisson(λl/µl), l ∈Ap (and X̃l, l ∈Ap
are independent). Using Hölder’s inequality we have for θ small enough (not dependent on N),

EΠ̃

∑
l∈Ap

(X̃l)
2e

2θ
∑

l∈Ap
X̃l

≤ η4N
2e2θκN ,

where κ=
∑

l∈Ap

λl
µl

(recall λNl = λlN). Choosing θ such that 2θκ≤m2/2 (with m2 as in Lemma

5.1), we have

EΠ̃

[
|(Qg)(X̃)|1

{
X̃ /∈ΩN

ε

}]
≤
√

EΠ̃

[
((Qg)(X̃))2

]√
PΠ̃

{
X̃ /∈ΩN

ε

}
≤ η5. (15)

Plugging (14) and (15) into (13) we have that

−η5 ≤EΠ̃

[
(Qg)(X̃)1

{
X̃ ∈ΩN

ε

}]
≤−η6NEΠ̃

[
g(X̃)1

{
X̃ ∈ΩN

ε (i)
}]

+ η7N,

so that

EΠ̃

[
g(X̃)1

{
X̃ ∈ΩN

ε (i)
}]
≤ η5 + η7N

η6N
≤ η8 =O (1) .

Recall that g(x) = eθ|σji (x)−q̂Nji | ≤ eθ(σji (x)+qjiN). Following a similar argument to those leading to

(15) we can conclude that EΠ̃

[
g(X̃)1

{
X̃ /∈ΩN

ε (i)
}]
≤ η9 so that

EΠ̃

[
g(X̃)

]
=EΠ̃

[
g(X̃)1

{
X̃ ∈ΩN

ε (i)
}]

+EΠ̃

[
g(X̃)1

{
X̃ /∈ΩN

ε (i)
}]
≤ η10.

By Markov’s inequality

PΠ̃{|σji(X̃)− q̂Nji | ≥ x} ≤EΠ̃[g(X̃)]e−θx ≤ η10e
−θx. (16)

By the definition of X̃∗k (recall (3) and (5))
∑

k∈Ap(ji)
Xt
k +
∑

k∈Alp(ji)
X∗,tk = qNji so that

X̃∗i = qNji −
∑

k∈Ap(ji)

X̃k−
∑

k∈Alp(ji)\i

X̃∗k

= qNji −σji(X̃) + X̃i

= q̂Nji + δi logN −σji(X̃) + X̃i,

and |X̃i− X̃∗i + δi logN |= |σji(X̃)− q̂Nji | and

PΠ̃

{∣∣∣ X̃i− X̃∗i + δi logN
∣∣∣≥ x}= PΠ̃{|σji(X̃)− q̂Nji | ≥ x} ≤ η11e

−θx, (17)

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 25

which implies

PΠ̃

{∣∣∣ X̃i− X̃∗i
∣∣∣≥ δi logN +x

}
≤ η12e

−θx. (18)

In turn,

EΠ̃

[∣∣∣ X̃i− X̃∗i
∣∣∣]≤ η13 logN. (19)

By Jensen’s inequality we also have that

EΠ̃

[
f(X̃)

]
=EΠ̃

[∣∣∣σji(X̃)− q̂Nji
∣∣∣]≤ logEΠ̃[g(X̃)]≤ log η14.

By (9), EΠ̃[X̃∗i] = y∗iN and we conclude from (19) that

EΠ̃[X̃i] = y∗iN +O(logN).

Repeating this argument for all i∈Alp we have

EΠ̃

[
X̃i

]
= y∗iN +O(logN), i∈ [n],

with y∗i = λi/µi for i∈Ap, and we arrive at the first statement of the proposition, namely that

r′µEΠ̃

[
X̃
]

=R
(
qN , λN/µ

)
+O(logN).

We turn to the second statement of the proposition, namely that Π̃(X̃ \X) =O (N−ηδmin). Recall

that the true (not corrected) headcount satisfies

Σ̃ji = σji(X̃)−Z̃∗ji = σji(X̃)−
∑

k∈Alp(ji)\i

(X̃∗k − X̃k)

= σji(X̃)−
∑

k∈Alp(ji)\i

δk logN −
∑

k∈Alp(ji)\i

(X̃∗k − X̃k− δk logN),

Let δ̄ji =
∑

k∈Alp(ji)\i
δk. Then,

|Σ̃ji −σji(X̃) + δ̄ji logN | ≤
∑
i∈Alp

|X̃∗i − X̃i− δi logN |.

Using (17), a union bound gives

PΠ̃{|Σ̃ji −σji(X̃) + δ̄ji logN |>x} ≤ η15e
−η16x.

Note that X̃ /∈X if and only if there exists i such that Σ̃ji > q̂
N
ji

+ δi logN = qNji . Also,

PΠ̃

{
Σ̃ji > q̂

N
ji

+ δi logN
}
≤PΠ̃

{
|Σ̃ji −σji(X̃) + δ̄ji logN |> δi

2
logN

}
+PΠ̃

{
Σ̃ji > q̂

N
ji

+ δi logN, |Σ̃ji −σji(X̃) + δ̄ji logN | ≤ δi
2

logN

}
.

26 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

On the event {|Σ̃ji − σji(X̃) + δ̄ji logN | ≤ δi
2

logN}, Σ̃ji > q̂Nji + δi logN implies that σji(X̃) >

q̂Nji + δ̄ji logN + δi
2

logN . We then have, using (16), that

PΠ̃

{
X̃ /∈X

}
≤
∑
i∈Alp

PΠ̃

{
Σ̃ji > q̂

N
ji

+ δi logN
}

≤
∑
i∈Alp

PΠ̃

{
|Σ̃ji −σji(X̃) + δ̄ji logN |> δi

2
logN

}

+PΠ̃

{
σji(X̃)> q̂Nji + δ̄ji logN +

δi
2

logN

}
≤ η17N

−η18δ,

with δ= mini δi. �

5.2. Step 2: The Mixing Time Bound of Xt under CHT

In this second step, we return to the original (vs. the auxiliary) Markov chain Xt—on the state

space X , and induced by CHT—and study its mixing time. Throughout this subsection, Xt refers

to this chain.

The mixing time of a continuous-time Markov chain M t on a finite state space M and that has

a steady-state distribution Π is defined as

τmix(ε) = min

{
t > 0 :

∣∣∣∣ ht(x, y)−Π(y)

Π(y)

∣∣∣∣≤ ε for all x, y ∈M
}
,

where ht(x, y) = Px{M t = y} is the transition kernel and it is given by the matrix exponential

ht = etQ, where Q is the transition-rate matrix.

Lemma 5.4 (Morris and Peres (2005, Theorem 13).) Let M t be a Markov chain on a finite

state space M, with generator matrix Q = (Qxy)x,y∈M, and steady-state distribution Π. Define

the uniformization constant U ≡maxx∈M
∑

y 6=xQxy and the (discrete-time) transition probability

matrix P =U−1Q+ I. Define also the conductance of P as

Φ = min
S⊂M,Π(S)≤1/2

∑
x∈S,y∈Sc Pxy

Π(S)
.

Then the mixing time of M t satisfies

τmix(ε)≤U
⌈

1 +
8

Φ2
log

1

εΠ∗

⌉
, (20)

where Π∗ = minx∈X Π(x).

For the uniformization constant for Xt (operated under CHT) we take

U=N
∑
i∈[n]

λi + max
x∈X

∑
i∈[n]

µixi. (21)

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 27

Lemma 5.5 Let Π be the stationary distribution of Xt, let Q be its transition rate matrix and

P =U−1Q+ I with U in (21). There then exist constants c̄,K > 0 (not depending on N) such that

Π∗ = min
x∈X

Π(x)≥ (c̄N)
−KN

, (22)

and

Φ = min
S⊂X ,Π(S)≤1/2

∑
x∈S,y∈Sc Pxy

Π(S)
≥ 1

c̄N
. (23)

Armed with this lemma, we bound the mixing time of the Markov chain Xt in terms of the

scaling factor N . The bound is given in the following proposition.

Proposition 5.2 (Mixing time bound for Xt) The mixing time of Xt satisfies

τmix
(
N−1

)
=O

(
N 4 logN

)
.

Proof: Under CHT, Xt = x is subject to the resource constraint Ax≤ qN . Because S(i) 6= ∅, i∈ [n],

xi ≤maxj∈[d] q
N
j , so that the uniformization constant satisfies

U=N
∑
i∈[n]

λi + max
x∈X

∑
i∈[n]

µixi ≤
∑
i∈[n]

(λi +µiqmax)N =O (N) ,

where qmax = maxj∈[d] qj. Taking ε= 1/N in Lemma 5.4 and plugging there also the lower bounds

for Φ and Π∗ from Lemma 5.5 we obtain

τmix(N
−1)≤U

⌈
1 +

8

(c̄N)−2
log

1

N−1 (c̄N)
−KN

⌉
=O

(
N 4 logN

)
,

as needed. �

5.3. Step 3: The Decoupling Time of Xt and X̃t

The two chains Xt and X̃t are easily constructed on the same sample space so that, having the

same initial state at t= 0, Xt = X̃t up to the time at which X̃t leaves X . We will bound the tail

probability of this exit time.

