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Instrumental Variables 101
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Lecture 1

Selection on Observables

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class.

Bibliography
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Lecture 2

Roy Models and LATE

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class.

Bibliography
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Lecture 3

Marginal Treatment Effects

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class.

Bibliography
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Lecture 4

Extrapolation

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class.

Bibliography
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Lecture 5

Outcome Tests

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class.

Bibliography
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Part II

Understanding Asymptotic
Approximations
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Lecture 6

Asymptotic Comparisons of
Tests I1

Consider the following generic version of a testing problem. One observes
data Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ} and
wishes to test the null hypothesis H0 : θ ∈ Θ0 versus the alternative H1 :
θ ∈ Θ1. A test is simply a function φn = φn(X1, . . . , Xn) that returns
the probability of rejecting the null hypothesis after observing X1, . . . , Xn.
For example, φn might be the indicator function of a certain test statistic
Tn = Tn(X1, . . . , Xn) being greater than some critical value cn(1− α). The
test is said to be (pointwise) asymptotically of level α if,

lim sup
n→∞

Eθ [φn] ≤ α, ∀θ ∈ Θ0 .

Such tests include: Wald tests, quasi-likelihood ratio tests, and Lagrange
multiplier tests. Suppose one is given two different tests of the same null
hypothesis, φ1,n and φ2,n, and both tests are (pointwise) asymptotically of
level α. How can one choose between these two competing tests of the same
null hypothesis? We will now explore the answer to this question in the
context of a specific example.

6.1 A Symmetric Location Model

Suppose Pθ is the distribution with density f(x− θ) on the real line (w.r.t.
Lebesgue measure). Suppose further that f is symmetric about 0 and that
it’s median, 0, is unique. Because f is symmetric about 0, f(x − θ) is
symmetric about θ. We also have that Eθ[X] = θ and medθ[X] = θ.
Finally, suppose that the variance of P0 is positive and finite; that is,
σ2

0 =
∫
x2f(x)dx ∈ (0,∞).

1Today’s notes are based on Azeem Shaikh’s notes. I want to thank him for kindly
sharing them.
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20 LECTURE 6. LOCAL ASYMPTOTICS

Notice that we could take f to be the density of a normal distribution
and satisfy all of our assumptions. But many other choices of f satisfy these
assumptions. For example, we could take f to be the uniform density on
[−1, 1], the logistic density, or the Laplace density.

Suppose Θ0 = {0} and Θ1 = {θ ∈ R : θ > 0}; i.e., we wish to test the
null hypothesis H0 : θ = 0 versus the alternative H1 : θ > 0. How could we
test this null hypothesis?

One such test is of course based on the familiar t-statistic:
√
nX̄n

σ̂n
,

where

X̄n =
1

n

∑
1≤i≤n

Xi and σ̂2
n =

1

n

∑
1≤i≤n

(Xi − X̄n)2 .

Under the assumptions above, the CLT, and the CMT, we get

√
nX̄n

σ̂n

d→ N(0, 1)

under P0. Thus, we may take

φ1,n = I

{√
nX̄n

σ̂n
> z1−α

}
where z1−α is the 1 − α quantile of the standard normal distribution. Ob-
viously, this test is asymptotically of level α (because z1−α is a continuity
point of the standard normal distribution).

A second test is based off of the following observation. Since f has
median 0 under the null hypothesis, the number of positive and negative
observations should be roughly equal (at least asymptotically). This sug-
gests a test based on the test statistic:

1

n

∑
1≤i≤n

I{Xi > 0} .

How does this statistic behave under the null hypothesis? We can com-
pute that

E0[I{Xi > 0}] = P0{Xi > 0} = 1− F (0) =
1

2

and thus

V0[I{Xi > 0}] = F (0)(1− F (0)) =
1

4
.

Thus, by the CLT we have that

2√
n

∑
1≤i≤n

(I{Xi > 0} − 1

2
)
d→ N(0, 1) .
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So, we could take

φ2,n = I

 2√
n

∑
1≤i≤n

(
I{Xi > 0} − 1

2

)
> z1−α

 .

This test is known as the sign test. Obviously, this test is also asymp-
totically of level α.

6.2 A Naive Approach

It is natural to base comparisons of two different tests on their power func-
tions. The power function of a test is the function πn(θ) = Eθ[φn]; i.e., it is
the probability of rejecting the null hypothesis as a function of the unknown
parameter θ. In this problem it will be difficult to compare the finite-sample
power functions of the two tests, but we may try to do so in an asymptotic
sense. To this end, let’s compute the power functions of each of the above
two tests at a fixed θ > 0.

Let’s start with the t-test. The key trick is to realize that

π1,n(θ) = Pθ

{√
nX̄n

σ̂n
> z1−α

}
= P0

{√
nȲn +

√
nθ

σ̂n
> z1−α

}
= P0

{√
nȲn
σ̂n

> z1−α −
√
nθ

σ̂n

}
,

where Yi = Xi−θ is distributed according to P0. Importantly, we have done
this in the denominator, too, using the fact that

σ̂2
n =

1

n

∑
1≤i≤n

(Xi − X̄n)2 =
1

n

∑
1≤i≤n

(Yi − Ȳn)2 .

Since
√
nȲn
σ̂n

converges in distribution to a standard normal under P0 and

z1−α −
√
nθ
σ̂n

diverges in probability to −∞ under P0, it follows that

π1,n(θ)→ 1

for every θ > 0.
Now let’s consider the sign test. Begin by considering the behavior of

1

n

∑
1≤i≤n

I{Xi > 0}
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under Pθ. Using the same trick as above, it is easy to compute that

Eθ[I{Xi > 0}] = Pθ {Xi > 0}
= P0 {Yi > −θ}
= 1− F (−θ) ,

which implies that

Vθ[I{Xi > 0}] = F (−θ)(1− F (−θ)) .

Thus, by the central limit theorem for i.i.d. observations, we have that

Sn(θ) =
1√
n

∑
1≤i≤n

(I{Xi > 0} − (1− F (−θ)))

converges in distribution to N(0, F (−θ)(1− F (−θ))). We can now see that

π2,n(θ) = Pθ

 2√
n

∑
1≤i≤n

(
I{Xi > 0} − 1

2

)
> z1−α


= Pθ

{
2Sn(θ) > z1−α − 2

√
n

(
1

2
− F (−θ)

)}
.

Because f is symmetric about 0, F (−θ) < 1
2 . We can now conclude as before

that
π2,n(θ)→ 1

for every θ > 0.
So, we see that a pointwise comparison of power functions of the two tests

is completely uninformative. Both tests have power tending to 1 against
any fixed alternative θ > 0. In general, tests that have power tending to 1
against any fixed θ ∈ Θ1 are said to be consistent. Any reasonable test will
be consistent, so consistency is too weak of a requirement to be of use when
trying to choose among different tests.

6.3 Local Asymptotic Power

Here, as always, there are an innumerable number of ways of embedding
our situation with a sample of size n in a sequence of hypothetical situa-
tions with sample sizes larger than n. When choosing among these different
asymptotic frameworks, it is important to keep in mind that what we are
really interested in is the finite-sample behavior of the power function; that
is, the behavior of the power function for our sample of size n. In the pre-
ceding section, we have shown that the power tends to 1 at any fixed θ > 0
as n tends to infinity. Of course, in our sample of size n we know that the
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power is not 1 uniformly for θ > 0. It may be very close to 1 for θ “far” from
0, but for θ “close” to 0 we would expect the finite-sample power function
to be < 1. Of course, what we mean by “far” and “close” will change with
our sample size n. Our asymptotic framework should reflect this fact. The
above framework in which the alternative θ > 0 is fixed does not. This sug-
gests that we should consider the behavior of the power function evaluated
at a sequence of alternatives θn, where θn tends to 0 at some rate. One can
think of this as providing a locally asymptotic approximation to the power
function.

It turns out that if θn tends to 0 slowly enough, then the power function
will still tend to 1 as n tends to infinity. This follows from the following
useful fact: If for every ε > 0, En(ε) → 1, then there exists a sequence εn
tending to 0 slowly enough so that En(εn) → 1. I won’t prove this fact,
but it isn’t too hard to do it yourself. You can also find a proof in David
Pollard’s A User’s Guide to Measure-Theoretic Probability.

Likewise, if θn tends to 0 quickly enough, then for asymptotic purposes
it’s as if θn = 0. For any such sequence, the power function tends to α as n
tends to infinity in each of the above two examples.

There is a delicate rate in between the two extremes above such that if
θn tends to 0 at this rate, then the power will tend to a limit in (α, 1). This
rate may be different in different problems, but in problems such as this one
in which the distribution depends on θ in a “smooth” way it must be that
θn = O( 1√

n
). So, we will consider sequences θn = h√

n
, where h ∈ R.

Let’s again consider the t-test first. The calculation will be very similar
to the one in the preceding section for the t-test. An important distinction
is that now we must consider a triangular array of random variables because
the distribution of the data is changing with each n. For each n, let Xi,n, i =
1, . . . , n be an i.i.d. sequence of random variables with distribution Pθn . The
trick, as before, will be to write the power in terms of Yi,n = Xi,n−θn, which
is distributed according to P0. We can now see that,

π1,n(θn) = Pθn

{√
nX̄n,n

σ̂n,n
> z1−α

}
= P0

{√
nȲn,n +

√
nθn

σ̂n,n
> z1−α

}
= P0

{√
nȲn,n
σ̂n,n

> z1−α −
h

σ̂n,n

}
.

Since the distribution of Yi,n is no longer changing with n, our analysis
from before applies and we see that

√
nȲn,n
σ̂n,n

d→ N(0, 1)
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under P0. Since σ̂n,n converges in probability under P0 to σ0, we have that

π1,n(θn)→ 1− Φ

(
z1−α −

h

σ0

)
.

This limit is called the local asymptotic power function of the t-test.
Notice that it depends on the so-called local parameter h.

A remark on interpretation is warranted here. We are really only inter-
ested in the power of the test at a single θ > 0, not a sequence θn. So, how
should we use the above approximation in practice? Given a sample of size
n and a θ > 0, we can solve for the corresponding value of h by equating θ
and θn. By doing so, we find that h =

√
nθ. Plugging this value of h into

the above expression, we get our approximation to the power of the test at
θ.

Now let’s consider the sign test. Begin as before by considering the
behavior of

1

n

∑
1≤i≤n

I{Xi,n > 0}

under Pθn . Our earlier analysis shows that

Eθn [I{Xi,n > 0}] = 1− F (−θn) ,

and
Vθn [I{Xi,n > 0}] = F (−θn)(1− F (−θn)) .

We’d like to assert that

Sn(θn) =
1√
n

∑
1≤i≤n

(I{Xi,n > 0} − (1− F (−θn)))

converges in distribution under Pθn to a normal distribution. To do this, we
will need a central limit theorem for a triangular array. The most general
such theorem is the Lindeberg-Feller central limit theorem. Here’s a special
case of it:

Theorem 6.1 For each n, let Zn,i, i = 1, ..., n be i.i.d. with distribution Pn.
Suppose En[Zn,i] = 0 and Vn[Zn,i] = σ2

n <∞. If for each ε > 0

lim
n→∞

1

σ2
n

En[Z2
n,iI{|Zn,i| > ε

√
nσn}] = 0

then √
nZ̄n,n
σn

d→ N(0, 1)

under Pn.
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For the general version of the Lindeberg-Feller central limit theorem see,
for example, Theorem 11.2.5 of Romano and Lehman (2005). For a proof
see Theorem 27.2 of Billingsley (1995).

So let’s apply the theorem with

Zn,i = I{Xi,n > 0} − (1− F (−θn))

σ2
n = F (−θn)(1− F (−θn)) .

For any fixed h, σn is also bounded away from 0 because F (0) = 1
2 , F is

continuous by assumption (it’s the integral of f), and θn ≈ 0 for large n. We
also have that σn is bounded from above because F is bounded. Finally, we
have that Zn,i is bounded because I and F are both bounded. Therefore,
the condition required in the theorem holds trivially in this case and then,

Sn(θn)

σn

d→ N(0, 1) or 2Sn(θn)
d→ N(0, 1)

under Pθn , since σ2
n → F (0)(1− F (0)) = 1

4 .
We can now finish our analysis for the sign test. We have that

π2,n(θn) = Pθn

 2√
n

∑
1≤i≤n

(
I{Xi,n > 0} − 1

2

)
> z1−α


= Pθn

{
2Sn(θn) > z1−α − 2

√
n

(
1

2
− F (−θn)

)}
.

Since F is differentiable by assumption (with derivative equal to f), we
see that

F (−θn) = F (0)− f(0)θn + o(θn) ,

and so

√
n

(
1

2
− F (−θn)

)
=
√
n (F (0)− F (−θn)) =

√
nθnf(0)+

√
no(θn)→ hf(0)

assuming f is continuous at 0. Together with the result about the asymptotic
normality of Sn(θn) above, we find that

π2,n(θn)→ 1− Φ (z1−α − 2hf(0)) .