Proposition 5.3 (Tail-probability bound.) The time that X̃t exits X

τ̃ := min
{
t≥ 0 : X̃t ∈ X̃\X

}
satisfies

PΠ̃{τ̃ ≤ t} ≤m1Nt
(

Π̃(X̃ \X) + exp(−m2N)
)
,

for some constants m1,m2 > 0 that do not depend on N .

28 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Proof: We note that τ̃ ≤ t if and only if the number of visits of X̃t to the set E := X̃ \X by time t

is greater than, or equal to, 1. For any x∈ X̃ , let N t(x) be the number of visits of X̃t to that state

by time t. For a subset C ⊆ X̃ , let N t(C) =
∑

x∈AN
t(x). Then,

{τ̃ ≤ t}= {N t(E)≥ 1}.

By Markov Inequality,

PΠ̃{τ̃ ≤ t}= PΠ̃{N
t(E)≥ 1} ≤EΠ̃[N t(E)] =

∑
x∈E

EΠ̃[N t(x)].

It is a basic fact of continuous-time Markov chains that EΠ̃[N t(x)] = e(x)Π̃(x)t where e(x) is the

total exit rate from state x.

Recalling that X̃ =
{
x∈Nn : xi ≤ qNji − δi logN for all i∈Alp

}
, we have

e(x)≤
∑
i∈[n]

λNi +
∑
i∈Ap

µixi +
∑
i∈Alp

µiq
N
ji
≤ η1N + µ̄

∑
i∈Ap

xi, x∈ X̃ ,

where µ̄ := maxi µi. Defining

B :=

x∈ X̃ :
∑
i∈Ap

xi ≤ 2
∑
i∈Ap

λNi /µi

 ,

we have

e(x)≤ η1N + 2µ̄
∑
i∈Ap

λNi /µi ≤ η2N, x∈ E ∩B.

Then,

PΠ̃{τ̃ ≤ t} ≤
∑
x∈E

EΠ̃[N t(x)] =
∑
x∈E∩B

e(x)Π̃(x)t+
∑
x∈E\B

e(x)Π̃(x)t

≤ η3NΠ̃(E)t+ η4(N +
∑
x∈E\B

|xAp |Π̃(x)t)

= η3NΠ̃(E)t+ η4tEΠ̃

[
(N + |X̃Ap |)1

{
|X̃Ap |> 2|(λN/µ)Ap |

}]
, (24)

where | · | is the L1 norm. We turn to bound the second term in the last row. Under Π̃, recall,

(X̃i, i∈Ap) are independent Poisson random variables with mean λNi /µi for i∈Ap. In turn, |X̃Ap | ∼

Poisson
(

(λN/µ)Ap

)
. By Hölder’s inequality

EΠ̃

[
(N + |X̃Ap)|1

{
|X̃Ap |> 2|(λN/µ)Ap |

}]
≤
√

EΠ̃

[
(N + |X̃Ap |)2

]√
PΠ̃{|X̃Ap |> 2|(λN/µ)Ap |}

≤ η4Ne
−η5|(λN/µ)Ap | ≤ η6e

−η7N , (25)

where we used the second moment of the Poisson random variable E[|X̃Ap |2] = |(λN/µ)Ap | +

|(λN/µ)Ap |2, and standard tail bounds for the Poisson distribution.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 29

Plugging (25) into (24) we conclude that

PΠ̃{τ̃ ≤ t} ≤ η8Nt(Π̃(E) + e−η9N),

as required. �

5.4. Combining the Steps

The process Xt has the state space

X =
{
x∈Nn :Ax≤ qN

}
∩
{
x∈Nn : xi ≤ qNji − δi logN for all i∈Alp

}
⊂ X̃ =

{
x∈Nn : xi ≤ qNji − δi logN for all i∈Alp

}
.

It cannot be initialized with the stationary distribution of X̃ as the latter may assign positive

probabilities to states outside of X . To that end, fix x0 ∈ X and define the distribution Π0 on X
by

Π0(x) =

{
Π̃(x) if x 6= x0,

Π̃(x0) + Π̃(X̃ \X) if x= x0.

Then, EΠ0 [Xt] =
∑

x∈X Π̃(x)Ex[Xt] + Π̃(X̃ \X)Ex0
[Xt]. We define EΠ̃[Xt] :=EΠ0 [Xt].

For any t > 0,

|EΠ̃[r′µX̃
t]−EΠ[r′µX

t]| ≤ |EΠ̃[r′µX̃
t]−EΠ̃[rµX

t]|+ |EΠ̃[r′µX
t]−EΠ[r′µX

t]|. (26)

Recall

τ̃ := min
{
t≥ 0 : X̃t ∈ X̃\X

}
.

Because Xt and X̃t have the same transition rates inside X , it is straightforward to build them on

the same probability space so that Xt = X̃t up to τ̃ . We can then write, for any t≥ 0,

|EΠ̃[r′µX̃
t]−EΠ̃[r′µX

t]|= |EΠ̃[r′µ(X̃t−Xt)1{τ̃ ≤ t}]| ≤
√

EΠ̃[(r′µ(X̃t−Xt))2]
√
P{τ̃ ≤ t}.

Because Xt ∈X , Ex[(r′µXt)2]≤ η1N
2 for any initial state x∈X . Because, X̃t

i ≤ qmaxN for all i∈Alp
and, in steady-state, X̃t

i ∼ Poisson(λni /µi) for all i ∈ Ap, we also have that EΠ̃[(r′µX̃
t)2] ≤ η2N

2.

Thus, EΠ̃[(r′µ(X̃t−Xt))2]≤ η3N
2. Finally, setting t= τ(N−1) we have, by Propositions 5.2 and 5.3,

that

P {τ̃ ≤ t} ≤ η4Nt
(

Π̃(X̃ \X) + exp(−η4N)
)
≤ η5N

5 logN
(

Π̃(X̃ \X) + exp(−η6N)
)
,

where for the last inequality we plug t= τ(N−1) =O(N 4 logN). By Proposition 5.1, Π̃
(
X̃ \X

)
=

O(N−mδmin). We can choose the threshold-coefficients δi, i∈Alp large enough so that mδmin ≥ 8 in

which case

|r′µEΠ̃[X̃t]− r′µEΠ̃[Xt]|= |EΠ̃[r′µ(X̃t−Xt)1{τ̃ ≤ t}]|

≤ η5N
7 logN

(
Π̃(X̃ \X) + exp(−η6N)

)
=O(1),

30 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

which bounds the first summand in (26). For the second summand, we have, by definition, at

t= τ(N−1) that |ht(x, y)−Π(y)| ≤ 1
N

Π(y) for all x∈X . In particular, at this t,

|r′µEx[Xt]− r′µEΠ[X]| ≤ 1

N
r′µEΠ[X] =O(1),

where the last equality follows noting that r′µx≤ (rµ)maxqmaxdN =O(N) for all x∈X . In turn,

|EΠ̃[r′µX
t]−EΠ[rµX

t]|= |
∑
x∈X

Π̃(x)(Ex[r′µXt]−EΠ[r′µX
t])| ≤max

x∈X
|r′µEx[Xt]− r′µEΠ[X]|=O(1).

This concludes the proof. �

6. Proof of the lower bound in Theorem 4.1

We note that, because (i) the state space is finite and the action sets—corresponding to admission

probabilities—compact, and (ii) the MDP is unichain3 we can assume, without loss of generality,

that—for each N—there exists a stationary deterministic optimal policy; see (see Theorem 11.4.6

of Puterman, 2014). We let π∗,N be the optimal policy in the N th system, Π∗,N be the steady-state

distribution under this policy, and R∗,N be the optimal reward.

First, in Lemma 6.1, we establish some properties that must be satisfied for sub-logarithmic

regret. Specifically, for the optimal policy to have o(logN) regret it must (i) keep all, up to o(logN),

resource units busy in stationarity, and (ii) it must accept all, up to o(logN), customers of types

i∈Ap.
In step 2, we use Markov Chain analysis to show that a policy that satisfies properties (i) and

(ii) must have a stationary distribution that assigns a non-negligible probability to states where

all servers are busy. In those states all, in particular preferred, customers are rejected. Because

that probability is non-negligible, we will have more Ω(logN) customers rejected of types i ∈Ap,
contradicting the o(logN) gap.

Lemma 6.1 Suppose that

R(qN , λN/µ)−R∗,N = o(logN). (27)

Then, xNi =EΠ∗,N [Xi] must satisfy

AxN = qN − o(logN), (28)

and

xNi =
λNi
µi
− o(logN), i∈Ap. (29)

3 Because the state space is finite, under any deterministic stationary policy, there is at least one recurrent class.
Suppose there are two (or more) recurrent classes. Because from any state x∈X there is a path–through consecutive
service completions—to 0∈X (the empty state), 0 must be part of any recurring class. Hence, there can be at most
one recurring class.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 31

Recall that Σj = (AXN)j is the headcount in station j. Markov’s inequality applied to (28), gives

that, for all j ∈ [d],

PΠ∗N
{
qNj −Σj >κ logN

}
≤ o(logN)

κ logN
→ 0, as N ↑∞. (30)

We will prove that (30) implies, in fact, that (29) is violated and, in turn, a contradiction to (27).

For the rest of this proof, we fix a resource j ∈ [d] whose resource constraint is binding and for

which there exists a request i∈Ap with Aji = 1; such j and i exist by assumption. We denote this

type by i0 and drop the subscript j from all notations. Let s(x) =
∑

iAjixi be the total resource-j

headcount in state x∈X . Fix κ> 0, let KN = dκ logNe and, for l= 0,1, . . . ,KN consider the sets

B(l) := {x∈X : qN − s(x)≤KN − l}= {x∈X : s(x)≥ qN −KN + l},

and define B(KN + 1) := ∅. Then, B(KN)⊆B(l)⊆B(0) for all l ∈ [KN]. For l= 0,1, . . . ,KN define

also

B=(l) :=B(l)\B(l+ 1) = {x∈X : s(x) = qN −KN + l}.

Notice that B(0) =∪KN
l=0B=(l).

Let λΣ =
∑

i λi, µ̄ = maxi µi and µ = mini µi. Transitions in the Markov chain Xt are either

of the form x→ x+ ek (accepting an arriving type-k request) and x→ x− ek (a type-k service

completion). For any set C ⊆X and its complement Cc =X\C

∑
x∈C,z∈Cc

Π(x)Q(x, z) =
∑

z∈Cc,x∈C

Π(z)Q(z,x);

see e.g., Exercise 5.34 in Ross (1996). Take these sets to be C =B(l) and Cc =B(l)c. For x∈B(l), z ∈

B(l)c, s(x)≥ qN −KN + l and s(z)< qN −KN + l. If Q(x, z)> 0 there must exist k ∈ [n] such that

z = x− ek and x∈B=(l), z ∈B=(l− 1). Similarly, for z ∈B(l)c, x∈B(l) with Q(z,x)> 0 there must

exist k ∈ [n] such that x= z+ ek and that z ∈B=(l− 1), x∈B=(l).

Recall that i0 ∈Ap is such that Aji0 = 1. By (29), xi0 =EΠ∗,N [Xi0] = λNi0/µi0−o(logN), implying

that ∑
x∈X :Q(x,x+ei0)=0

Π(x) = o(logN/N).

Otherwise, if
∑

x∈X :Q(x,x+ei0)=0 Π(x) = Ω(logN/N), PASTA implies that Ω(λNi0
logN/N) = Ω(logN)

type-i0 customers arrive in those states x and are rejected, alternatively, at most λNi0 −Ω(logN)

are accepted. By Little’s law, we would then have EΠ∗,N [Xi] = 1
µi

(λNi0 −Ω(logN)) =
λNi0
µi
−Ω(logN).

32 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

In turn,

∑
z∈B(l)c,x∈B(l)

Π(z)Q(z,x)≥
∑

x∈B=(l−1),z=x+ei0

Π(z)Q(z,x) = λNi0

 ∑
z∈B=(l−1),Q(z,z+ei0)>0

Π(z)

= λNi0

 ∑
z∈B=(l−1)

Π(z)−
∑

z∈B=(l−1),Q(z,z+ei0)=0

Π(z)

= λNi0

(
Π(B=(l− 1))− o(logN/N)

)
. (31)

Recalling that transition from B(l) to B(l)c must be of the form z = x− ek we have∑
x∈B(l),z∈B(l)c

Π(x)Q(x, z)≤ µ̄qN.

Then,

λNi0

(
Π(B=(l−1))−o(logN/N)

)
≤

∑
z∈B(l)c,x∈B(l)

Π(z)Q(z,x) =
∑

x∈B(l),z∈B(l)c

Π(x)Q(x, z)≤Π(B=(l))µ̄qN,

where the first inequality follows from (31). Recalling that λNi0 =Nλi0 , we have

λi0

(
Π(B=(l− 1))− o(logN/N)

)
≤Π(B=(l))µ̄q. (32)

Applying this recursively we have the lower bound

Π(B=(l))≥ δlΠ(B=(0))− 1

1− δ
× o(logN/N) = Π(B=(0))− o(logN/N), (33)

where δ := λi0/µ̄q< 1.

We next obtain an upper bound. Because transitions from B(l)c to B(l) must be of the form x=

z+ ek, the rate of these transition is bounded by
∑

i λ
N
i =N

∑
i λi =NλΣ, that is λΣNΠ(B=(l))≥∑

z∈B(l)c,x∈B(l) Π(z)Q(z,x). For all l= {0,1, . . . ,KN}, we have that |qN − s(x)| ≤KN and, in partic-

ular, that s(x)≥ qN/2 = qN/2 for all N sufficiently large. Thus, Q(x, z)≥ µqN/2 and we have

λ̄NΠ(B=(l− 1))≥
∑

z∈B(l)c,x∈B(l)

Π(z)Q(z,x) =
∑

x∈B(l),z∈B(l)c

Π(x)Q(x, z)≥Π(B=(l))µqN/2. (34)

We then have the upper bound

Π(B=(l))≤ δ̄lΠ(B=(0)), (35)

where δ̄ := λΣ/µq/2 > 1> λi0/µ̄q = δ. Here we recall that the resource constraint for j is binding so

that λΣ/µ≥
∑

i λi/µi ≥
∑

iAjiy
∗
i = q.

The set
{
l ∈ {0, . . . ,KN − 1} :

∑
x∈B(l),z∈B(l+1)Q(x, z)> 0

}
is non-empty. Indeed, if it were empty

(meaning that no requests are accepted when there qN −KN or more units of server j busy), then

we would have that (AxN)j ≤ qN −KN which, because KN = Ω(logN), would contradict (28). Let

l∗ := max

l ∈ {0, . . . ,KN − 1} :
∑

x∈B(l),z∈B(l+1)

Q(x, z)> 0

 .

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 33

Recall that B(0) = {x ∈ X : s(x)≥ qN −KN}= ∪KN
l=0B=(l). By (30), Π(B(0)) = PΠ∗,N {s(X)≥ qN −

KN} ≥ 1
2

for all large enough N . Using the upper bound (35), and recalling that δ̄ > 1, we have

that
1

2
≤Π(B(0)) =

∑
l=0

Π(B=(l)≤KNΠ(B=(0))δ̄KN .

In turn,

Π(B=(0))≥ 2

KN δ̄KN
.

Using now the lower bound (33), and recalling that KN = dκ logNc for some κ> 0, we have

Π(B=(l))≥ 2

KN

(
δ

δ̄

)KN

− o(logN/N)≥ 2

κ logN + 1

(
δ

δ̄

)κ logN+1

− o(logN/N).

Letting β =− log(δ/δ̄), we then have, for all l ∈ [l∗+ 1],

Π(B=(l))≥ 2e−β
1

Nβκ(κ logN + 1)
− o(logN/N)≥ 2e−β

1

Nκ(β+1)
− o(logN/N),

where in the last inequality we use the fact that, for fixed κ and all N large, Nκ ≥ κ logN. Choosing

κ= 1
2(β+1)

we then have for all such l (including l∗+ 1) that

Π(B=(l))≥ 2e−β
1√
N
− o(logN/N).

By definition, no arrivals of type i0 ∈ Ap, are accepted in states x ∈ B=(l∗ + 1). In turn, {x ∈ X :

Q(x,x+ ei0) = 0} ⊇ B=(l∗+ 1). Using PASTA we then have that the number of type-i0 customers

rejected per unit of time is

λNi0

∑
x:Q(x,x+ei0)=0

Π(x)≥ λNi0Π(B=(l∗+ 1))≥ λNi0

(
2e−β

1√
N
− o(logN/N)

)
= Ω

(√
N
)
.

The long-run number of type i0 customers in system, xNi =EΠ∗,N [Xi], then satisfies

xNi =
λNi0
µi0
−Ω(

√
N),

contradicting (29) and, in turn, the optimality of the policy. �

Remark 6.1 Resources with strictly positive slack capacity. We recall that Assumption 3.1 allows

for the resources to have strictly positive slack in the optimal solution. Thus, far we have made

the simplifying assumption that there are no such resources. Upon conclusion of the proofs, we are

now in the position to explain why this restriction comes at no loss of generality. First, we note

that these resources would not appear in the definition of the relaxed network or the relaxed policy

and hence play no role in its analysis. They could play a role in the mixing-time result. These, it is

evident, will also not change the mixing time result for the original network operated under CHT.

In turn, these resources have no impact on the proof of the upper bound. For the lower bound, the

assumption Ap 6= ∅ in Theorem 4.1 has to be strengthened to the requirement that Ap(j) 6= ∅ for

at least one j whose capacity constraint is binding in the optimal solution to (LP).

34 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

7. Simulations

In this section, we present simulation results for the networks in Figures 2, 3, and 4. In the

simulations, we scale both the customer arrival rates λNi =Nλi for all i∈ [n] and the resource units

qNj =Nqj for all j ∈ [d] with N ∈ {200,300, . . . ,1500}. For each value of N , we run one long sample

path and report the long-run average after dropping a warm-up period. Taking into account that

mixing time increases with the network scale, we use a horizon length that scales up with N 2.

Network 1. This is the network in Example 3.1 and we use the same parameters. The less-preferred

customer types Alp = {2,3} are those colored in red in Figure 2. The parameters for this particular

setting are given by

λ= (3,2,5), µ−1 = (2,1,3), q= (7,6), r= (5,1,2).

We choose the coefficients of CHT as δa = δb = 20.

Network 2. This is the network in Example 3.2 and we use the same parameters. The less-

preferred customer types Alp = {1,2,3,5} are those colored in red in Figure 3. The parameters for

this particular setting are given by

λ= (2,3,5,1,6,2,3), µ−1 = (1,3,2,3,5,4,2), q= (11,19,14,7), r= (2,1,3,5,1,6,5).