We are now (finally) in a position to compare these two tests based on
their local asymptotic power functions. It is easy to see that if 2f(0) > 1

σ0
,

then the sign test will be preferred to the t-test in a local asymptotic power
sense; otherwise, the t-test will be preferred to the sign test.

If f is the normal density, then we know that the t-test should be uni-
formly most powerful for testing the null hypothesis. Reassuringly, if we
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plug in the standard normal density for f , we find that the above analy-
sis bears this out. Likewise, if f is the density of a logistic or a uniform
distribution, then the t-test is preferred to the sign test.

If, on the other hand, we consider distributions with “fatter” tails, we
find that the situation is reversed. For example, if we take f to be the
density of a Laplace distribution, the above analysis implies that the sign
test is preferred to the t-test in a local asymptotic power sense. In fact, we
can make the ratio of 2f(0) to 1/σ0 arbitrarily large by considering densities
f with more and more mass in the tails. Thus, the moral of this story is that
if the underlying distribution is symmetric, then, the t-test, while preferred
for many distributions, is not as robust as the sign test to “fat” tails (and
can in fact be arbitrarily worse than the sign test!).

The square of the ratio of 2f(0) to 1/σ0 is sometimes referred to as the
asymptotic relative efficiency of the sign test w.r.t. the t-test, i.e.,

ARE2,1 = 4f(0)2σ2
0 .

Asymptotic relative efficiency is defined analogously for other pairs of tests.
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Lecture 7

Contiguity

Today’s lecture is about a technique to obtain the limit distribution of a
sequence of statistics under underlying laws Qn from a limiting distribution
under laws Pn. This will be particularly useful to compute local asymptotic
power of different statistics. We already did this in the first lecture when we
studied the asymptotic local power of the t-test and the sign test for testing
the location of a statistical model. However, extending such analysis to more
complicated models is typically too complicated and becomes intractable.
Today we will introduce an alternative way of computing local asymptotic
power that is based on the idea of contiguity.

7.1 Absolute continuity and likelihood ratios

Let P and Q be measures on a measurable space (Ω,A). Then Q is absolutely
continuous with respect to P if for every measurable set A we have that
P{A} = 0 implies Q{A} = 0; this is denoted by Q << P . Furthermore,
P and Q are orthogonal if Ω can be partitioned as Ω = ΩP ∪ ΩQ with
ΩP ∩ ΩQ = ∅ and P{ΩQ} = Q{ΩP } = 0. Orthogonality is denoted by
P ⊥ Q.

Theorem 7.1 (Radon-Nikodym) Suppose Q and P are probability mea-
sures on (Ω,A). Then Q << P if and only if there exists a measurable
function L(x) such that,

Q{A} =

∫
A
L(x)dP, for all A ∈ A .

The function L(x) ≡ dQ(x)/dP (x) is called the Radon-Nikodym derivative
(or density) or likelihood ratio.

In general two measures P and Q need be neither absolutely continuous
nor orthogonal. Suppose these two measures possess densities p and q with

27
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respect to a measure µ. In this case, ΩP = {p > 0} and ΩQ = {q > 0}. The
measure Q can be written as the sum Q = Qa +Q⊥ of the measures,

Qa{A} = Q{A ∩ {p > 0}}; Q⊥{A} = Q{A ∩ {p = 0}} .

This decomposition is called the Lebesgue decomposition of Q with respect
to P . In what follows we shall think of the likelihood ratio as a random
variable dQ/dP : Ω 7→ [0,∞) and study its law under P .

Lemma 7.1 Let P and Q be probability measures with densities p and q
with respect to a measure µ. Then for the measures Qa and Q⊥,

1. Q = Qa +Q⊥, Qa << P , Q⊥ ⊥ P .

2. Qa{A} =
∫
A(q/p)dP for every measurable set A

3. Q << P if and only if Q{p = 0} = 0 if and only if
∫

(q/p)dP = 1

Proof. See van der Vaart (1998, Lemma 6.2).

Note that the function q/p is a density of Qa with respect to P . It is
denoted dQ/dP (not dQa/dP ), so that dQ/dP = q/p, P -a.s.

Suppose that T = f(X) is an estimator or test statistic. How can we
compute the distribution of T under Q if we know how to compute proba-
bilities under P? If the probability measure Q is absolutely continuous with
respect to a probability measure P , then the Q-law of a random variable X
can be calculated from the P -law of the pair (X, q/p) though the formula,

EQ[f(X)] =

∫
X
f(x)dQ(x) =

∫
X
f(x)

q(x)

p(x)
dP (x) = EP [f(X)

dQ

dP
] .

The validity of this formula depends essentially on the absolute continuity
of Q with respect to P , because a part of Q that is orthogonal to P cannot
be recovered from any P -law. Thus, under absolute continuity of Q with
respect to P , the problem of finding the distribution of f(X) under Q can be
in principle obtained form the joint distribution of f(X) and dQ/dP under
P .

7.2 Contiguity

Consider now an asymptotic version of the problem. Let (Ωn,An) be mea-
surable spaces, each equipped with a pair of probabilities Pn and Qn. Let
Tn be some random vector and suppose the asymptotic distribution of Tn
under Pn is easily obtained, but the behavior of Tn under Qn is also re-
quired. For example, if Tn represents a test function for testing Pn versus
Qn, the power of Tn is the expectation under Qn. Under what conditions
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can a Qn-limit law of random vectors Tn be obtained from suitable Pn-limit
laws? The concept is called contiguity and essentially denotes a notion of
“asymptotic absolute continuity”.

At a first glance one could think that asking that the sequences are such
that Qn << Pn for all n would be enough. This is however not true, as the
following example suggests.

Example 7.1 Let Pn = N(0, 1), Qn = N(ξn, 1), ξn → ∞. It is immediate
to see that Qn << Pn since Pn{En} = 0 implies Qn{En} = 0 for all n.
However, the asymptotic problem is not about probabilities at each n but
rather about limit probabilities. This is, we can perfectly have a situation
where Pn{En} > 0 for all n and Pn{En} → 0. Suppose Pn{En} → 0.
Does it follow that Qn{En} → 0? The answer in this case is no. Let
En = {x : |x−ξn| < 1}. We have Qn{En} ≈ 0.68 for all n, but Pn{En} → 0.

Definition 7.1 (Contiguity) Let Qn and Pn be sequences of measures.
We say that Qn is contiguous w.r.t. to Pn, denoted Qn / Pn, if for each
sequence of measurable sets An, we have that

Pn{An} → 0⇒ Qn{An} → 0 .

Note that Example 7.1 shows that absolute continuity does not imply
contiguity. The following example provides an extension.

Example 7.2 Suppose Pn is the joint distribution of n i.i.d. observations
X1, . . . , Xn from N(0, 1) and Qn is the joint distribution of n i.i.d. observa-
tions from N(ξn, 1). Unless ξn → 0, Pn and Qn cannot be contiguous. For
example, suppose ξn > ε > 0 for all large n and consider En = {X̄n > ε/2}.
By the LLN, Pn{En} → 0 but Qn{En} → 1. In fact, in order for Pn and
Qn to be contiguous, n1/2ξn needs to be bounded.

For probability measures P and Q, Lemma (7.1) implies that the follow-
ing three statements are equivalent,

Q << P, Q

(
dP

dQ
= 0

)
= 0, EP

dQ

dP
= 1 .

This equivalence persists if the three statements are replaced by their asymp-
totic counterparts, as proved by Le Cam. In what follows, we use the nota-

tion
Pn to denote

d→ under Pn.

Lemma 7.2 (Le Cam’s first lemma) Let Pn and Qn be sequences of prob-
ability measures on measurable spaces (Ωn,An). Then the following state-
ments are equivalent:

1. Qn / Pn.
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2. If dPn/dQn
Qn U along a subsequence, then Pr(U > 0) = 1.

3. If dQn/dPn
Pn V along a subsequence, then E[V ] = 1.

4. For any statistic Tn : Ωn → Rk: If Tn
Pn→ 0, then Tn

Qn→ 0.

Proof. See van der Vaart (1998, Lemma 6.4).

Corollary 7.1 Let dQn/dPn
Pn V and suppose log(V ) ∼ N(µ, σ2) (this is,

V has a log normal distribution). Then Qn and Pn are mutually contiguous
if and only if µ = −1

2σ
2, which follows from E[V ] = exp(µ+ 1

2σ
2).

Example 7.3 Contiguity does not imply absolute continuity. Let Pn =
U [0, 1], Qn = U [0, θn], θn → 1, θn > 1. Note that by Le Cam first Lemma,

dQn/dPn = 1/θn
Pn V = 1 so Qn / Pn. However, it is not true that

Qn << Pn since Pn{[1, θn]} = 0 while Qn{[1, θn]} > 0.

Example 7.4 Let Pn = N(0, 1), Qn = N(ξn, 1). Then,

log(Ln(X)) = log

(
dQn
dPn

)
= ξnX −

1

2
ξ2
n .

This converges if ξn → ξ with |ξ| < ∞ which yields ξX − 1
2ξ

2 in the limit.

Hence, logLn
Pn N(−1

2ξ
2, ξ2) and the relationship between the mean and

the variance is satisfied. We then get contiguity for |ξ| <∞.

Example 7.5 Suppose Pn is the joint distribution of n i.i.d. observations
X1, . . . , Xn from N(0, 1) and Qn is the joint distribution of n i.i.d. observa-
tions from N(ξn, 1). Then,

log(Ln(X1, . . . , Xn)) = ξn
∑

Xi −
nξ2

n

2
,

and so

log(Ln(X1, . . . , Xn)) ∼ N
(
−1

2
nξ2

n, nξ
2
n

)
.

By the arguments similar to that of the previous example, Qn is contiguous
to Pn if and only if nξ2

n remains bounded, i.e. ξn = O(n−
1
2 ). Think about

the case
√
nξn →∞ (which violates 3 in Lemma 7.2).

Note that contiguity implies that the sequences of measures Pn and Qn
do not separate asymptotically: given data from Pn or Qn it is impossible
to tell with certainty from which of the two sequences the data is generated,
at least in an asymptotic sense, as n → ∞. Indeed, if Pn and Qn are
contiguous, and φn is a sequence of tests with error probabilities EPn [φn]
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for testing the null hypothesis Pn satisfying EPn [φn] → 0, then the power
EQn [φn] at the alternative Qn satisfies EQn [φn]→ 0 as well.

Actually, contiguity implies more: contiguity is “asymptotic absolute
continuity”, meaning that it is possible to derive asymptotic probabilities
computed under Qn from those computed under Pn. This is the content of
Le Cam’s third lemma, which we discuss below.

Contiguity has turned out to be a wonderful tool in many proofs, where
one is given a choice to prove convergence in probability to zero under the
measure of interest, or under any other convenient, contiguous sequence.
However, the application of contiguity that has made it popular is in the
comparison of statistical tests. Here one is given a sequence of tests φn
concerning a parameter θ attached to a statistical model (Pn,θ : θ ∈ Θ) and
corresponding power functions

πn(θ) = EPn,θ [φn] .

If Pn,θ0 and Pn,θ1 are asymptotically separated, then any “good” sequence of
tests of the null hypothesis θ0 versus the alternative θ1 will have πn(θ0)→ 0
and πn(θ1)→ 1. Such alternatives are not of much interest to compare the
quality of two sequences of tests. On the other hand, contiguous alternatives
will not allow this type of degeneracy, and hence may be used to pick a best
test, or compute a relative efficiency of two given sequences of tests. Such
contiguous alternatives may be given through the context, for instance of a
parametric model.

To prevent asymptotic separation of alternative hypotheses Pn and Qn
the full force of contiguity is not needed. Contiguity has a further use,
which is to alleviate the problem of computing the limiting distribution of
a test statistic under a (contiguous) alternative. This technique is skillfully
applied to rank procedures in Hájek and Sidák (1967), and has since become
a standard tool in the asymptotic analysis of tests. The basic procedure,
known as Le Cam’s third lemma, is stated below.

Lemma 7.3 (Le Cam’s third lemma) Suppose that(
Xn, log

dQn
dPn

)
Pn N

((
µ
−1

2σ
2

)
,

(
Σ τ
τ ′ σ2

))
.

Then,

Xn
Qn N(µ+ τ,Σ) .

This Lemma shows that under the alternative distribution Qn, the limiting
distribution of the test statistic Xn is also normal but has mean shifted by
τ = limn→∞ cov(Xn, log(dQn/dPn)). In the testing situation, with asymp-
totically normal test statistics Xn, it follows that a change of measure from
a null hypothesis to a contiguous alternative induces a change of asymptotic
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mean in the test statistics equal to the asymptotic covariance between Xn

and log dQn
dPn

and no change of variance. It follows that good test statistics
have a large (asymptotic) covariance with the log likelihood ratios.

7.3 Wilcoxon signed rank statistic

Now we will use Le Cam’s Third Lemma to analyze the local asymptotic
power of the Wilcoxon signed rank statistic. For this we will use the same
location example we used for the t-test and the sign test. Suppose Pθ is the
distribution with density f(x − θ) on the real line. Suppose further that f
is symmetric about 0, so that f(x − θ) is symmetric about θ. We observe
X1, . . . , Xn from f and wish to test the null H0 : θ = 0. The Wilcoxon
signed rank statistic serves to test this null and takes the form

Wn = n−3/2
n∑
i=1

R+
i,n sign(Xi) ,

where

sign(Xi) =

{
1 if Xi ≥ 0
−1 otherwise

,

and

R+
i,n =

n∑
j=1

I{|Xj | ≤ |Xi|}

is the rank of |Xi| among |X1|, . . . , |Xn|. Under the null hypothesis, the
behavior of Wn is fairly easy to obtain. If θ = 0, the variables sign(Xi) are
i.i.d. and equal to 1 with probability 1/2 and -1 with probability 1/2. Note
that EP0 [sign(Xi)] = 0.

Now let Ui = G(|Xi|) and G be the cdf of |Xi|. Note that

Ui − n−1R+
i,n = Ui − n−1

n∑
j=1

I{|Xj | ≤ |Xi|} = op(1) .

What’s important is that the above convergence is valid uniformly over
i = 1, . . . , n (Glivenko-Cantelli). Then

Wn = n−1/2
n∑
i=1

n−1R+
i,n sign(Xi) = n−1/2

n∑
i=1

Ui sign(Xi) + op(1) .

This shows that the asymptotic distribution of Wn equals the asymptotic
distribution of n−1/2

∑n
i=1 Ui sign(Xi). Let Zi = Ui sign(Xi) and note that

Zi are i.i.d. with mean zero since sign(X) and |X| are independent under
the null. Then

EP0 [Wn] =
√
nEP0 [Zi] = 0 .
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To get the variance of Zi under P0, note that

varP0 [Zi] = EP0 [U2
i ] =

1

3
,

since Ui ∼ U(0, 1). Therefore, by the Central Limit Theorem

Wn
P0 N

(
0,

1

3

)
,

as n→∞ and the test

φ3,n = I{
√

3Wn > z1−α}

is (pointwise) asymptotically of level α.
Now it is time to use Le Cam’s third lemma to examine the power of this

test under the sequence of alternatives Pθn where θn = h/
√
n. Le Cam’s

lemma suggest that we look at,

(Wn, log(dPθn/dP0)) .

We first consider the case where Pθn = N(θn, 1) and P0 = N(0, 1). In this
case, note that

pθn(X1, . . . , Xn) =
n∏
i=1

(2π)−1/2 exp[−1

2
(Xi − θn)2]

and then,

logLn = log(dPθn/dP0) = log
e−

1
2

∑n
i=1(X2

i −2Xiθn+θ2n)

e−
1
2

∑n
i=1X

2
i

= θn

n∑
i=1

Xi −
n

2
θ2
n

= hn−1/2
n∑
i=1

Xi −
1

2
h2 .

We then have

(Wn, log(dPθn/dP0)) =

(
n−1/2

n∑
i=1

Ui sign(Xi) , hn
−1/2

n∑
i=1

Xi − h2/2

)
+op(1) ,

which is asymptotically bivariate normal under P0 with covariance of the
cross term

τ = covP0 [G(|X|) sign(X) , hX] = hEP0 [G(|X|)|X|] =
h√
π
,
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where the last equality is an exercise of integration. The local asymptotic
power under the alternatives Pθn follows from the conclusion of Le Cam’s
third lemma, i.e,

Wn
Pθn N

(
h√
π
,
1

3

)
,

since

lim
n→∞

Pθn(Wn > z1−α/
√

3) = lim
n→∞

Pθn(Wn − h/
√
π > z1−α/

√
3− h/

√
π)

= 1− Φ

(
z1−α − h

√
3

π

)
.

In order to drop the simplifying normal assumption, we can obtain the
asymptotic power under the assumption that the model P = {Pθ : θ ∈ Θ}
is differentiable in quadratic mean. This is the topic of next class.
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Lecture 8

Local Asymptotic Normality

Suppose we observe a sample X1, . . . , Xn from a distribution Pθ on some
measurable space (X ,A) indexed by a parameter θ in Θ open. Then the full
observation is a single observation from the product Pnθ of n copies of Pθ
and the statistical model (also called statistical experiment) is completely
described as the collection of probability measures P = {Pnθ : θ ∈ Θ}.
Today we will study conditions under which a statistical experiment can be
approximated by a Gaussian experiment after a suitable reparametrization.
Let’s start with the trivial case where the approximation is exact.

Example 8.1 (Normal Location Model) Suppose Pθ = N(θ, σ2), where
σ2 is known. In this case,

log[dPnθ0+h/
√
n/dP

n
θ0 ] = − 1

2σ2

n∑
i=1

(
Xi − θ0 −

h√
n

)2

+
1

2σ2

n∑
i=1

(Xi − θ0)2

=
1

σ2

n∑
i=1

(Xi − θ0)
h√
n
− h2

2σ2

=
h

σ2
n1/2(X̄n − θ0)− h2

2σ2

= h∆n −
1

2
Iθ0h

2 , (8.1)

where
∆n = n1/2(X̄n − θ0)/σ2 ∼ N(0, Iθ0) and Iθ0 = 1/σ2 ,

under Pθ0. It follows that

log[dPnθ0+h/
√
n/dP

n
θ0 ] ∼ N

(
−1

2

h2

σ2
,
h2

σ2

)
under Pθ0 . (8.2)

The expansion in (8.1) has no reminder, is a linear function of ∆n (which is
exactly sufficient), and a simple quadratic function of h, with the coefficient
on h2 nonrandom (i.e., Iθ0).

35
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8.1 Local Asymptotic Normality

The traditional regularity conditions for maximum likelihood theory involve
existence of two or three derivatives of the density function, together with
domination assumptions to justify differentiation under integrals. Le Cam
(1970) noted that such conditions are unnecessarily stringent. He showed
that the traditional conditions can be replaced by a simple assumption of
differentiability in quadratic mean (QMD). In particular, Le Cam showed
that it implies a quadratic approximation property for the log-likelihoods
known as Local Asymptotic Normality (LAN).

Definition 8.1 The statistical experiment is called LAN at θ0 ∈ Θ if there
exist a sequence of stochastic vectors ∆n,θ0 and a nonsingular (k×k) matrix

Iθ0 such that ∆n,θ0
d→ N(0, Iθ0) under Pnθ0 and such that,

log

[
dPn

θ0+h/
√
n

dPnθ0

]
= h∆n,θ0 −

1

2
h′Iθ0h+ oPθ0 (1) . (8.3)

Traditional arguments to show LAN go as follows. Consider an i.i.d. se-
quence X1, . . . , Xn from a density pθ = dPθ/dµ (for some dominating mea-
sure µ) such that the map θ 7→ pθ is twice differentiable. Let `θ(x) =
log pθ(x), with derivatives ˙̀

θ(x) and ῭
θ(x) with respect to θ. Now do a

Taylor expansion of `θ(x) for fixed x,

log pθ+h/
√
n(x) = log pθ(x) +

h√
n

˙̀
θ(x) +

h2

2n
῭
θ(x) + ox(h2/n) , (8.4)

where the subscript x in the reminder term denotes its dependence on x. It
then follows,

n∑
i=1

log

(
pθ+h/

√
n

pθ
(Xi)

)
=

h√
n

n∑
i=1

˙̀
θ(Xi) +

h2

2n

n∑
i=1

῭
θ(Xi) + opθ(1) , (8.5)

provided the sum of n reminders ox(h2/n) is asymptotically negligible (i.e.,
opθ(1)). Here, the expected score is zero, Eθ ˙̀

θ = 0, and −Eθ ῭
θ = Eθ ˙̀2

θ equals
the Fisher information for θ. Hence, the first term can be rewritten as h∆n,θ,

where ∆n,θ
d→ N(0, Iθ) under Pθ by the CLT. Furthermore, the second

term in the expansion is asymptotically equivalent to −1/2h2Iθ by the LLN.
This expansion can be made rigorous by assuming continuity conditions on
the second derivative of `θ(x). Le Cam’s contribution is to show that one
can get the benefit of the quadratic expansion without paying the twice-
differentiability price usually demanded by such a Taylor expansion.
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8.2 Differentiability in Quadratic Mean

How can we get the aforementioned benefit? Le Cam showed all that is
required is a single condition that only involves a first derivative: differen-
tiability of the root density θ 7→ √pθ in quadratic mean as defined below.

Definition 8.2 (QMD) A model P = {Pθ : θ ∈ Θ} is called differentiable
in quadratic mean (or Hellinger differentiable or QMD) at θ if there exists
a vector of measurable functions ηθ = (ηθ,1, . . . , ηθ,k)

′ such that, as h→ 0,∫ [
√
pθ+h −

√
pθ −

1

2
h′ηθ
√
pθ

]2

dµ = o(||h||2) , (8.6)

where pθ is the density of Pθ w.r.t. some measure µ.

If the model is QMD for every θ then we say the family if QMD. Usually,
1
2hηθ(x)

√
pθ(x) is the derivative of the map h 7→

√
pθ+h(x) at h = 0 for

(almost) every x. In this case,

∂

∂θ

√
pθ =

1

2
√
pθ

∂

∂θ
pθ =

1

2

(
∂

∂θ
log pθ

)
√
pθ ,

so the function ηθ(x) is ˙̀
θ(x) = ( ∂∂θ log pθ), the score function of the model.

Condition (8.6) does not require differentiability of the map θ 7→ pθ(x) for
any single x, but rather differentiability in (quadratic) mean. Many com-
monly encountered families of distributions are differentiable in quadratic
mean, including exponential families and location models with smooth un-
derlying densities. See Chapter 12 of Lehmann and Romano (2005). How-
ever, some are not as the following example ilustrates.

Example 8.2 (Uniform Distribution) The family of uniform distribu-
tions on [0, θ] is nowhere differentiable in quadratic mean. The reason is
that the support depends too much on the parameter. Restricting (8.6) to
the set {pθ = 0} yields,

Pθ+h(pθ = 0) =

∫
pθ=0

pθ+hdµ = o(h2) . (8.7)

This is not true for the uniform distribution, because, for h ≥ 0,

Pθ+h(pθ = 0) =

∫
(θ,θ+h]

1

θ + h
dx =

h

θ + h
. (8.8)

Differentiability in quadratic mean (8.6) does not require that all densities
pθ have the same support. But it imposes restrictions on how much it may
depend on θ.
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The vital ingredient that makes QMD work is the fact that the square
root of a density satisfies

√
pθ(x) ∈ L2(µ), where L2(µ) denotes the space

of functions g such that
∫
g2(x)dµ(x) <∞. But, in fact,

√
pθ is not just an

element of L2(µ): it is an element with constant norm 1, i.e.,∫
(
√
pθ)

2dµ =

∫
pθdµ = 1 for all θ ∈ Θ .

The details of why having a constant norm matters can be found in Pollard’s
notes “Another Look at Differentiability in Quadratic Mean”. It turns out,
as shown by Le Cam, that condition (8.6) is exactly what we need to get
LAN.

Theorem 8.1 Suppose that Θ is an open subset of Rk and that the model
(Pθ : θ ∈ Θ) is differentiable in quadratic mean at θ. Then Eθ ˙̀

θ = 0 and
the Fisher information matrix Iθ = Eθ ˙̀

θ
˙̀
θ
′ exists. Furthermore,

log
n∏
i=1

pθ+h/
√
n

pθ
(Xi) =

1√
n

n∑
i=1

h′ ˙̀θ(Xi)−
1

2
h′Iθh+ opθ(1) . (8.9)

Proof. See (van der Vaart, 1998, Theorem 7.2)

Next, we would like to determine simple sufficient conditions for QMD
to hold. Usually one proceeds by showing differentiability of the map θ 7→√
pθ(x) for almost every x plus µ-equi-integrability (which in turn will imply

a convergence theorem for integrals). These conditions are stated in the
following lemma.

Lemma 8.1 For every θ in an open subset of Rk let pθ be a µ-probability
density. Assume that the map θ 7→ sθ ≡

√
pθ(x) is continuously differen-

tiable for every x. If the elements of the matrix

Iθ =

∫
(ṗθ/pθ)(ṗθ/pθ)

′pθdµ

are well defined and continuous in θ, then the map θ 7→ √pθ is differentiable
in quadratic mean with ηθ = ṗθ/pθ.