We choose the coefficients of CHT as δ1 = δ2 = δ3 = δ5 = 20.

Figure 8 depicts the log-normalized regret of CHT as a function of the scaling factor N for

Network 1 and Network 2. The plot suggests that the log-normalized regret does not grow with the

scaling factor N , which echoes our results. For each of the networks we also plot the log-normalized

regret under a threshold policy with the same d logarithmic thresholds but where these are applied

to the true headcount Σt instead of the corrected one Σ∗,t; in the network of Figure 3 type 3

is accepted whenever feasible and qNc − Σt
c ≥ δ3 logN . The “natural” threshold policy—with the

threshold identified, still, based on the perfect matching—seems to perform as well as CHT. These

two networks, however, have a special property — their LP-residual network graph has a unique

perfect matching.

Network 3. Interestingly, we see similar performance in the network of Example 3.3. Here, the

parameters are

λ= (2,2,2, 1/2, 1/3, 1/4), µ−1 = (1,1,1,2,3,4), q= (2,2,2), r= (1,1,1,4,6,8).

We use the perfect matching (1, a), (2, b), (3, c) for the threshold assignment, accepting a type-1,

for example, only if the headcount of resource a is smaller than qNa − δ1 logN . In this network,

the two policies—CHT and the regular (using the true headcount) threshold policy—no longer

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 35

Figure 8 Log-normalized regret for the networks in Example 3.1(LEFT) and in Example 3.2(RIGHT)

100 300 500 700 900 1100 1300 1500
Scaling Factor, N

0

5

10

15

20

25

30

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret, c=(20, 20)
Local threshold policy
CHT

100 300 500 700 900 1100 1300 1500
Scaling Factor, N

0

10

20

30

40

50

60

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret, c=(20, 20, 20, 20)
Local threshold policy
CHT

Notes. The plot displays the (simulated) regret of CHT normalized by the natural log of the scaling factor N in the setting
of Example 3.1 and Example 3.2 respectively. Specifically, we simulate the regret—the difference between the LP upper bound
and the long-run average reward—in a long time horizon with the warm-up period being dropped off. In both networks, the
local threshold policy is the one that uses the true, instead of the corrected, headcount.

show identical performance. They both have logarithmic regret, but the exact constant is different

if the same thresholds are used. However, with these specific parameters, the same performance

that a threshold δ achieves in the regular threshold policy is achieved by δ/2 under CHT. This is

shown in Figure 9 which depicts the log-normalized regret under the two policies. We tried different

parameter combinations for this network and all showed similarly stable and good performance.

Figure 9 Log-normalized regret for the network in Figure 4(LEFT)

100 200 300 400 500 600 700 800 900 1000
Scaling Factor, N

0

10

20

30

40

50

60

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret
Corrected threshold policy c=(10, 10, 10)
Local threshold policy c=(20,20,20)

Finally, we conducted a sensitivity analysis for the setting of Network 1. In Table 1, we report

CHT’s stationary rewards for N = 1000 and different values of the two thresholds (coefficients)

δa, δb. The important threshold seems to be δa which protects the preferred type 1: the reward is

36 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Table 1 Performance of CHT with Different Coefficients–Example 1. The numbers are rounded to the nearest

integer.

δb (Rb = δb logN)

0.5 1 2 3 5 10 15 20
δ a

(R
a

=
δ a

lo
g
N

) 0.5 18727 18672 18659 18655 18646 18623 18600 18577
1 19076 19055 19049 19043 19033 19010 18987 18964
2 19299 19293 19289 19285 19276 19253 19230 19207
3 19327 19326 19322 19318 19308 19286 19262 19239
5 19328 19328 19323 19318 19309 19285 19263 19239
10 19319 19315 19310 19305 19296 19272 19250 19227
15 19306 19303 19299 19293 19284 19260 19237 19213
20 19296 19294 19287 19282 19273 19250 19228 19204

highest when this threshold is large and is less sensitive to how big the threshold is for resource

b. It is an interesting question, left for future work, to understand the dependence of the required

threshold magnitude on the location of a resource in the network.

In Section B of the appendix, we provide a simple heuristic to guide the choice of the threshold

coefficients, accompanied by numerical evidence.

8. Closing Remarks

In this paper, we study a dynamic resource allocation problem with multiple types of customers

and multiple types of reusable resource units. Under an overload condition of the associated LP

of the problem, we devise a threshold policy—with the number of thresholds equal to the number

of resources—and show that its regret is at most logarithmic in the problem size in the many-

customer many-resource regime. The thresholds are applied to a corrected headcount process at

each resource.

The study of networks with simultaneous resource possession (as the ones we study here) in-

evitably leads to questions about the relationship between performance and the underlying com-

binatorial/graph structure; see also Gurvich and Van Mieghem (2015); Dawande et al. (2021).

Our solution in this paper is based strongly on the existence, in overloaded networks, of a perfect

matching in the residual graph. The policy we propose is a centralized policy where, to make

an acceptance decision, one must calculate the targeted levels for less-preferred types which may

require the knowledge of the full vector Xt
Ap

of preferred customers in the system. Our numerical

experiments in §7 suggest that a decentralized threshold policy—where acceptance decisions are

made locally at each resource based on its true (instead of corrected) headcount—achieves, as well,

logarithmic performance, but proving this seems challenging. Our proof for CHT relied on the fact

that, in the auxiliary system, each resource and its “matched” less-preferred type can be studied in

isolation. A general analysis of the decentralized policy might necessitate a complicated Lyapunov

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 37

function that captures the interaction between resources. We conjecture, however, that logarithmic

regret of the decentralized policy is provable, using decomposition arguments, for networks with a

unique perfect matching such as those in Examples 3.1 and 3.2.

It is important that we benchmarked our policy against an LP upper bound (a deterministic

counterpart). In the dynamic stochastic knapsack setting (finite horizon with non-reusable re-

sources), the offline decision maker—one that sees the future realization of demand—was used as a

benchmark; see Arlotto and Gurvich (2019); Vera and Banerjee (2021). The offline objective value

is a tighter upper than the LP. In that setting, the offline decision maker solves an LP with a

random right-hand side. In the case of reusable resources, the offline problem—where arrivals and

service times are known to the decision maker—is a complicated dynamic program and, hence,

difficult to use as a benchmark. We use the LP, instead. It is natural to ask whether (i) one can do

better relative to the offline upper bound, and (ii) the non-degeneracy assumption can be removed

if a tighter offline bound is used as a benchmark. The answer to both of these was answered af-

firmatively in the dynamic stochastic knapsack setting. It is also worth noting that one can have

multiple offline problems. One simple offline version is the one in equation (1) that we used in

the proof of Lemma 3.1; it is reminiscent of the one used in the stochastic knapsack setting. That

crude offline suffices to prove that, with degeneracy, the gap from the LP is O(
√
N), but–precisely

because it does not capture the state constraints under non-preemption—it is too loose. Indeed—

with non-degeneracy—this offline is O(1) from the LP, while we prove that no online policy can

achieve sub-logarithmic regret.

The development of tighter offline benchmarks that allow to go beyond non-degeneracy, remains

desirable, especially given the strong results in the non-reusable case; see Vera et al. (2021).

There are several natural extensions to what we proved here. In our model, a request requires

one unit of each of a set of resources. A natural extension would model requests where the number

of units is itself heterogeneous and random. The second question pertains to the regret when the

network itself (the number of types and number of resources) scales, rather than the number of

units of each of (a finite set of) resources. A challenge here is to model the sequence of (growing)

networks. The literature on flexibility might provide some clues here; see for instance Tsitsiklis and

Xu (2017); Van der Boor et al. (2018).

Answering these questions would give us a more complete picture of dynamic resource allocation

with reusable resources.

Acknowledgments

We thank the AE and three referees for their constructive comments.

38 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Notation

For easy reference, below is a list of notations that we use in the paper.

Problem setup

i∈ [n] and j ∈ [d] The set of customer types and resource types respectively

λNi =Nλi, q
N
j =Nqj Arrival rates and available resource quantities, where N is

the scaling factor

A(j) The set of customer types that request type-j resource unit

S(i) The set of resource types requested by type-i customers

The LP solution under the overload condition

R∗ and R(q,λ/µ) The optimal value of DP and of the LP relaxation

[n] =Ap ∪Alp Partition of the customer base: preferred types and less-
preferred types

Ap(j) =Ap ∩A(j) The set of preferred customer types that request type-j re-
source unit

Alp(j) =Alp ∩A(j) The set of preferred customer types that request type-j re-
source unit

CHT

δi, i∈Alp Threshold coefficient for each less-preferred customer type

Xt The number of customers in service customers at time t

x∗i (X
t) the targeted number of type-i (i∈Alp) customers at time t

Σt
j =

∑
i∈A(j)

Xt
i Number of customers using type-j resource

Σ∗,tj = σj(X
t) the corrected resource-j headcount process

Markov chain analysis

Q The infinitesimal generator (of the relaxed policy π̃)

CHT, π̃ The corrected headcount threshold policy and the relaxed
policy

Xt, X̃t The number of under-service customers under the two poli-
cies at time t

Π, Π̃ The stationary distribution of Xt and X̃t

X , X̃ the state space of the two policies

η absolute constant (that does not depend on N)

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 39

Appendix

A. Proofs of Lemmas

A.1. Proofs for lemmas in Section 3

Proof of Lemma 3.2. The feasible region of (LP) is the polyhedron

{y ∈Rn :Ay≤ q and 0≤ y≤ λ/µ} .