Proof. For simplicity we consider the one dimensional case and divide the
proof in steps. We wish to prove that∫ [

√
pθ+h −

√
pθ −

1

2
hηθ
√
pθ

]2

dµ = o(h2) ,

for ηθ as defined above.
Step 1. We first show that ṗθ exists and find an expression for ṡθ. By

the chain rule, the map θ 7→ pθ(x) = s2
θ(x) is differentiable for every x with
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gradient ṗθ = 2sθṡθ. Because sθ ≥ 0, its gradient ṡθ at a point at which
sθ = 0 must be zero. It follows that

ṡθ(x) ≡ ∂

∂θ
sθ =

1

2
√
pθ
ṗθ =

1

2
ηθ(x)

√
pθ ,

where ηθ = ṗθ/pθ may be arbitrarily defined if pθ = 0. By our assumptions,
the map

θ 7→ Iθ =

∫
η2
θpθdµ = 4

∫
ṡ2
θdµ

is well defined and continuous.
Step 2. We invoke Vitali’s theorem (see Proposition 2.29 van der Vaart,

1998), which states that if fn(x) → f(x) for µ-almost every x (both real-
valued measurable functions) and

lim sup
n→∞

∫
f2
n(x)dµ(x) ≤

∫
f2(x)dµ(x) <∞ , (8.10)

it follows that

lim
n→∞

∫
|fn(x)− f(x)|2dµ(x) = 0 .

We therefore need to check the two conditions. First, since the map θ 7→
sθ =

√
pθ is continuously differentiable,

1

h
(sθ+h(x)− sθ(x))→ ṡθ(x) as h→ 0 . (8.11)

Second, the difference sθ+h(x)− sθ(x) can be written as

sθ+h(x)− sθ(x) =

∫ θ+h

θ
ṡvdv = h

∫ 1

0
ṡθ+uhdu .

Using this last result we can prove (8.10) by arguing as follows. Note that[
1

h
(sθ+h(x)− sθ(x))

]2

=

[∫ 1

0
ṡθ+uh(x)du

]2

≤
∫ 1

0
ṡ2
θ+uh(x)du ,

where the inequality follows from Jensen’s inequality. Further note that∫ [
1

h
(sθ+h(x)− sθ(x))

]2

dµ ≤
∫ ∫ 1

0
ṡ2
θ+uh(x)dudµ

=
1

4

∫ 1

0
Iθ+uhdu→

1

4
Iθ <∞ ,

where the equality follows from Fubini’s Theorem and the last limit holds
for h→ 0 by continuity of Iθ. Conclude that

lim
h→0

∫ [
1

h
(sθ+h(x)− sθ(x))

]2

dµ ≤ 1

4
Iθ =

∫
ṡ2
θ(x)dµ <∞ ,
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and so condition (8.10) holds. It then follows from Vitali’s theorem that

lim
h→0

∫ [
1

h
(sθ+h(x)− sθ(x))− ṡθ(x)

]2

dµ = 0 . (8.12)

Replacing sθ =
√
pθ and ṡθ(x) = 1

2ηθ(x)
√
pθ completes the proof.

Example 8.3 (Location Model) Let {pθ(x) = f(x − θ) : θ ∈ Θ} be a
location model, where f(·) is continuously differentiable. Let

˙̀
θ(x) =

ṗθ
pθ

=
−f ′(x− θ)
f(x− θ)

(8.13)

if f(x− θ) > 0 and f ′(x− θ) exists and zero otherwise. Assume

I0 =

∫
˙̀2
0(x)f(x)dx <∞ , (8.14)

Since in this model the Fisher information is equal to I0 for all θ (just set
y = x − θ in the integral for Iθ), and thus continuous in θ, it follows that
the family is QMD.

8.3 Limit Distributions under Contiguous Alter-
natives

Local asymptotic normality is a convenient tool in the study of the behavior
of statistics under “contiguous alternatives”. Under the LAN assumption,

log
dPn

θ+h/
√
n

dPnθ

d→ N

(
−1

2
h′Iθh, h

′Iθh

)
, (8.15)

under Pθ, so the sequences of distributions dPn
θ+h/

√
n

and dPnθ are mutually

contiguous. With the help of Le Cam’s third lemma it allows to obtain limit
distributions of statistics under the parameters θ + h/

√
n, once the limit

behavior under θ is known.
The general scheme is as follows. Many sequences of statistics Tn allow

an approximation of the type,

√
n(Tn − µθ) =

1√
n

n∑
i=1

ψθ(Xi) + opθ(1) . (8.16)

By Theorem (8.1), the sequence of log likelihood ratios can be approximated
by

1√
n

n∑
i=1

h′ ˙̀θ(Xi)−
1

2
h′Iθh+ opθ(1) . (8.17)
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The sequence of joint averages n−1/2
∑

(ψθ(Xi), h ˙̀
θ(Xi)) is asymptotically

multivariate normal under Pθ by the CLT and so,(
√
n(Tn − µθ), log

dPn
θ+h/

√
n

dPnθ

)
d→ N

((
0

−1/2h′Iθh

)
,

(
Eθψθψ

′

θ Eθψθh
′ ˙̀
θ

Eθψθ
′h ˙̀

θ h′Iθh

))
.

Finally, we can apply Le Cam’s third lemma to obtain the limit distribution
of
√
n(Tn − µθ) under θ + h/

√
n.

8.3.1 Symmetric Location Model

We conclude today’s lecture with an example. Consider the location model
from the previous lectures. Pθ is the distribution with density f(x − θ) on
the real line. Suppose further that f is symmetric about 0, so that f(x−θ) is
symmetric about θ. We observe X1, . . . , Xn from f and wish to test the null
H0 : θ = 0. We will use the additional assumption that P = {Pθ : θ ∈ Θ} is
differentiable in quadratic mean. By Example 8.3, pθ(x) = f(x−θ) is QMD
at θ = 0 if f(·) is absolutely continuous with finite Fisher information,

I0 =

∫
˙̀2
0(x)f(x)dx , (8.18)

where

˙̀
θ(x) =

−f ′(x− θ)
f(x− θ)

. (8.19)

It follows by Theorem (8.1) that,

logLn = log(dPθn/dP0) =
1√
n

n∑
i=1

−hf
′(Xi)

f(Xi)
− 1

2
h2I0 + op(1) . (8.20)

We can now easily derive the local asymptotic power of the t-test, the sign-
test and the Wilcoxon signed rank test by using Le Cam’s third lemma.

T-test

First note that we can define the t-test as an asymptotically linear statistic,

tn =

√
nX̄n

σ̂n
=

1√
n

n∑
i=1

Xi

σ
+ oP0(1) ,

so (8.16) holds for ψθ(Xi) = Xi/σ. We are interested in the behavior of tn
under the alternative θn = h/

√
n. Although we know this can be obtained

by direct means, let us obtain the result using Le Cam’s third lemma. The
covariance term of interest is,

τ = E0

[
X

σ
×−h f

′(X)

f(X))

]
= −h

σ

∫
x
f ′

f
fdx = −h

σ

∫
xf ′dx

=
h

σ
,
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where the last equality follows from integration by parts. Thus, under Pθn ,

tn
d→ N(h/σ, 1) .

Sign Test

Assume the median is unique. The sign test is,

Sn =
1√
n

∑
1≤i≤n

(I{Xi > 0} − 1/2) ,

so (8.16) holds for ψθ(Xi) = I{Xi > 0} − 1/2 and then Sn
d→ N(0, 1/4)

under P0. Under Pθn , Sn
d→ N(τ, 1/4) by Le Cam’s third lemma where the

covariance term of interest is

τ = E0

[
I{X > 0} × −hf

′(X)

f(X)

]
= −h

∫ ∞
0

f ′dx = hf(0) .

Thus, under the alternative Pθn ,

Sn
d→ N(hf(0), 1/4) .

Wilcoxon signed rank test

We previously showed that the Wilcoxon signed rank statistic can be written
as,

Wn = n−1/2
n∑
i=1

Ui sign(Xi) + op(1) .

where

sign(Xi) =

{
1 if Xi ≥ 0
−1 otherwise

,

and Ui = G(|Xi|) with G the cdf of |Xi|. Here (8.16) holds for ψθ(Xi) =
Ui sign(Xi) and then, under P0,

Wn
d→ N(0, 1/3) .

For the behavior under Pθn , we compute the covariance again,

τ = E0

[
G(|X|) sign(X)×−hf

′(X)

f(X)

]
= −h

(∫ ∞
0

(2F (x)− 1)f ′(x)dx−
∫ 0

−∞
(2F (x)− 1)f ′(x)dx

)
= 2h

∫ ∞
−∞

f2(x)dx ,

where the last equality follows from integration by parts and G(|X|) =
2F (X)− 1 (by symmetry). Thus, under the alternative Pθn ,

Wn
d→ N

(
2h

∫
f2, 1/3

)
.
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Lecture 9

Convolution Theorems1

Consider the following generic version of an estimation problem. One ob-
serves data Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ}.
Suppose we wish to estimate ψ(θ) using the data and that we have an esti-
mator Tn = Tn(X1, . . . , Xn) such that for each θ ∈ Θ,

√
n (Tn − ψ(θ))

d→ Lθ

under Pθ - for short we may write “under θ” today. What is the “best”
possible limit distribution for such an estimator?

It is natural to measure “best” in terms of concentration, and we can
measure concentration with a loss function. A loss function `(x) is simply
any function that takes values in [0,∞). A loss function is said to be “bowl-
shaped” if the sublevel sets {x : `(x) ≤ c} are convex and symmetric about
the origin. A common bowl-shaped loss function on R is mean-squared error
loss, that is, `(x) = x2. For a given loss function `(x), a limit distribution
will be considered “good” if ∫

`(x)dLθ

is small.
If the estimator Tn is asymptotically normal in the sense that

Lθ = N(µ(θ), σ2(θ)) ,

then in order to minimize the mean-squared error loss it is optimal to have
µ(θ) = 0 and σ2(θ) as small as possible. Of course, for estimators that are
not asymptotically normal, this may not be true, and we do not wish to
restrict attention a priori to asymptotically normal estimators.

1Today’s notes are based on Azeem Shaikh’s notes. I want to thank him for kindly
sharing them.
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9.1 Hodges’ Estimator and Superefficiency

Suppose P = {Pθ = N(θ, 1) : θ ∈ R} and ψ(θ) = θ. A natural estimator
of θ is the sample mean, that is, Tn = X̄n. As you already know, this
estimator has many finite-sample optimality properties (it’s minimax for
every bowlshaped loss function, it’s minimum variance unbiased, etc.), so
we might reasonably expect it to be optimal asymptotically as well.

A second estimator of θ, Sn, can be defined as follows:

Sn =

{
Tn if |Tn| ≥ n−1/4

0 if |Tn| < n−1/4 .

In words, Sn = Tn when Tn is “far” from zero and Sn = 0 when Tn is “close”
to zero. It is easy to see that

√
n (Tn − θ) ∼ N(0, 1) .

But how does Sn behave asymptotically? To answer this question, first
consider θ 6= 0. For any such θ,

Pθ

{
|Tn| ≥ n−1/4

}
→ 1 .

To see this, let Zn =
√
n(Tn − θ) and note that

Pθ

{
|Tn| < n−1/4

}
= Pθ

{
−n−1/4 < Tn < n−1/4

}
= Pθ

{√
n(−n−1/4 − θ) < Zn <

√
n(n−1/4 − θ)

}
.

For θ > 0, n−1/4− θ < 0 for n sufficiently large, so the probability tends
to 0. For θ < 0, −n−1/4 − θ > 0 for n sufficiently large, so the probability
tends to 0. The desired result thus follows. From the definition of Sn, we
have that Sn = Tn with probability approaching 1 for θ 6= 0.

Now consider θ = 0. In this case,

Pθ

{
|Tn| ≥ n−1/4

}
→ 0 .

To see this note that

Pθ

{
|Tn| ≥ n−1/4

}
= Pθ

{
Tn ≥ n−1/4 ∪ Tn ≤ −n−1/4

}
= Pθ

{
Zn ≥ n1/4 ∪ Zn ≤ −n1/4

}
≤ Pθ

{
Zn ≥ n1/4

}
+ Pθ

{
Zn ≤ −n1/4

}
.

Both of the probabilities in the last expression tend to 0, so the result follows.
From the definition of Sn, we have that Sn = 0 with probability approaching
1 for θ = 0.
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Thus, for θ 6= 0
√
n(Sn − θ)

d→ N(0, 1)

under Pθ and for θ = 0

an(Sn − θ)
d→ 0

under any sequence an, including
√
n. The estimator is said to be superef-

ficient at θ = 0.
Let Lθ denote the limit distribution of Tn and L′θ denote the limit dis-

tribution of Sn. It follows from the above discussion that for θ 6= 0∫
x2dLθ =

∫
x2dL′θ

and for θ = 0, ∫
x2dL′θ = 0 < 1 =

∫
x2dLθ .

Thus, Sn appears, at least in terms of its limiting distribution, to be a better
estimator of θ than Tn. But appearances can be deceiving. This reasoning
again reflects the poor use of asymptotics. Our hope is that∫

x2dL′θ

is a reasonable approximation to the finite-sample expected loss

Eθ

[(√
n (Sn − θ)

)2]
.

In finite-samples, for θ “far” from zero, we might expect Sn = Tn, and so
we might expect L′θ to be a reasonable approximation to the distribution of√
n (Sn − θ); for “close” to zero, on the other hand, Sn will frequently differ

from Tn, so the distribution of
√
n (Sn − θ) may be quite different from L′θ.

As before, the definition of “close” and “far” will differ with the sample size
n. We must therefore consider the behavior of Sn under sequences θn → 0.

To illustrate this point, consider θn = h
n1/4 where 0 < h < 1. (Implic-

itly, we are redefining Tn = X̄n,n, where Xi,n, i = 1, . . . , n are i.i.d. with
distribution Pθn = N(θn, 1)). As before,

√
n (Tn − θn) ∼ N(0, 1) ,

but how does Sn behave under θn? To answer this, note that

Pθn

{
|Tn| < n−1/4

}
= Pθn

{
−n−1/4 < Tn < n−1/4

}
= Pθn

{√
n(−n−1/4 − θn) < Zn <

√
n(n−1/4 − θn)

}
= Pθn

{
−n1/4(1 + h) < Zn < n1/4(1− h)

}
.
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We saw earlier that this probability tended to 0 under θ 6= 0, but under
θn = h

n1/4 , this probability tends to 1. Thus, under θn, we have that Sn = 0
with probability approaching 1. Hence, under θn

√
n(Sn − θn) = −n1/4h

with probability approaching 1, and −n1/4h → −∞. Denote by L the
limiting distribution of Tn under θn and by L′ the limiting distribution of
Sn under θn (in this case L′ is degenerate at −∞). It follows that∫

x2dL′ =∞ > 1 =

∫
x2dL .

Thus, Sn “buys” its better asymptotic performance at 0 at the expense of
worse behavior for points “close” to zero. The definition of “close” changes
with n, so this feature is not borne out by a pointwise asymptotic comparison
for every θ ∈ Θ, but we can see it if we consider a sequence θn. We can also
see it graphically by plotting the finite-sample expected losses, Eθ[`(

√
n(Sn−

θ))] versus Eθ[`(
√
n(Tn − θ))] = 1, for different samples sizes n.

This example is quite famous and is due to Hodges. The estimator Sn
is often referred to as Hodges’ estimator.

9.2 Efficiency of Maximum likelihood

Theorems that in some way show that a normal distribution with mean zero
and covariance matrix equal to the inverse of the Fisher information is a
“best possible” limit distribution have a long history, starting with Fisher in
the 1920s and with important contributions by Cramér, Rao, Stein, Rubin,
Chernoff and others. Of course, “the” theorem referred to is not true, at
least not without a number of qualifications. The above example illustrates
this and shows that it is impossible to give a nontrivial definition of “best”
to the limit distributions Lθ. In fact, it is not even enough to consider Lθ
under every θ ∈ Θ. For some fixed θ′ ∈ Θ, we could always construct an
estimator whose limit distribution was equal to Lθ for θ 6= θ′, but “better”
at θ = θ′ by using the trick due to Hodges.

Le Cam contributed in various ways to an understanding of this issue,
and eventually gave a complete explanation. Hájek formulated and proved
two theorems, using different types of qualifications, which are now consid-
ered as most appropriate. It turns out that under certain conditions, the
“best” limit distributions are in fact the limit distributions of maximum
likelihood estimators, but to make this idea precise is a bit tricky. We need
a few definitions first.

Definition 9.1 Tn is called a sequence of locally regular estimators of ψ(θ)
at the point θ0 if, for every h

an(Tn − ψ(θ0 + h/an))
d→ Lθ0 under Pθ0+h/an
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as an →∞ (typically, an =
√
n), where the limit distribution might depend

on θ0 but not on h.

Note that a regular estimator sequence attains its limit distribution in
a “locally uniform” manner. Intuitively, a small change in the parameter
should not change the distribution of the estimator too much; a disappearing
small change should not change the (limit) distribution at all.

Recall also that a model P = {Pθ : θ ∈ Θ} is called differentiable in
quadratic mean at θ if there exists a measurable function ˙̀

θ such that, as
h→ 0, ∫ [

√
pθ+h −

√
pθ −

1

2
h′ ˙̀θ
√
pθ

]2

dµ = o(||h||2),

where pθ is the density of Pθ w.r.t. some measure µ.

9.2.1 Convolution Theorems

Hájek’s convolution theorem shows that the limiting distribution of any
regular estimator Tn can be written as a convolution of N(0, ·) and “noise”.

Theorem 9.1 (Hájek Convolution Theorem) Suppose that P is differ-
entiable in quadratic mean at each θ with non-singular Fisher information
matrix Iθ = Eθ[ ˙̀

θ
˙̀′
θ], and that ψ is differentiable at every θ. Let Tn be an

at θ regular estimator sequence with limit distribution Lθ. Then, there exist
distributions Mθ such that

Lθ = N(0, ψ̇θI
−1
θ ψ̇′θ) ∗Mθ .

In particular, if Lθ has covariance matrix Σθ, then the matrix Σθ− ψ̇θI−1
θ ψ̇′θ

is nonnegative-definite.

The notation ∗ denotes the “convolution” operation between two dis-
tributions and should be interpreted as follows: If X ∼ F and Y ∼ G and
X ⊥ Y , then X+Y ∼ F ∗G. Theorem 9.1 is referred to as the Hájek convo-
lution theorem. This theorem does not contradict the results of the previous
section since it is easy to show that Hodges’ estimator is not regular.

So, Hájek’s convolution theorem puts a regularity restriction on the esti-
mator sequence. Le Cam realized that the corresponding regularity restric-
tion on estimators Tn in the limit experiment is location equivariance and
that estimators Tn that are “equivariant-in-law” are rare. Another way to
save the Cramér-Rao bound is to note that asymptotic superefficiency can
occur only on very small sets of parameters, for instance null sets for the
Lebesgue measure. Le Cam proved this for the first time in 1953, in his
thesis. The following is a much nicer result, discovered by Le Cam later on.
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Theorem 9.2 (Almost Everywhere Convolution Theorem) Suppose
that P is differentiable in quadratic mean at each θ with norming rate an
and non-singular Fisher information matrix Iθ = Eθ[ ˙̀

θ
˙̀′
θ], and that ψ is

differentiable at every θ. Let Tn be any estimator such that for every θ

an(Tn − ψ(θ))
d→ Lθ

under θ. Then, there exist distributions Mθ such that for almost every θ
w.r.t. Lebesgue measure

Lθ = N(0, ψ̇θI
−1
θ ψ̇′θ) ∗Mθ .

This remarkable theorem yields the assertion of Hájek’s convolution the-
orem at almost every parameter value θ, without having to impose the reg-
ularity requirement on the estimator sequence. This is however not really
surprising, since Le Cam showed that it is roughly true that any estima-
tor sequence Tn is “almost Hájek regular” at almost every parameter θ, at
least along a subsequence of {n} (see van der Vaart, 1998, Lemma 8.10).
The convolution property implies that the covariance matrix of Lθ, if it
exists, must be bounded below by the inverse Fisher information. This the-
orem does not contradict the results of the previous section. In that case,
P = {N(θ, 1) : θ ∈ R}, ψ(θ) = θ, and N(0, ψ̇θI

−1
θ ψ̇′θ) = N(0, 1). For every

θ 6= 0,
√
n(Sn− θ)

d→ N(0, 1) under θ, so the theorem is satisfied for Mθ the
distribution with unit mass at 0.

Note that N(0, ψ̇θI
−1
θ ψ̇′θ) is the limit distribution of the maximum likeli-

hood estimator of ψ(θ). In order to assert that this is in fact the “best” limit
distribution for more general loss functions, we need the following lemma.

Lemma 9.1 (Anderson’s Lemma) For any bowl-shaped loss function `
on Rk, every probability distribution M on Rk, and every covariance matrix
Σ, ∫

`(x)dN(0,Σ) ≤
∫
`(x)d(N(0,Σ) ∗M) .

Thus, if “best” is measured by any bowl-shaped loss function (includ-
ing mean-squared error loss), then, under the assumptions of Theorem 9.2,
maximum likelihood estimators are “best” for almost every θ w.r.t. Lebesgue
measure. For a proof of these two results, see van der Vaart (1998).

The almost-everywhere convolution theorem imposes no serious restric-
tions but yields no information about some parameters, albeit a null set of
parameters. However, the lesson is that the possibility of improvement over
the N(0, ψ̇θI

−1
θ ψ̇′θ)-limit is restricted on a null set of parameters. Improve-

ment is also possible by considering special loss function (the James-Stein’s
estimator is an example), but improvement for one loss function necessarily
implies worse performance for other loss functions (see van der Vaart, 1998).
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An important part of these convolution theorems is the assumption that
the model is QMD. The next example illustrates a situation in which max-
imum likelihood is not necessarily best. In addition, the differentiability of
ψ is also key, see Hirano and Porter (2012) and Santos and Fang (2014) for
recent contributions on non-differentiable functionals.

Example 9.1 Suppose P = {Pθ = U(0, θ) : θ > 0} and ψ(θ) = θ (Recall
that P is nowhere QMD so the model does not satisfy the conditions of the
previous Theorems). We know that the MLE of θ is X(n) = max{X1, . . . , Xn}
and that

n(θ −X(n))
d→ Lθ, where Lθ has density

1

θ
exp{−w/θ} . (9.1)

Clearly, the estimator is not asymptotically normal. Although it converges
at rate n, much faster than the usual

√
n rate, the fact that the limiting

distribution lies completely to one side of the true parameter suggests that
even better estimators may exists.

To see that this is the case, note that for W ∼ Lθ, E(W ) = θ and
Med(W ) = log(2)θ. It is easy to see that for `(x) = x2, MLE is sub-optimal
and dominated by θ̃ = X(n) +X(n)/n. Note that

n(θ − θ̃) = n(θ −X(n) −X(n)/n)

= n(θ −X(n))−X(n)

d→ L′θ = Lθ − θ .

It then follows that∫
x2dL′θ = E(W − θ)2 = E(W 2 + θ2 − 2θW )

= E(W 2) + θ2 − 2θ2

= E(W 2)− θ2 < E(W 2) =

∫
x2dLθ

so that EL′
θ
(x)2 < ELθ(x)2. On the other hand, for `(x) = |x|, MLE is

sub-optimal and dominated by θ̃ = X(n) + log(2)X(n)/n. These θ̃ estimators
turn out to be Bayes estimators.

Proof of (9.1). Recall that W ∼ exp(1) if

P{W ≤ w} =

{
1− exp(−w) if w ≥ 0

0 otherwise
,

which implies that

P{−Wθ ≤ w} = P{W ≥ −w/θ} =

{
exp(w/θ) if w ≥ 0

1 otherwise
.
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Next note that,

P{n(X(n) − θ) ≤ x} =P{X(n) ≤ θ +
x

n
}

=P{Xi ≤ θ +
x

n
}n.

And then,

P{Xi ≤ θ +
x

n
} =


0 if x ≤ −nθ

1
θ (θ + x

n) if − nθ < x ≤ 0
1 if x > 0

.

Therefore,

P{X(n) ≤ θ +
x

n
} =


0 if x ≤ −nθ

(1
θ (θ + x

n))n if − nθ < x ≤ 0
1 if x > 0

.

It follows that,

(
1

θ
(θ +

x

n
))n = (1 +

x

nθ
)n → exp(x/θ)

because of the identity

exp(x) = lim
n→∞

(1 +
x

n
)n.

Hence,

P{n(X(n) − θ) ≤ x} →
{

exp(x/θ) if x ≤ 0
1 if x > 0

.
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Lecture 10

Uniformity

Let Xi, i = 1, . . . , n be an i.i.d. sample from some distribution P ∈ P. Sup-
pose one wishes to test the null hypothesis H0 : P ∈ P0 ⊆ P. To this end,
one may consider a test function φn = φn(X1, . . . , Xn) (that maps data into
a binary decision) such that it controls the probability of a Type I error in
some sense. It is clear that we must distinguish the exact size of a test from
its approximate or asymptotic size. Ideally, we would like the test to satisfy

EP [φn] ≤ α for all P ∈ P0 and n ≥ 1 , (10.1)

but many times this is too demanding of a requirement. As a result, we may
settle instead for tests such that

lim sup
n→∞

EP [φn] ≤ α for all P ∈ P0 . (10.2)

Test satisfying (10.1) are said to be of level α for P ∈ P0, whereas tests
satisfying (10.2) are said to be pointwise asymptotically of level α for P ∈ P0.
The hope is that if (10.2) holds, then (10.1) holds approximately, at least
for large enough n. However, asymptotic constructions that merely assert
that the rejection probability of a test tends to the nominal level α under
any fixed distribution P in the null hypothesis guarantee nothing about the
exact finite sample size of a test. All that (10.2) ensures is that for each
P ∈ P0 and ε > 0 there is an N(P ) such that for all n > N(P )

EP [φn] ≤ α+ ε .