Due to our assumed strict complementary slackness, all d resource constraints are tight (i.e., hold

at equality). Furthermore, since the LP solution is, by assumption, non-degenerate, and there

are n variables, there are exactly n linearly independent tight constraints at the (extreme point)

optimal solution. Thus, there remain exactly n−d tight constraints among the demand constraints

0≤ y≤ λ/µ, i.e., exactly n−d variables with y∗i that is equal to either 0 or λi/µi. As a result, there

are exactly d variables with 0< y∗i <λi/µi (corresponding to the less preferred types).

For the second statement of the lemma, consider the residual optimization problem for types

i ∈ Alp. Specifically, let rAlp
and yAlp

be the suitable sub-vectors of r and y, and AAlp
be the

sub-matrix of A that has only the columns for i ∈Alp. Since |Alp|= d, this is a d× d matrix. The

residual LP is then given by

max (rµ)′Alp
yAlp

s. t. AAlp
yAlp
≤ q̃,

0≤ yAlp
≤ (λ/µ)Alp

,

where q̃ = q − AAp(λ/µ)Ap is the residual capacity after allocation to the preferred types. This

residual optimization problem has the unique (sub) solution y∗Alp
. The residual LP has 2d con-

straints. Because |Alp|= d and because y∗i ∈ (0, λi/µi) for all i ∈Alp the optimal basis has all the

decision variables as well as the slack variables for the demand constraint. The slacks for the capac-

ity constraints are zero-valued and non-basic. We conclude that: (i) the solution for this residual

problem is, as well, unique and non-degenerate, and (ii) the basis matrix is Alp itself and has

linearly independent rows. �

Proof of Lemma 3.1. The proof is an adaptation of the proof of Proposition 1 in Vera and

Banerjee (2021). The difference here is that the right-hand side corresponds to the stationary count

of requests instead of the total number of arrivals.

Fix a stationary policy and let Xt
i be the number of type-i customers in the system. Then,

a simple coupling argument shows that Xt
1, . . . ,X

t
n is bounded component-wise from above by

Y t
1 , . . . , Y

t
n where Y t

i is the number of type-i customers in an infinite server queue that accepts

40 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

all arriving customers. The variables Y t
1 , . . . , Y

t
n are independent and as t ↑ ∞, Y t

i converges to a

Poisson random variable with mean λNi /µi.

In turn, an upper bound on the performance of any stationary policy is given by the expectation

applied to (LP), where the deterministic demand constraints λN/µ are replaced with the random

vector Y N = (Y N
i , i∈ [n]), i.e., let

R(qN , Y N) :=

max
y∈Rn

+

r′µy

s.t. Ay≤ qN ,

y≤ Y N .

Then, by Jensen’s inequality

E[R(qN , Y N)]≤R(qN , λN/µ) =

max
y∈Rn

+

r′µy

s.t. Ay≤ qN ,

y≤ λN/µ.

The dual to the problem on the right-hand side (which is the deterministic upper bound) is given

by

D[λN/µ] := min α′qN +β′(λN/µ)

s. t. α′A+β ≥ rµ,

α∈Rd+, β ∈Rn+.

Notice that because qN = qN and λN =Nλ, the dual solution does not depend onN . Let β = β1−β2

and α= α1−α2. By the assumption of this lemma β 6= 0.

Arguing as in Vera and Banerjee (2021) we conclude that

R(qN , λN/µ)−E[R(qN , Y N)] =E[(λN/µ−Y)′β1
{

(λN/µ−Y N)′β > 0
}

]

=
√
NE

[
1√
N

(λN/µ−Y N)′β1

{
1√
N

(λN/µ−Y N)′β > 0

}]
.

Recall that Yi ∼ Poisson(λNi /µi). By standard results, 1√
N

(λN/µ−Y)′β⇒ Ŵ where Ŵ is a normal

random variable with 0 mean and variance (λ/µ)′β. By Fatou’s lemma

lim
n↑∞

E
[

1√
N

(λN/µ−Y N)′β1

{
1√
N

(λN/µ−Y N)′β > 0

}]
≥E

[
Ŵ1

{
Ŵ > 0

}]
> 0,

where the last inequality is a basic property of the normal random variable. We conclude that

R(qN , λN/µ)−E[R(qN , Y N)] = Ω(
√
N).

�

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 41

A.2. Proofs for lemmas in Section 5

Proof of Lemma 5.1. The Markov chain (X̃t, t≥ 0) is easily verified to be irreducible relative to

the state space

X̃ = {x∈Zn+ : xi ≤ qNji − δi logN, for all i∈Alp}.

For each i ∈ Alp, xi ≤ qji − δi logN . For i ∈ Ap, X̃t
i follows the law of an infinite server queue

(independently of Xt
j , j 6= i) so we have that limt↑∞Ex[Xt

i] = λNi /µi. We then have that for any

initial state x

limsup
t↑∞

∑
i∈[n]

Ex[Xt
i]<∞.

By Markov’s inequality, there exists K such that lim inft≥0 P{
∑

i∈[n]X
t
i ≤K} ≥ 1

2
. For an irre-

ducible chain on Rn+ we can have only one of two outcomes: either limt↑∞ Px{
∑

i∈[n]X
t
i = j}= 0 for

all j or the chain is positive recurrent and has a unique stationary distribution (see Corollary 4.7

in Asmussen (2003)). We conclude that the chain is positively recurrent.

The concentration bound for types i∈Ap is standard and follows immediately from the fact that

the stationary distribution for these types is (independently of everything else) Poisson with mean

λNi /µi = λiN/µi. For a Poisson random variable Z with mean ν, it is known that

P{Z ≥ ν+x} ≤ exp

(
− x2

(2(ν+x/3)

)
.

Plugging ν = λiN/µi and x= εN , and applying a union bound, we obtain the bound in the lemma

with m1 = 2(n− d) and m2 = ε2/(2λi/µi + 2ε/3). �

Proof of Lemma 5.2. We will use the following result for Markov chains; see, for example,

Proposition 3 in Glynn and Zeevi (2008).

Lemma A.1 Suppose that Z = (Zt : t≥ 0) is a non-explosive continuous-time Markov chain on a

state space Z with rate matrix Q and a stationary distribution Π. Then, for any function g :Z →R

for which
∑

z∈Z Π(z)|Q(z, z)||g(z)|<∞,

EΠ[(Qg)(Z)] = 0.

Trivially,

|Q(x,x)| ≤
∑
i∈[n]

(λNi +µixi)≤ η1N + η2

∑
i∈Ap

xi.

42 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Here we used that fact that for i ∈Alp, xi ≤ qNji = qjiN . Recall that gθi (x) = eθ|σji (x)−q̂Nji |. Recalling

also the definition of σj(x) in (10), we have that

|σji(x)− q̂Nji | ≤ σji(x) + q̂Nji

≤ xi +
∑
k∈Ap

xk +
∑
k∈Alp

x∗k(x) + q̂Nji

≤ xi +
∑
k∈Ap

xk +
∑
k∈Alp

|(A−1
lp

(
qN −ApxAp

)
)k|+ q̂Nji

≤ xi + η1

∑
k∈Ap

xk + η2N

≤ η3

(
N +

∑
k∈Ap

xk

)
,

where we used the fact that x∗(ζ) :=A−1
lp (qN −Apζ) (see (3)). In the last inequality, we use again

the fact that xi ≤ qNji = qjiN for i∈Alp. Thus,∑
x

Π̃(x)|Q(x,x)|gθi (x) =EΠ̃[|Q(X̃,X)|gθi (X̃)]≤ η5EΠ̃

[∣∣∣N +
∑
k∈Ap

X̃k

∣∣∣eη6θ(N+
∑

k∈Ap
X̃k)
]

≤ η5

√
EΠ̃

[
(N +

∑
k∈Ap

X̃k))2

]√
EΠ̃

[
e

2η6θ(N+
∑

k∈Ap
X̃k)
]
,

where the last step is Hölder’s inequality. For k ∈Ap, X̃k is, under Π̃, a Poisson random variable with

mean λNk /µk and X̃i, i ∈Ap are independent random variables; the random variable
∑

k∈Ap
X̃k is,

under Π̃, a Poisson random variable with mean
∑

k∈Ap
λNk /µk. In particular, EΠ̃[(

∑
k∈Ap

X̃k)
2]<∞

and, for all small enough θ, EΠ̃[e
η6θ

∑
k∈Ap

X̃k]<∞. We conclude that
∑

x Π̃(x)|Q(x,x)|gθi (x)<∞

as required. The conclusion then follows from Lemma A.1 above. �

Proof of Lemma 5.3. Recalling (4) we write, for i∈Alp,

x∗i (ζ) = y∗iN +
∑
l∈Ap

αli(ζl−λl/µl),

where αli = [A−1
lp Ap]i,l, i∈Alp, l ∈Ap, are real numbers.

Recall the expression for σj(x) on the second row of (10) and that, given i, gθi (x) = eθ|σji (x)−q̂Nji |.