Importantly, the sample size required for the approximation to work, N(P ),
may depend on P . As a result, it could be the case that for every sample
size n (even, e.g., for n = 1010) there could be P = Pn ∈ P0 such that

EP [φn]� α .

Consider the following concrete example of this phenomenon.
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Example 10.1 Suppose P = {P on R : 0 < σ2(P ) < ∞} and P0 = {P ∈
P : µ(P ) = 0}. Let φn be the t-test; that is, φn = I{

√
nX̄n > σ̂nz1−α},

where z1−α is the 1 − α quantile of the standard normal distribution. We
know that

EP [φn]→ α for all P ∈ P0 ,

but it turns out that the t-test suffers from the problem described above. In
fact, we can show that for every 0 < c < 1 and every sample size n there
exists a Pn,c ∈ P0 such that

EPn,c [φn] ≥ c .

To see this, let n and c be given. Let Pn,c be the distribution that puts mass
1− pn at pn > 0 and mass pn at −(1− pn). We will specify pn in a minute,
but first note that for such a distribution Pn,c all of the Xi are in fact equal
to pn > 0 with probability (1 − pn)n. For such a sequence of observations,
σ̂n = 0 and

√
nX̄n > 0, so φn = 1. The probability of rejection, EPn,c [φn],

is therefore at least (1− pn)n. Now all that remains is to choose pn so that
(1− pn)n = c; that is, pn = 1− c1/n.

To rule this very disturbing possibility out, we need to ensure that the
convergence in (10.2) is uniform for P ∈ P0.

Definition 10.1 The sequence {φn} is uniformly asymptotically level α if

lim sup
n→∞

sup
P∈P0

EP [φn] ≤ α . (10.3)

If instead of (10.3), the sequence {φn} satisfies

lim sup
n→∞

sup
P∈P0

EP [φn] = α , (10.4)

then this value of α is called the asymptotic size of {φn}.

The requirement in (10.3) implies that for each ε > 0 there is an N
(which does not depend on P) such that for all n > N

EP [φn] ≤ α+ ε .

In the case of the t-test, the above example shows us that this is not true
for P = {P on R : 0 < σ2(P ) < ∞} and P0 = {P ∈ P : µ(P ) = 0}. We
will also study the behavior of tests under the alternative hypothesis and
for that we will use the following definition.

Definition 10.2 The sequence {φn} is pointwise consistent in power if, for
an P ∈ P1,

EP [φn]→ 1 (10.5)

as n→∞.
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10.1 A result of Bahadur and Savage (1956)

We know then that the t-test, φn = I{
√
nX̄n > σ̂nz1−α}, has size one if

when P = {P on R : 0 < σ2(P ) <∞} and P0 = {P ∈ P : µ(P ) = 0}:

sup
P∈P0

EP [φn] = 1 .

This result was perhaps a bit shocking, but it is possible that it is unique
to the t-test - perhaps there are other tests of the same null hypothesis that
would behave more reasonably. Unfortunately, we can show that this is
not the case, provided that P is “sufficiently rich”. Formally, we have the
following result.

Theorem 10.1 Let P be a class of distributions on R such that

(i) For every P ∈ P, µ(P ) exists and is finite;

(ii) For every m ∈ R, there is P ∈ P such that µ(P ) = m;

(iii) P is convex in the sense that if P1, P2 ∈ P, then γP1 + (1− γ)P2 ∈ P.

Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P. Let φn be any test
sequence of the null hypothesis H0 : µ(P ) = 0. Then,

(a) Any test of H0 which has size α for P has power ≤ α for any alternative
P ∈ P.

(b) Any test of H0 which has power β against some alternative P ∈ P has
size ≥ β.

The proof of this result will follow from the following lemma.

Lemma 10.1 Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P, where
P is the class of distributions on R satisfying (i)-(iii) in Theorem 10.1. Let
φn be any test function. Define

Pm = {P ∈ P : µ(P ) = m} .

Then,
inf

P∈Pm
EP [φn] and sup

P∈Pm
EP [φn]

are independent of m.

Proof. We show first that supP∈Pm EP [φn] does not depend on m. Let m
be given and choose m′ 6= m. We wish to show that

sup
P∈Pm′

EP [φn] = sup
P∈Pm

EP [φn]
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To this end, choose Pj ∈ Pm, j ≥ 1 so that

lim
j→∞

EPj [φn] = sup
P∈Pm

EP [φn] .

Let hj = j(m′ −m) +m so that

m′ = (1− 1

j
)m+

1

j
hj .

Choose Hj so that µ(Hj) = hj and define,

Gj = (1− 1

j
)Pj +

1

j
Hj .

Thus, Gj ∈ Pm′ . An observation from Gj can be obtained through
a two-stage procedure. First, a coin is flipped with probability of heads
1/j. If the outcome is a head, then the observation has the distribution Hj ;
otherwise, the observation is from Pj . Thus, with probability (1 − 1

j )n, a
sample of size n from Gj is simply a sample of size n from Pj . Therefore,

sup
P∈Pm′

EP [φn] ≥ EGj [φn] ≥ (1− 1

j
)nEPj [φn] .

But (1− 1
j )n → 1 and EPj [φn]→ supP∈Pm EP [φn] as j →∞. Therefore,

sup
P∈Pm′

EP [φn] ≥ sup
P∈Pm

EP [φn] .

Interchanging the roles of m and m′, we can establish the reverse inequatlity

sup
P∈Pm′

EP [φn] ≤ sup
P∈Pm

EP [φn] .

We could replace φn with 1− φn to establish that infP∈Pm EP [φn] does not
depend on m.

Proof of Theorem 10.1. To prove (a) let φn be a test of size α for P.
Let P ′ be any alternative. Define m′ = µ(P ′). Then,

EP ′ [φn] ≤ sup
P∈Pm′

EP [φn] = sup
P∈P0

EP [φn] = α .

The proof of (b) is similar.

The Bahadur-Savage result holds in the multivariate case as well. The
theorem reads exactly, except that P refers to a family of distributions on
Rk satisfying (i)-(iii) above with m a vector.

The class of distributions with finite second moment satisfies the require-
ments of the theorem, as does the class of distributions with infinitely many
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moments. Thus, the failure of the t-test is not special to the t-test; in this
setting, there simply exist no “reasonable” tests. Evidently, the problem is
due to the fact that the mean µ(P ) is quite sensitive for the tails of P , and
one sample yields little information about the tails. But this does not mean
that all hope is lost. Fortunately, the t-test does satisfy (10.3) for certain
large classes of distributions that are somewhat smaller than P in Theorem
10.1. We will discuss this next class.

10.2 Extension of the Result by Bahadur-Savage

In this section we generalize the result of Bahadur and Savage following
Romano (2004), by providing a constructive sufficient condition that applies
to other testing problems as well. Although the idea is similar to theirs, it
allows one to answer a conjecture of Bahadur and Savage concerning testing
the existence of a mean. In addition, the idea of the Theorem was key
in proving results about the testability of completeness conditions in non-
parametric models with endogeneity, see Canay et al. (2013).

Suppose data X are observed on a sample space S with probability law
P . A model is assumed only in the sense that P is known to belong to P,
some family of distributions on S. Consider the problem of testing the null
hypothesis H0 : P ∈ P0 versus the alternative hypothesis H1 : P ∈ P1 =
P \P0.

A convenient way to discuss the non-existence of tests with good power
properties is in terms of the total variation metric, defined by

τ(P,Q) ≡ sup
{g:|g|≤1}

∣∣∣∣∫ gdQ−
∫
gdP

∣∣∣∣ . (10.6)

Consider the following condition.

Condition 10.1 For every Q ∈ P1 there exists a sequence Pk ∈ P0 such
that τ(Q,Pk)→ 0 as k →∞.

Evidently, condition 10.1 asserts that P0 is dense in P with respect to the
metric τ . We will also assume P0 and P1 satisfy the following (stronger)
condition.

Condition 10.2 For every Q ∈ P1 and any ε > 0, there exists a subset
A = Aε of S satisfying Q(Aε) ≥ 1 − ε and such that, if X has distribution
Q, the conditional distribution of X given X ∈ Aε is a distribution in P0.

We can now prove, under conditions 10.1 or 10.2, that no test has power
against Q greater than the size of the test.

Theorem 10.2 Let φn(X) be any test of P0 versus P1.
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(i) If Condition 10.1 holds, then

sup
Q∈P1

EQ[φn(X)] ≤ sup
P∈P0

EP [φn(X)]. (10.7)

Hence, if φn has size α, then

sup
Q∈P1

EQ[φn(X)] ≤ α; (10.8)

that is, the power function if bounded by α.
(ii) Assume Condition 10.2 holds. Then Condition 10.1 holds and there-

fore (10.7) and (10.8) hold as well.

Proof. To prove (i), fix Q ∈ P1 and let g be a function with |g| ≤ 1. Take
any εk → 0 and let Pk ∈ P0 satisfy τ(Q,Pk) ≤ εk. Then,

EQ[g] =

∫
gdQ−

∫
gdPk +

∫
gdPk

≤ EPk [g] + τ(Q,Pk) ≤ sup
P∈P0

EP [g] + εk .

Let εk → 0 and the result follows.
To prove (ii), let εk → 0, let Aεk be the subset in Condition 10.2, and

let Pk denote the distribution of X given X ∈ Aεk when X has distribution
Q. Then, for any g with |g| ≤ 1,

EQ[g(X)] = EQ[g(X)|Aεk ]Q(Aεk) + EQ[g(X)|Acεk ]Q(Acεk)

≤ EPk [g(X)]Q(Aεk) +Q(Acεk)

≤ EPk [g(X)] + εk .

The above assumed EPk [g(X)] > 0, but if EPk [g(X)] < 0 a similar argument
gives ≤ EPk [g(X)] + 2εk. In addition,

EQ[g(X)] ≥ EPk [g(X)](1− εk)− εk ≥ EPk [g(X)]− 2εk. (10.9)

Hence, τ(Q,Pk) ≤ 2εk and the result follows by letting εk → 0.

Note that the hypothesis testing framework does not have to be cast
in terms of testing a particular parameter as P0 and P1 are quite general.
However, the main point is that condition 10.2, although stronger than
condition 10.1, is easily verified is some novel examples.

When X1, . . . , Xn is a vector of n i.i.d. random variables, then it suffices
to verify condition 10.2 for n = 1. To produce the set Aε, for X, simply
take n-fold product set Aδ obtained from the case n = 1, where δ is taken
small enough to guarantee with probability 1− ε that all n observations fall
in Aδ. But, the chance that all observations fall in Aδ is at least (1 − δ)n.
Thus, choose δ no bigger than 1− (1− ε)1/n.
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Example 10.2 (Finite versus not finite mean) Let X be X1, . . . , Xn,
n i.i.d. observations on the real line. As remarked by Bahadur and Sav-
age (1956), “it would be interesting to know whether, in comparable non-
parametric situations, tests of the existence of µ, are equally unsuccessful”;
here, µ refers to the mean of an observation. So, let P0 be the family of dis-
tributions on the real line with a finite mean, and let P1 be the distributions
without a finite mean. Condition 10.2 readily holds.

To see why, suppose Q is a distribution without a mean. Given ε, let A
be any bounded subset of the real line with probability at least (1−ε) under Q.
Moreover, the conditional distribution of an observation given that it falls
in A is some distribution on a bounded set, i.e. a distribution in the null
hypothesis parameter space. Hence, the conclusion of Theorem 10.2 holds,
and so it is impossible to construct a test with power greater than the size
of the test.

For a real-valued parameter θ the impossibility of testing a hypothesis
like H0 : θ 6= θ0 versus H1 : θ = θ0 is well known. More generally, it is
impossible to test H0 : P ∈ P0 versus H1 : P ∈ P1 when P0 is dense in
P = P1 ∪P0. For testing goodness-of-fit, it is then impossible to conclude
that the underlying distribution is normal, or any other family that falls
in a lower dimensional subspace of the a priori model space. To make this
precise, consider the following condition.

Condition 10.3 For any Q ∈ P1 and any ε > 0, there exists some distri-
bution R such that (1− ε)Q+ εR ∈ P0.

It is easy to see that Condition 10.3 implies Condition 10.1. To see this,
pick Q ∈ P1 and let εk > 0. Flip a coin with probability 1− εk of heads, and
let Aεk be the event “the toss is a head”. Let Y (ω) be a random variable
(on some probability space) that has distribution Q conditional on ω ∈ Aεk ,
and has distribution R condition on ω ∈ Acεk , for some distribution R.

It follows from Condition 10.3 that for any Q ∈ P1 and any εk > 0, there
exists a random variable Y (on some probability space) with distribution
Pk = (1− εk)Q+ εkR ∈ P0 and a subset A = Aεk , with Pk(A) ≥ 1− εk such
that the conditional distributionof Y given A, is Q. Then,

EPk [g(Y )] = EPk [g(Y )|Aεk ]Pk(Aεk) + EPk [g(Y )|Acεk ]Pk(A
c
εk

),

≤ EQ[g(Y )] + Pk(A
c
εk

),

≤ EQ[g(Y )] + εk .