We fix i and θ and drop both, writing g(x) instead of gθi (x). We have

(Qg)(x) =

λNi (g(x+ ei)− g(x)) +µixi(g(x− ei)− g(x))

+
∑

l∈Ap(ji)
λNl (g(x+ el)− g(x)) +

∑
l∈Ap(ji)

µlxl(g(x− el)− g(x))

+
∑

l∈Ap
λNl (g(x+αliel)− g(x)) +

∑
l∈Ap

µlxl(g(x−αliel)− g(x)) if σji(x)≤ q̂Nji

µixi(g(x− ei)− g(x))

+
∑

l∈Ap(ji)
λNl (g(x+ el)− g(x)) +

∑
l∈Ap(ji)

µlxl(g(x− el)− g(x))

+
∑

l∈Ap
λNl (g(x+αliel)− g(x)) +

∑
l∈Ap

µlxl(g(x−αliel)− g(x)) if σji(x)> q̂Nji

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 43

where el stands for the vector in Rn with 1 in the lth coordinate and 0 everywhere else.

Let

β(x) :=
1

g(x)

∑
l∈Ap

λNl (g(x+αliel)− g(x)) +
∑
l∈Ap

µlxl(g(x−αliel)− g(x))

 .

Then,

|β(x)| ≤ 2
∑
l∈Ap

max{|λNl e|α
l
iθ|−µlxl|, |λNl −µlxle|α

l
iθ||}. (36)

Expanding on Qg we have

(Qg)(x) =

− (1− e−θ)

(∑
l∈Ap(ji)∪{i}

(λl− eθµlxl)

)
exp(θf(x)) +β(x) exp(θf(x)) if σji(x)< q̂Nji∑

l∈Ap(ji)∪{i}
(λNl +xlµl) (eθ− 1) +β(x) if σji(x) = q̂Nji

− (1− e−θ)

(
xiµi +

∑
l∈Ap(ji)

(xlµl− eθλNl)

)
exp(θf(x)) +β(x) exp(θf(x)) if σji(x)> q̂Nji .

(37)

We used in this derivation the fact that, when σji(x) = q̂nji , f(x) = 0 and g(x) = exp(θf(x)) = 1.

Choose ε = (1 + ‖A−1
lp ‖)−1 mini∈Alp

y∗i /(16n) ≤ mini∈Alp
y∗i /(16n). For x ∈ ΩN

ε , choosing θ > 0

small enough (dependent on ε and ᾱ= maxi,l |αi,l|), we have∑
k∈Ap

|eθλNk −µkxk|+
∑
k∈Ap

|λNk − eθµkxk| ≤N min
i∈Alp

y∗i /8,

as well as

β(x)≤N min
i∈Alp

y∗i /8. (38)

Consider now the three cases σji(x)> q̂Nji , σji(x)< q̂Nji , and σji(x) = q̂Nji .

(i) σji(x)> q̂Nji : For x∈ΩN
ε with σji(x)> q̂Nji ,

xi = σji(x)−
∑

k∈Ap(ji)

xk−
∑

k∈Alp(ji)\{i}

x∗k

≥ q̂Nji −
∑

k∈Ap(ji)

xk−
∑

k∈Alp(ji)\{i}

x∗k.

Recall that x∗(ζ) = y∗Alp
N +A−1

lp Ap[(λN/µ)Ap − ζ]. Given x∈ΩN
ε , take ζ = xAp . Then, for x∈ΩN

ε ,

‖xAp − (λN/µ)Ap‖ ≤ nεN and ‖x∗(xAp)− y∗Alp
N‖ ≤ ‖A−1

lp ‖nεN . Because

qNji =
∑

i∈A(ji)

y∗iN =
∑

i∈Ap(ji)

λi/µi +
∑

i∈Alp(ji)

y∗iN,

we then have that

xi ≥ q̂Nji −
∑

k∈Ap(ji)

λNk /µk− [A−1
lp Ap(λ

N/µ)Ap]i− (1 + ‖A−1
lp ‖)nεN

= y∗iN − δi logN − (1 + ‖A−1
lp ‖)nεN.

44 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Recall that, by choice, (1 + ‖A−1
lp ‖)nε= mini∈Alp

y∗i /16. Taking θ > 0 small enough, the term in

parentheses in the last row of (37) satisfies, for all N large,

xiµi +
∑

k∈Ap(ji)

(xkµk− eθλNk)≥ µiy∗iN −µi(1 + ‖A−1
lp ‖)nεN ≥ µi(y∗i /4)N.

Using (38) we finally have, choosing θ smaller if needed, that

−(1− e−θ)

xiµi +
∑

k∈Ap(ji)

(xkµk− eθλNk)

+β(x)≤−(1− e−θ)µiy∗iN/4 + |β(x)| ≤−η1N.

(ii) σji(x)< q̂Nji : For x∈ΩN
ε with σji(x)< q̂Nji , we have, following similar reasoning, that

−
(
1− e−θ

) ∑
l∈Ap(ji)∪{i}

(λl− eθµlxl)

+β(x)≤−η2N

(iii) σji(x) = q̂Nji : Because xi ≤ q̂Nji for x ∈ X̃ and xk ≤ λNk /µk + εN for all x ∈ΩN
ε , k ∈Ap, we have

that

|Qg(x)| ≤ (eθ + 1)
∑

k∈Ap(ji)∪{i}

(λNk +xkµk) +β(x)≤ η3N.

Overall, we have the existence of η4, η5 > 0 such that

(Qg)(x)≤−2η4Ng(x) + η5N, for x∈ΩN
ε ,

as stated. �

Proof of Lemma 5.4. This is a direct corollary of Theorem 13 of Morris and Peres (2005).

Equation (46) there states that

τ(ε)≤
∫ 4/ε

4Π∗

8du

uΦ2(u)
.

where Φ(·) is what they call the conductance profile. If we can identify a uniform lower bound

Φ(u)≥Φ> 0 for all u∈ [4Π∗,4/ε], then

τ(ε)≤ 8

Φ2

∫ 4/ε

4Π∗

8du

u
=

8

Φ2
logu

∣∣∣∣4/ε
4Π∗

=
8

Φ2
log

1

εΠ∗
.

Our Lemma 5.4 finally provides the uniform lower bound on the conductance profile Φ(u). �

Proof of Lemma 5.5. We first prove (22). Recall that the transition probability matrix P is

induced by the generator matrix through P =U−1Q+ I, where

U=N
∑
i∈[n]

λi + max
x∈X

∑
i∈[n]

µixi ≤N

∑
i∈[n]

λi +
∑
j∈[d]

qj max
i∈A(j)

µi

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 45

is the uniformization constant. Define

c̄ :=

∑
i∈[n]

λi +
∑
j∈[d]

qj max
i∈A(j)

µi

min

{
min
i∈[n]

µi,min
i∈[n]

λi

} .

Transitions between state x ∈ X and y ∈ X occur either through arrivals (at rate at least

mini λ
N
i =N mini λi), or through service departures at minimal rate of mini µi. We then have that

min
x 6=y∈X :Pxy>0

Pxy ≥
min

{
min
i∈[n]

µi,N min
i∈[n]

λi

}
U

≥ 1

c̄N
. (39)

There exist constants K1,K2 > 0 that do not depend on N such that

K1N ≤ max
x,y∈X

min{n≥ 1 : P n
xy > 0} ≤K2N.

For the upper bound, take states x, y ∈ X . Then, there is a path from x to 0, through xi service

completions of type i. There is then a path from 0 to y, through yi arrivals of type i. The total

length of this path is
∑

i xi +
∑

i yi ≤ 2maxj q
N
j and we can take K2 = 2maxj qj. For the lower

bound, take x = 0 ∈ Rn and y = by∗Nc = (by∗1Nc, . . . , by∗nNc). Then, it takes at least
∑

iby∗iNc
arrivals to transition from x to y and, for all N large enough, we can take K1 = 1

2

∑
i

1
2
y∗i .

As a result, for every x, y ∈X , we have using (39) that

PK2N
xy ≥ (c̄N)

−K2N .

For all m= 0,1,2, . . ., we also have

Pm+K2N(x, y) =
∑
z∈X

Pm(x, z)PK2N(z, y)≥ (c̄N)
−K2N

∑
z∈X

Pm(x, z) = (c̄N)
−K2N .

In particular, regardless of the initial state x,

Π(y) = lim
m→∞

Pm+KN(x, y)≥ (c̄N)
−KN

for all y ∈X .

Here we used the fact that the continuous-time chain and its discrete (uniformized) counterpart

have the same stationary distribution.

We turn to (23). By definition, the conductance is given by

Φ = min
S⊆X :Π(S)≤1/2

∑
x∈S,y∈Sc

Π(x)Pxy

Π(S)
.

Transitions in the Markov chain Xt are such that, for y 6= x, Pxy > 0 if and only if
∑
i∈[n]

|xi− yi |=

1. Evidently, each state x has at least one such neighbor, so we know from (39) that∑
x∈S,y∈Sc

Π(x)Pxy =
∑
x∈S

Π(x)
∑
y∈Sc

Pxy ≥
Π(S)

c̄N
.

As a result, the conductance is lower bounded by Φ≥ 1
c̄N

. �

46 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

A.3. Proofs for lemmas in Section 6

Proof of Lemma 6.1. We first prove that, if (27) holds then (28) is satisfied. Indeed, if Ax ≤
qN −κ logN for all sufficiently large N and some κ> 0, then xi is feasible for (LP) with the right-

hand side modified to the smaller capacity qN − κ logN =N [q − κ(logN)/N]. Let γ be the dual

value of the capacity constraint in (LP). By Assumption 3.1 the primal has a unique non-degenerate

solution and, in turn, so does the dual. In turn, for all large enough N , γ is the same for the

right-hand sides q and q− κ(logN)/N . We would then have that r′µx≤R(qN − κ logN,λN/µ)≤
R(qN , λN/µ)− γκ logN, contradicting (27).