Similarly,

EPk [g(Y )] ≥ EQ[g(Y )](1− εk)− εk ≥ EQ[g(Y )]− 2εk . (10.10)

Hence, τ(Q,Pk) ≤ 2εk and the result follows by letting εk → 0.
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Example 10.3 (Goodness-of-fit testing) The usual approach to testing
goodness-of-fit runs as follows. Assume X1, . . . , Xn are i.i.d. S-valued ran-
dom variables with distribution P . The null hypothesis asserts P belongs
to some class {Pθ : θ ∈ Θ} and the alternative hypothesis asserts P ∈ P̄,
the family of all other distributions on S. Reversing the roles of the null
and alternative is not possible. For example, consider the problem of test-
ing uniformity on S = (0, 1). We verify condition 10.3 to show the (fairly
obvious) results that it is impossible to test the null hypothesis that P is not
uniform on (0, 1) versus the alternative that P is uniform on (0, 1), at least
not with any degree of power. In this example, P1 consists of U , the uniform
distribution on (0, 1). Then, for any other distribution R and any ε > 0,
(1− ε)U + εR is not U , and so condition 10.3 holds.

Similar considerations apply when P1 is a larger parametric model, such
as the family of normal distributions. In summary, one can apply a goodness-
of-fit test (such as Kolmogorov-Smirnov) to show that the data are consistent
with the model, but one cannot definitely conclude that the model holds.
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Lecture 11

Uniformity of the t-test

Last class we covered the important result by Bahadur and Savage, and some
generalizations. We learned that the class of distributions that satisfy the
conditions of their theorem is large. For example, the class of distributions
with finite second moment satisfies the requirements of the theorem, as does
the class of distributions with infinitely many moments. We concluded that
the failure of the t-test is not special to the t-test; in this setting, there
simply exist no “reasonable” tests. Evidently, the problem is due to the fact
that the mean µ(P ) is quite sensitive for the tails of P , and one sample yields
little information about the tails. But this does not mean that all hope is
lost. Fortunately, the t-test does satisfy (10.3) for certain large classes of
distributions that are somewhat smaller than P in Theorem 10.1.

11.1 Distributions with Compact Support

The Bahadur-Savage result does not apply to the family of distributions
supported on a compact set (condition (ii) is violated). However, if we now
restrict our attention to distributions supported on a compact set, the size
of the t-test is still 1, as the following calculation demonstrates.

Let X1, . . . , Xn be i.i.d. P . Consider the one-sided α t-test with test
function φn, for testing µ(P ) = 0 versus µ(P ) > 0. Let P be the set of
distributions supported on [−1, 1], and P0 those distributions on [−1, 1]
with mean 0. We will show,

sup
P∈P0

EP [φn] = 1, ∀n ≥ 2 .

It suffices to show that there exists a P ∈ P0 such that the probability
of rejection under P is arbitrarily close to 1. To this end, we can use the
same construction we used in Example 10.1. Fix n > 1 and any c < 1.
Then, choose pn > 0 so that (1− pn)n = c. Let P = Pn,c be the distribution
that places mass 1− pn at pn and mass pn at −(1− pn), so that µ(P ) = 0.

63
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The idea is that, with probability at least c, a random sample of size n from
P will be the sample having all observations equal to pn > 0. For such a
sequence of observations, σ̂n = 0 and

√
nX̄n > 0, so φn = 1. The probability

of rejection, EP [φn], is therefore at least c, which can be arbitrarily close
to 1. The problem here is that we have no control over the skewness in the
class Pn,c. In fact, the skewness of the two-point distribution is

EPn,c [X
3]

σ3(Pn,c)
=
p2
n + (1− pn)2√
pn(1− pn)

→∞ .

In fact, it follows that for δ > 0,

EPn,c [|X|2+δ]

σ2+δ(Pn,c)
=
p1+δ
n + (1− pn)1+δ

(
√
pn(1− pn))δ

→∞ ,

which is a condition that will be meaningful in the next section.
One can make the example more convincing to ensure that the underlying

distribution is continuous and the observations are distinct. Let X∗n,i =
Xn,i + Un,i, where Xn,i has the distribution Pn,c above and, independently,
Un,i is uniform on [−τn, τn]. Assume τn is small enough such that,

τn <

√
npn√

n+ z1−α
. (11.1)

Also, notice that
X̄∗n,n = X̄n,n + Ūn,n ,

which with probability at least c satisfies,

X̄∗n,n = pn + Ūn,n ≥ pn − τn > 0 ,

since Ūn,n ≥ −τn and, from (11.1),

pn − τn >
τn√
n
z1−α > 0 .

Also, with probability at least c,

σ̂2,∗
n =

1

n

∑
(X∗n,i − X̄∗n,n)2 =

1

n

∑
(Un,i − Ūn,n)2 ≤ τ2

n ,

and then it follows that

Tn =

√
nX̄∗n,n
σ̂∗n

≥
√
npn −

√
nτn

σ̂∗n

>
τnz1−α
σ̂∗n

≥ τnz1−α
τn

= z1−α ,
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by our choice of τn. Again, the probability of such event is c and this can
be made arbitrarily close to 1. It is important to recognize however that
by restricting attention to distributions on a compact set, it is possible to
construct tests of size α (other than the t-test) that have reasonable power
properties. See Lehmann and Romano (2005, ch. 11) for such a result.

As an alternative to the family of distributions supported on a compact
set, it is interesting to study the behavior of the t-test under the assumption
of symmetry (so again the Bahadur-Savage result does not hold since condi-
tion (iii) is violated). You will show in the problem set that the t-test is not
uniformly asymptotically level α for the family of symmetric distributions.
In fact, the size of the t-test under symmetry is one for moderate values of
α (although it can be shown that the size is bounded away from 1 for small
values of α). In general, the t-test does not behave uniformly well across
distributions with large skewness, as the limiting normal theory fails.

11.2 Distributions with 2 + δ Moments

Fortunately, not everything is lost for the t-test. We will now show that
the the t-test is uniformly consistent over certain large subfamilies of distri-
butions with two finite moments. For this purpose, consider the family of
distributions P on the real line satisfying,

lim
λ→∞

sup
P∈P

EP

[
|X − µ(P )|2

σ2(P )
I

{
|X − µ(P )|

σ(P )
> λ

}]
= 0 . (11.2)

In particular, if we let P2+δ be the set of distributions satisfying

P2+δ =

{
P : EP

[
|X − µ(P )|2+δ

σ2+δ(P )

]
≤M

}
, (11.3)

for some δ > 0 and M <∞, it follows that P2+δ ⊆ P. To see why, let

Y =
X − µ(P )

σ(P )

and note that from the inequality,

λδY 2I{|Y | > λ} ≤ |Y |2+δ ,

it follows that

lim
λ→∞

sup
P∈P2+δ

EP
[
|Y |2I {|Y | > λ}

]
≤ lim

λ→∞

1

λδ
sup

P∈P2+δ

EP

[
|Y |2+δ

]
= 0 .

In addition, let P0 be the set of distributions in P with µ(P ) = 0. For
testing µ(P ) = 0 versus µ(P ) > 0, the t-test is defined as φn = I{Tn >
z1−α}, where

Tn =

√
nX̄n

σ̂n
,
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X̄n = 1
n

∑n
i=1Xi and σ̂2

n = 1
n

∑n
i=1(Xi − X̄n)2. The next Theorem shows

that the t-test is uniformly asymptotically level α over P0.

Theorem 11.1 Suppose Xn,1, . . . , Xn,n are i.i.d. with distribution Pn ∈ P,
where P satisfies (11.2). Then, under Pn

√
n(X̄n,n − µ(Pn))

σ̂n,n

d→ N(0, 1) . (11.4)

In addition, for testing µ(P ) = 0 versus µ(P ) > 0, the t-test is uniformly
asymptotically level α over P0; that is,

lim
n→∞

sup
P∈P0

EP [φn] = α . (11.5)

Proof of Theorem 11.1. First note that we can write,

n1/2(X̄n,n − µ(Pn))

σ̂n,n
=
n1/2(X̄n,n − µ(Pn))

σ(Pn)
× σ(Pn)

σ̂n,n
.

We now want to apply the CLT for triangular arrays (Lindeberg-Feller) to
the first term. To this end, let Yn,i = (Xn,i − µ(Pn))/σ(Pn). We need to
check the condition

lim sup
n→∞

EPn [Y 2
n,iI{|Yn,i| > ε

√
n}] = 0 ,

for every ε > 0 (see Theorem 6.1). But, for every λ > 0,

lim sup
n→∞

EPn [Y 2
n,iI{|Yn,i| > ε

√
n}] ≤ lim sup

n→∞
EPn [Y 2

n,iI{|Yn,i| > λ}] .

Let λ→∞ and the right side tends to zero. It follows that,

√
n(X̄n,n − µ(Pn))

σ(Pn)

d→ N(0, 1) . (11.6)

It remains to show that σ(Pn)/σ̂n,n → 1 in probability. In order to do this,
assume wlog that µ(Pn) = 0 and note that

σ̂2
n,n

σ2(Pn)
=

1

n

n∑
i=1

X2
n,i

σ2(Pn)
− 1

n

(√
nX̄n,n

σ(Pn)

)2

=
1

n

n∑
i=1

X2
n,i

σ2(Pn)
+ oPn(1) ,

where the second line follows from (11.6). The proof is then completed by

1

n

n∑
i=1

X2
n,i

σ2(Pn)
→ 1 ,

in probability under Pn, which in turn follows from Lemma 11.2 below.
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To prove (11.5) note that, if the result failed, one could extract a subse-
quence {Pn} with Pn ∈ P0 such that,

EPn [φn]→ α′ 6= α .

This contradicts (11.4) as Tn is asymptotically standard normal under Pn.

As we can see, to prove the theorem all we need is a CLT for triangular
arrays (see Theorem 6.1) and a law of large numbers for triangular arrays.
The latter is handled by the following two lemmas.

Lemma 11.1 Let Yn,1, . . . , Yn,n be i.i.d. with cdf Gn and finite mean µ(Gn)
satisfying

lim
β→∞

lim sup
n→∞

EGn [|Yn,i − µ(Gn)|I{|Yn,i − µ(Gn)| ≥ β}] = 0 . (11.7)

Let Ȳn = 1
n

∑n
i=1 Yn,i. Then, under Gn, Ȳn − µ(Gn)→ 0 in probability.

Proof. Assume µ(Gn) = 0 wlog and note that

0 = E[Yn,i] = E[Yn,iI{|Yn,i| ≤ n}] + E[Yn,iI{|Yn,i| > n}] . (11.8)

We will study each of the expectations on the right hand side separately. In
order to do this, define

Zn,i = Yn,iI{|Yn,i| ≤ n} .

Let mn = E[Zn,i] and Z̄n = 1
n

∑n
i=1 Zn,i. For any ε > 0, we have

P{|Ȳn −mn| > ε} ≤ P{|Z̄n −mn| > ε}+ P{Ȳn 6= Z̄n} , (11.9)

since the event {|Ȳn−mn| > ε} implies either {|Z̄n−mn| > ε} or {Ȳn 6= Z̄n}.
In turn,

P{Ȳn 6= Z̄n} ≤ P

 ⋃
1≤i≤n

{Yn,i 6= Zn,i}


≤
∑

1≤i≤n
P{Yn,i 6= Zn,i}

=
∑

1≤i≤n
P{|Yn,i| > n}

= nP{|Yn,i| > n} .

By Chebychev’s inequality,

P{|Z̄n −mn| > ε} ≤ var[Z̄n]

ε2
=

var[Zn,i]

nε2
≤
E[Z2

n,i]

nε2
.
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Hence,

P{|Ȳn −mn| > ε} ≤ (nε2)−1E[Z2
n,i] + nP{|Yn,i| > n} .

For t > 0, let

τn(t) = tP{|Yn,i| > t} = t(1−Gn(t) +Gn(−t))

κn(t) =
1

t
E[Y 2

n,iI{|Yn,i| ≤ t}] =
1

t

∫ t

−t
y2dGn(y) .

In this notation,

P{|Ȳn −mn| > ε} ≤ ε−2κn(n) + τn(n) .