Further, since there always exists a solution that satisfies strict complementarity the (unique)

primal and dual solution must satisfy strict complementarity. In particular, the dual variables for

the demand constraint for i∈Ap are strictly positive. A similar argument to the one above implies

that the optimal policy must have (29), for otherwise

if xi ≤ λNi /µi−κ logN, then r′µx≤R(qN , λN − eiκ logN)≤R(qN , λN/µ)− γκ logN,

for some new γ > 0.

We conclude, then, that if (27) holds, then the sequence of optimal policies must satisfy both

(28) and (29). �

B. The choice of thresholds

We consider here d = 1 (a single resource) and provide heuristic guidance towards the choice of

the threshold coefficient δ applied to the less-preferred types. The premise here is that the choice

of thresholds seeks to strike a balance between the reward collected from less-preferred types and

the possible loss of reward from the rejection of preferred customers. The tradeoff is non-linear:

decreasing the coefficient has (approximately) a linear effect on the reward from less-preferred

customers but a non-linear effect on the probability of rejecting preferred customers.

The simple calculation below is grounded in strong intuition, and the numerical evidence supports

this intuition.

Construction. When all (except at most logN) servers are busy approximately y∗iN of them

are occupied with type-i customers. The total departure rate is then∑
i

µiy
∗
iN =

i∗∑
l=1

λl +µi∗+1(qN −
i∗∑
l=1

λl/µl).

The input rate when above the threshold (so that type i∗+ 1 is not accepted) is
∑i∗

l=1 λl. Heuris-

tically then, when above the threshold, the total number in the system behaves like an M/M/1

queue with utilization

ρ=

∑i∗

l=1 λ
N
l∑i∗

l=1 λ
N
l +µi∗+1yi∗+1N

< 1.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 47

Approximately
∑n

l=1 µly
∗
lN customers are served per unit of time out of a total of

∑n

l=1 λ
N
l

arrivals. The fraction of customers being blocked is then approximately

pblock :=

∑n

l=1 λl−
∑n

l=1 µly
∗
lN∑n

l=1 λ
N
l

,

which is approximately the likelihood that all qN −K servers are busy, where K is the threshold.

Thus, the probability that all servers are busy–at which point preferred requests are also blocked

is approximately

pblock× ρK ,

when the threshold is K. Then, we are (heuristically) looking for K that minimizes

(
i∗∑
l=1

rlλ
N
l)pblockρ

K + ri∗+1µi∗+1K.

This is a convex function of K. Let β = log(1
ρ
). Provided that β

∑i∗

l=1 rlλ
N
l > ri∗+1µi∗+1 (which

holds for all N large enough), we have the optimal solution

K =
1

β
log

(
βpblock

∑i∗

l=1 rlλ
N
l

ri∗+1µi∗+1

)
. (40)

Because λNl =Nλl, we have that

K =
1

β
logN + Γ,

where Γ is the constant 1
β

log

(
βpblock

∑i∗
l=1 rlλl

ri∗+1µi∗+1

)
that does not scale with N .

Notice that the closer that ρ is to 1, the closer β is to 0 and the larger the coefficient of logN

has to be.

As a sanity check we note that this matches the exact asymptotic coefficient derived in Morrison

(2010) for the model with two classes that have equal service rates (µ1 = µ2); see Theorem 1 there;

our β is the same as − logσ there.

For a numerical illustration, we consider the system with three types and the following parameters

λ= (1,1,1), µ= (1,1/2,1/3), r= (1,1,1) and q= 4. The optimal solution to the LP has

y∗ = (1,2,1),R(q,λ/µ) = 7/3.

For these parameters we get K = 30.05 so that δ= 30.05/ logN = 4.84) for N = 500 (corresponding

and K = 34.55 for N = 1000 (so that δ = 34.55/ logN = 5). In Figure 10[TOP] we plot the log-

regret as a function of K/ logN (a proxy for the threshold coefficient). For both N = 500 and

N = 1000, we see that the best coefficient in the simulation is 4 (one below our recommendation),

but 5 produces close performance. Indeed, all of 3,4, and 5 produce a similar performance.

48 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

1 2 3 4 5 6 7 8 9 10
Thredshold Coefficient,

0

2

4

6

8

10
Lo

g-
no

rm
al

ize
d

Re
gr

et
Log-normalized Regret, N=500

1 2 3 4 5 6 7 8 9 10
Thredshold Coefficient,

0

2

4

6

8

10

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret, N=1000

3 4 5 6 7 8 9 10
Thredshold Coefficient,

0

2

4

6

8

10

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret, N=500
Local threshold policy

3 4 5 6 7 8 9 10
Thredshold Coefficient,

0

2

4

6

8

10

Lo
g-

no
rm

al
ize

d
Re

gr
et

Log-normalized Regret, N=1000

Figure 10 Log-regret as a function of the threshold coefficient δ for the reward vector r = (1,1,1) (TOP) and

r= (10,5,1) (BOTTOM)

To show that the threshold and its performance respond as expected to changes in rewards, we

repeat the same experiment, but now with the reward vector r = (10,5,1). The LP solution has

the same decision values and the larger objective value 46/3. The thresholds, as expected, increase

because the preferred types are more valuable. Specifically, for N = 500, the optimal threshold in

(40) is K = 43.12 corresponding to a coefficient of approximately δ = 6.94. Again, our heuristic

would have regret very similar to the simulation-optimal one, which is 7; see Figure 10[BOTTOM].

This is true also for N = 1000 where our heuristic recommends δ= 6.9.

C. The insufficiency of static policies

We consider the case of a single resource (d= 1). Our goal here is to show that logarithmic regret is

not achievable with a static policy. In other words, for logarithmic regret, the accept/reject decision

must be state-dependent. A state independent policy is characterized by a vector p= (p1, . . . , pn)

of probabilities (i.e., pi ∈ [0,1]). When a type-i request arrives, it is accepted with probability pi if

there are units of the resource available and it is declined otherwise. We denote by πS(p) the static

policy using p.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 49

Lemma C.1 Suppose that d= 1 (single resource) and that Assumption 3.1 holds. Then, for any

sequence of vectors pN ∈ [0,1]n,

R(qN , λN/µ)−RπS(pN) = Ω(
√
N). (41)

Proof: Fix the sequence {pN} and let XN
i be the steady-state number of type-i customers under

pN (and with arrival rate λN and qN resource units). We let ΠS(pN) be the stationary distribution

under the policy πS(pN). The existence of a steady state under such a policy is straightforward.

Under such a static policy, the headcount ΣN =
∑

i∈[n]X
N
i in the system has the stationary law of

an M/G/qN/qN with arrival rate
∑

i∈[n] λ
N
i p

N
i , qN servers, and the service time distribution is a

mixture of exponential distributions with mean

1

µ̄N
:=

∑
i∈[n]

λi
µi
pNi∑

i∈[n] λip
N
i

.

Requests can be accepted only when the headcount is strictly below qN . By PASTA, type-i

requests have the (stationary) admission probability pNi PΠS(pN){ΣN < qN}. By Little’s law the

number of type-i customers in service is then xNi = EΠS(pN)[X
N
i] =

λNi
µi
pNi PΠS(pN){ΣN < qN}. By

non-degeneracy we must have that either

xNi =
λNi
µi

+ o(
√
N), i∈Ap, (42)

or that (41) holds; this is argued as in the proof of Lemma 6.1. Assume, then, that (42) holds. It

must then be that pNi PΠS(pN){ΣN < qN}= 1− o(1/
√
N) and, in particular, that both

1− pNi = o(1/
√
N), i∈Ap, and PΠS(pN){ΣN = qN}= 1−PΠS(pN){ΣN < qN}= o(1/

√
N).

Consider a sequence of M/G/qN/qN queues with total arrival rate λ̄N =
∑

i∈[n] λ
N
i p

N
i , mean

service time 1/µ̄N . Then, it is known (e.g., Janssen et al. (2008)) that

PΠS(pN){ΣN = qN}= o(1/
√
N) if and only if λ̄N/µ̄N = qN −Ω(

√
N).

In turn, ∑
i∈[n]

xNi =
∑
i∈[n]

λNi
µi
pNi PΠS(pN){ΣN < qN} ≤

∑
i∈[n]

λNi
µi
pNi ≤ qN −Ω(

√
N).

By non-degeneracy, and following the argument in the proof of Lemma 6.1, we then have

R(qN , λN/µ)−RπS(pN) = Ω(
√
N),

as stated. �

50 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

References

Arlotto, A. and Gurvich, I. (2019). Uniformly bounded regret in the multisecretary problem.

Stochastic Systems, 9(3):231–260.

Asmussen, S. (2003). Applied Probability and Queues, volume 2. Springer.

Baek, J. and Ma, W. (2019). Bifurcating constraints to improve approximation ratios for network

revenue management with reusable resources. Available at SSRN 3482457.

Bean, N. G., Gibbens, R. J., and Zachary, S. (1995). Asymptotic analysis of single resource

loss systems in heavy traffic, with applications to integrated networks. Adv. in Appl. Probab.,

27(1):273–292.

Bean, N. G., Gibbens, R. J., and Zachary, S. (1997). Dynamic and equilibrium behavior of con-

trolled loss networks. Ann. Appl. Probab., 7(4):873–885.

Besbes, O., Elmachtoub, A. N., and Sun, Y. (2021). Static pricing: Universal guarantees for reusable

resources. Operations Res., Articles in Advance.

Bumpensanti, P. and Wang, H. (2020). A re-solving heuristic with uniformly bounded loss for

network revenue management. Management Sci., 66(7):2993–3009.

Cao, H., Hu, J., Jiang, C., Kumar, T., Li, T.-H., Liu, Y., Lu, Y., Mahatma, S., Mojsilović, A.,

Sharma, M., et al. (2011). Onthemark: Integrated stochastic resource planning of human capital

supply chains. Interfaces, 41(5):414–435.

Chen, Y., Levi, R., and Shi, C. (2017). Revenue management of reusable resources with advanced

reservations. Prod. Oper. Manag., 26(5):836–859.

Dawande, M., Feng, Z., and Janakiraman, G. (2021). On the structure of bottlenecks in processes.

Management Science, 67(6):3853–3870.

Feng, Y., Niazadeh, R., and Saberi, A. (2019). Linear programming based online policies for

real-time assortment of reusable resources. Available at SSRN 3421227.

Gallego, G. and van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications

to network yield management. Oper. Res., 45(1):24–41.

Glynn, P. and Zeevi, A. (2008). Bounding stationary expectations of Markov processes. In Markov

processes and related topics: A Festschrift for Thomas G. Kurtz. Selected papers of the conference,

Madison, WI, USA, July, volume 4, pages 195–214.

Gong, X.-Y., Goyal, V., Iyengar, G. N., Simchi-Levi, D., Udwani, R., and Wang, S. (2021). Online

assortment optimization with reusable resources. Management Sci., Articles in Advance.

Goyal, V., Iyengar, G., and Udwani, R. (2020). Online allocation of reusable resources: Achieving

optimal competitive ratio. arXiv preprint arXiv:2002.02430.

Gurvich, I. and Intelligent Automation (2018-2021). Dragons – dynamic resource allocation gains

for operational networked sharing, department of defense (army) sttr a18b-t007.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 51

Gurvich, I. and Van Mieghem, J. A. (2015). Collaboration and multitasking in networks: Architec-

tures, bottlenecks, and capacity. Manufacturing & Service Operations Management, 17(1):16–33.

Hu, J., Lu, Y., Mojsilović, A., Sharma, M., and Squillante, M. S. (2010). Performance management

of it services delivery. ACM SIGMETRICS Performance Evaluation Review, 37(4):50–57.

Hui, J. Y. (2012). Switching and traffic theory for integrated broadband networks, volume 91.

Springer Science & Business Media.

Hunt, P. J. and Kurtz, T. G. (1994). Large loss networks. Stochastic Process. Appl., 53(2):363–378.

Hunt, P. J. and Laws, C. N. (1997). Optimization via trunk reservation in single resource loss

systems under heavy traffic. Ann. Appl. Probab., 7(4):1058–1079.

Iyengar, G. and Sigman, K. (2004). Exponential penalty function control of loss networks. Ann.

Appl. Probab., 14(4):1698–1740.

Janssen, A. J. E. M., Van Leeuwaarden, J., and Zwart, B. (2008). Gaussian expansions and bounds

for the poisson distribution applied to the erlang b formula. Advances in Applied Probability,

40(1):122–143.

Jasin, S. and Kumar, S. (2012). A re-solving heuristic with bounded revenue loss for network

revenue management with customer choice. Math. Oper. Res., 37(2):313–345.

Jia, H., Shi, C., and Shen, S. (2022). Online learning and pricing for service systems with reusable

resources. Operations Research.

Jung, K., Lu, Y., Shah, D. D., Sharma, M., and Squillante, M. (2019). Revisiting stochastic loss

networks: Structures and approximations. Mathematics of Operations Research, 44(3):890–918.

Kelly, F. P. (1986). Blocking probabilities in large circuit-switched networks. Adv. in Appl. Probab.,

18(2):473–505.

Kelly, F. P. (1991). Loss networks. Ann. Appl. Probab., 1(3):319–378.

Key, P. B. (1990). Optimal control and trunk reservation in loss networks. Probability in the

Engineering and Informational Sciences, 4(2):203–242.

Lei, Y. M. and Jasin, S. (2020). Real-time dynamic pricing for revenue management with reusable

resources, advance reservation, and deterministic service time requirements. Operations Res.,

68(3):676–685.

Levi, R. and Radovanović, A. (2010). Provably near-optimal LP-based policies for revenue man-

agement in systems with reusable resources. Operations Res., 58(2):503–507.

Lippman, S. A. (1975). Applying a new device in the optimization of exponential queuing systems.

Operations Res., 23(4):687–710.

Miller, B. L. (1969). A queueing reward system with several customer classes. Management Sci.,

16(3):234–245.

52 X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources

Morris, B. and Peres, Y. (2005). Evolving sets, mixing and heat kernel bounds. Probab. Theory

Related Fields, 133(2):245–266.

Morrison, J. A. (2010). Optimal trunk reservation for an overloaded link. Oper. Res. Lett.,

38(6):499–501.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

Örmeci, E. L., Burnetas, A., and van der Wal, J. (2001). Admission policies for a two class loss

system. Stoch. Models, 17(4):513–539.

Örmeci, E. L. and van der Wal, J. (2006). Admission policies for a two class loss system with

general interarrival times. Stoch. Models, 22(1):37–53.

Owen, Z. and Simchi-Levi, D. (2018). Price and assortment optimization for reusable resources.

Available at SSRN 3070625.

Paschalidis, I. and Liu, Y. (2002). Pricing in multiservice loss networks: static pricing, asymptotic

optimality and demand substitution effects. IEEE/ACM Transactions on Networking, 10(3):425–

438.

Paschalidis, I. and Tsitsiklis, J. (2000). Congestion-dependent pricing of network services.

IEEE/ACM Transactions on Networking, 8(2):171–184.

Puhalskii, A. A. and Reiman, M. I. (1998). A critically loaded multirate link with trunk reservation.

Queueing Syst., 28(1-3):157–190.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons.

Reiman, M. I. (1991). Optimal trunk reservation for a critically loaded link. In Jensen, A. and

Iverson, V. B., editors, Teletraffic and Datatraffic: In a Period of Change, pages 247–252. North

Holland.

Reiman, M. I. and Wang, Q. (2008). An asymptotically optimal policy for a quantity-based network

revenue management problem. Math. Oper. Res., 33(2):257–282.

Ross, K. and Tsang, D. (1989). Optimal circuit access policies in an ISDN environment: a Markov

decision approach. IEEE Transactions on Communications, 37(9):934–939.

Ross, S. (1996). Stochastic Processes. John Wiley & Sons.

Rusmevichientong, P., Sumida, M., and Topaloglu, H. (2020). Dynamic assortment optimization

for reusable products with random usage durations. Management Sci., 66(7):2820–2844.

Talluri, K. T. and van Ryzin, G. J. (2004). The Theory and Practice of Revenue Management.

International Series in Operations Research & Management Science, 68. Kluwer Academic Pub-

lishers, Boston, MA.

Tsitsiklis, J. N. and Xu, K. (2017). Flexible queueing architectures. Operations Research,

65(5):1398–1413.

X. Xie, I. Gurvich, and S. Küçükyavuz: Dynamic Allocation of Reusable Resources 53

Tutte, W. T. (1947). The factorization of linear graphs. Journal of the London Mathematical

Society, s1-22(2):107–111.

Van der Boor, M., Borst, S. C., Van Leeuwaarden, J. S., and Mukherjee, D. (2018). Scalable

load balancing in networked systems: Universality properties and stochastic coupling methods.

In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages

3893–3923. World Scientific.

Vanderbei, R. J. (1998). Linear programming - foundations and extensions, volume 4 of Kluwer

international series in operations research and management service. Kluwer.

Vera, A. and Banerjee, S. (2021). The bayesian prophet: A low-regret framework for online decision

making. Management Science, 67(3):1368–1391.

Vera, A., Banerjee, S., and Gurvich, I. (2021). Online allocation and pricing: Constant regret via

bellman inequalities. Operations Research, 69(3):821–840.

Williamson, E. L. (1992). Airline network seat inventory control: Methodologies and revenue im-

pacts. PhD thesis, Massachusetts Institute of Technology.

Xu, H. and Li, B. (2013). Dynamic cloud pricing for revenue maximization. IEEE Transactions

on Cloud Computing, 1(2):158–171.

	Introduction
	Related Literature
	The Model: Dynamic Allocation of Reusable Resources
	Overloaded Networks
	The Corrected-Headcount Threshold (CHT) Policy and the Regret Bound

	Proof of the upper bound in Theorem 4.1
	Step 1: The Performance of the Relaxed Policy pi
	Step 2: The Mixing Time Bound of Xt under CHT
	Step 3: The Decoupling Time of Xt and Xt
	Combining the Steps

	Proof of the lower bound in Theorem 4.1
	Simulations
	Closing Remarks
	Proofs of Lemmas
	Proofs for lemmas in Section 3
	Proofs for lemmas in Section 5
	Proofs for lemmas in Section 6
	The choice of thresholds

	 The insufficiency of static policies