Since
tP{|Yn,i| > t} ≤ E[|Yn,i|I{|Yn,i| > t}] ,

it follows that τn(n) → 0 by (11.7). Now, using integration by parts it is
possible to show that

κn(t) = −τn(t) +
2

t

∫ t

0
τn(x)dx . (11.10)

Therefore, in order to show that P{|Ȳn −mn| > ε} → 0, it suffices to argue
that

2

n

∫ n

0
τn(x)dx→ 0 . (11.11)

To this end, note that

2

n

∫ n

0
τn(x)dx ≤ 2

n

∫ n

0
E[|Yn,i|I{|Yn,i| > x}]dx . (11.12)

Let δ > 0 be given and choose n0 and β0 so that

E[|Yn,i|I{|Yn,i| > x}] < δ

2

whenever n > n0 and x > β0. For x ≤ β0 and n > n0 we have that

E[|Yn,i|I{|Yn,i| > x}] ≤ E[|Yn,i|]
= E[|Yn,i|I{|Yn,i| ≤ β0}] + E[|Yn,i|I{|Yn,i| > β0}]

= β0 +
δ

2
.

It follows that

2

n

∫ n

0
E[|Yn,i|I{|Yn,i| > x}]dx ≤ β0(2β0 + δ)

n
+ δ , (11.13)
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which is less than δ for n sufficiently large. Since the choice of δ > 0 was
arbitrary, it follows that κn(n)→ 0. Therefore, Ȳn−mn → 0 in probability.
To complete the proof note that

0 = E[Yn,i] = mn + E[Yn,iI{|Yn,i| > n}] (11.14)

so that
|mn| ≤ E[|Yn,i|I{|Yn,i| > n}]→ 0 .

Lemma 11.2 Let P be a family of distributions satisfying (11.2). Suppose
Xn,1, . . . , Xn,n are i.i.d. Pn ∈ P and µ(Pn) = 0. Then, under Pn,

1

n

n∑
i=1

X2
n,i

σ2(Pn)
→ 1 in probability .

Proof. Apply Lemma 11.1 to

Yn,i = [X2
n,i/σ

2(Pn)]− 1 .

To see that Lemma 11.1 applies, consider β > 1. In this case, the event
{|Yn,i| > β} implies X2

n,i/σ
2(Pn) > β + 1 since |Yn,i| > 1 cannot happen if

X2
n,i/σ

2(Pn)− 1 < 0. In addition, note that

|Yn,i| < X2
n,i/σ

2(Pn) .

Hence, for β > 1,

E[|Yn,i|I{|Yn,i| > β}] ≤ E

[
X2
n,i

σ2(Pn)
I

{
|Xn,i|
σ(Pn)

>
√
β + 1

}]
.

Condition (11.2) therefore immediately implies (11.7).

11.2.1 Power of the t-test

So far we know that the t-test behaves uniformly well across a fairly large
class of distributions. We will now study some power properties of the t-test.
In particular, we will show that the t-test is uniformly consistent in level,
and derive a limiting power calculation. The result is summarized in the
following Theorem.

Theorem 11.2 Let P be a family of distributions satisfying (11.2) and let
P0 be the set of distributions in P with µ(P ) = 0 (assumed non-empty).
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Then, for testing µ(P ) = 0 versus µ(P ) > 0, the limiting power of the t-test
against Pn ∈ P with n1/2µ(Pn)/σ(Pn)→ δ is given by

lim
n→∞

EPn [φn] = 1− Φ(z1−α − δ) . (11.15)

Furthermore,

lim
n→∞

inf
{P∈P:n1/2µ(P )/σ(P )≥δ}

EP [φn] = 1− Φ(z1−α − δ) . (11.16)

Proof. Let Xn,1, . . . , Xn,n be i.i.d. with distribution Pn and consider the
t-statistic Tn = X̄n,n/σ̂n,n. Write

Tn =
n1/2(X̄n,n − µ(Pn))

σ̂n,n
+
n1/2µ(Pn)/σ(Pn)

σ̂n,n/σ(Pn)
.

By Theorem 11.1 the first term converges weakly to N(0, 1) under Pn, and
by the proof of the same Theorem, the denominator of the second term

converges to 1 in probability under Pn. It follows that Tn
d→ N(δ, 1) under

Pn and so (11.15) follows.
To prove (11.16), argue by contradiction and assume there exists a sub-

sequence {Pn} with n1/2µ(Pn)/σ(Pn) ≥ δ such that

EPn [φn]→ γ < 1− Φ(z1−α − δ) .

This, however, would violate (11.15) if n1/2µ(Pn)/σ(Pn) has a limit. If it
does not have a limit, pass to any convergent subsequence and apply the
same argument.

We will conclude today’s lecture by noting that condition (11.16) fails if
P is replaced by all distributions with finite second moments or finite fourth
moments, or even the more restricted family of distributions supported on
a compact set (as in the previous section).
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Lecture 12

Uniformity of Subsampling

12.1 Intuition Behind Subsampling

Suppose Xi, i = 1, . . . , n is an i.i.d. sequence of random variables with dis-
tribution P ∈ P. Let θ(P ) be some real-valued parameter of interest, and
let θ̂n = θ̂n(X1, . . . , Xn) be some estimate of θ(P ). Consider the root

Tn =
√
n(θ̂n − θ(P )) ,

where root stands for a functional depending on both, the data and θ(P ).
Let Jn(P ) denote the sampling distribution of Tn and define the correspond-
ing cumulative distribution function as,

Jn(x, P ) = P{Tn ≤ x} . (12.1)

We wish to estimate Jn(x, P ) so we can make inferences about θ(P ). For
example, we would like to estimate quantiles of Jn(x, P ), so we can construct
confidence sets for θ(P ). Unfortunately, we do not know P , and, as a result,
we do not know Jn(x, P ).

The bootstrap solved this problem simply by replacing the unknown P
with an estimate P̂n. In the case of i.i.d. data, a typical choice of P̂n is the
empirical distribution of the Xi, i = 1, . . . , n. For this approach to work,
we essentially required that Jn(x, P ) when viewed as a function of P was
continuous in a certain neighborhood of P . An alternative to the bootstrap
known as subsampling, originally due to Politis and Romano (1994), does
not impose this requirement but rather the following much weaker condition.

Assumption 12.1 There exists a limiting law J(P ) such that Jn(P ) con-
verges weakly to J(P ) as n→∞.

In order to motivate the idea behind subsampling, consider the follow-
ing thought experiment. Suppose for the time being that θ(P ) is known.
Suppose that, instead of n i.i.d. observations from P , we had a very, very

71
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large number of i.i.d. observations from P . For concreteness, suppose Xi, i =
1, . . . ,m is an i.i.d. sequence of random variables with distribution P with
m = nk for some very big k. We could then estimate Jn(x, P ) by looking
at the empirical distribution of

√
n(θ̂n(Xn(j−1)+1, . . . , Xnj)− θ(P )), j = 1, . . . , k .

This is an i.i.d. sequence of random variables with distribution Jn(x, P ).
Therefore, by the Glivenko-Cantelli theorem, we know that this empirical
distribution is a good estimate of Jn(x, P ), at least for large k. In fact, with
a simple trick, we could show that it is even possible to improve upon this
estimate by using all possible sets of data of size n from the m observations,
not just those that are disjoint; that is, estimate Jn(x, P ) with the empirical
distribution of the

√
n(θ̂n,j − θ(P )), j = 1, . . . ,

(
m

n

)
.

where θ̂n,j is the estimate of θ(P ) computed using the jth set of data of size
n from the original m observations.

In practice m = n, so, even if we knew θ(P ), this idea won’t work. The
key idea behind subsampling is the following simple observation: replace n
with some smaller number b that is much smaller than n. We would then
expect

√
b(θ̂b,j − θ(P )), j = 1, . . . ,

(
n

b

)
,

where θ̂b,j is the estimate of θ(P ) computed using the jth set of data of
size b from the original n observations, to be a good estimate of Jb(x, P ), at
least if

(
n
b

)
is large. Of course, we are interested in Jn(x, P ), not Jb(x, P ).

We therefore need some way to force Jn(x, P ) and Jb(x, P ) to be close to
one another. To ensure this, it suffices to assume that Jn(x, P ) → J(x, P ).
Therefore, Jb(x, P ) and Jn(x, P ) are both close to J(x, P ), and thus close
to one another as well, at least for large b and n. In order to ensure that
both b and

(
n
b

)
are large, at least asymptotically, it suffices to assume that

b→∞, but b/n→ 0.
This procedure is still not feasible because in practice we typically do

not know θ(P ). But we can replace θ(P ) with θ̂n. This would cause no
problems if

√
b(θ̂n − θ(P )) =

√
b√
n

√
n(θ̂n − θ(P ))

is small, which follows from b/n→ 0 in this case.
Essentially, all we required was that Jn(x, P ) converged in distribution

to a limit distribution J(x, P ), whereas for the bootstrap we required this
and additionally that Jn(x, P ) was continuous in a certain sense. Showing
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continuity of Jn(x, P ) is problem specific, as the example in the next section
illustrates.

Theorem 12.1 Assume Assumption 12.1. Also, let Jn(P ) denote the sam-
pling distribution of τn(θ̂n − θ(P )) for some normalizing sequence τn →∞,
Nn =

(
n
b

)
, and assume that τb/τn → 0, b→∞, and b/n→ 0 as n→∞.

i) If x is a continuity point of J(·, P ), then Ln,b(x) → J(x, P ) in proba-
bility, where

Ln,b(x) =
1

Nn

Nn∑
j=1

I{τb(θ̂n,b,j − θ̂n) ≤ x} . (12.2)

ii) If J(·, P ) is continuous, then

sup
x
|Ln,b(x)− Jn(x, P )| → 0 in probability . (12.3)

iii) Let

cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α} ,
c(1− α, P ) = inf{x : J(x, P ) ≥ 1− α} .

If J(·, P ) is continuous at c(1− α, P ), then

P{τn(θ̂n − θ(P )) ≤ cn,b(1− α)} → 1− α as n→∞ . (12.4)

Proof. See Politis et al. (1999, Page 43)

It is worth noticing that the assumption b/n → 0 and b → ∞ need not
imply τb/τn → 0. In regular cases, τn = n1/2 and in such case the result
follows from b/n→ 0.

The result in Theorem 12.1 only requires a very mild condition (i.e., As-
sumption 12.1). For this reason, subsampling has been traditionally advo-
cated in cases in which the bootstrap is known to be inconsistent (i.e., cases
where Jn(x, P ) is discontinuous in a certain neighborhood of P ). However,
the result in Theorem 12.1 is just a pointwise result, and so it is often the
case (but not always) that in cases where the bootstrap fails, subsampling
fails to be uniformly valid. The next example illustrates this clearly.

12.2 Parameter at the Boundary

Andrews and Guggenberger (2010b) study the properties of subsampling in
a broad class of non-regular models. They consider cases in which a test
statistic has a discontinuity in its asymptotic distribution as a function of the



74 LECTURE 12. UNIFORMITY OF SUBSAMPLING

true distribution that generates the observations. In such cases bootstrap
procedures typically do not provide pointwise asymptotically valid inference,
and subsampling has often been advocated.

Consider the following example. Suppose Xi, i = 1, . . . , n are i.i.d. with
distribution P ∈ P = {N(θ(P ), 1) : θ(P ) ≥ 0}. The maximum likelihood
estimator is θ̂n = max{X̄n, 0}. Consider the root

Tn =
√
n(θ̂n − θ(P )) =

√
n(max{X̄n, 0} − θ(P ))

= max{
√
n(X̄n − θ(P )),−

√
nθ(P )} . (12.5)

It follows that

Tn
d→

{
max{Z, 0} if θ(P ) = 0

Z if θ(P ) > 0

where Z ∼ N(0, 1). Below it will be convenient to label these distributions
as J0 ≡ max{Z, 0} and J∞ ≡ Z. Before moving to subsampling, we will
show that Jn(x, P̂n) (the bootstrap approximation) does not converge to
J(x, P ) a.s. in this particular case.

12.2.1 Failure of the Bootstrap

For each n, let Xn,i, i = 1, . . . , n be an i.i.d. sequence of random variables
with distribution Pn (not necessarily in P), where Pn converges in distri-
bution to P , θ(Pn) → θ(P ), and σ2(Pn) → σ2(P ). The distribution of
Jn(x, Pn) is simply the distribution of

Tn =
√
n(θ̂n,n − θ(Pn)) =

√
n(max{X̄n,n, 0} − θ(Pn))

= max{
√
n(X̄n,n − θ(Pn)),−

√
nθ(Pn)} .

under Pn. Suppose θ(P ) = 0. Let c > 0 and suppose
√
nθ(Pn) > c for all n.

For such a sequence Pn,

Tn ≤ max{
√
n(X̄n,n − θ(Pn)),−c} d→ max{Z,−c} ,

under Pn, which is dominated by the distribution of max{Z, 0}.
To complete the argument, it suffices to show that P̂n satisfies a.s. the

requirements on Pn in the above discussion. By the SLLN P̂n converges
in distribution to P a.s., θ(P̂n) → θ(P ) a.s., and σ2(P̂n) → σ2(P ) a.s. It
remains to determine whether

√
nθ(P̂n) > c for all n a.s. Equivalently, we

need to determine whether

X̄n >
c√
n

for all n a.s.

Unfortunately, the SLLN will not suffice for this purpose. Instead, we will
need the following refinement of the SLLN known as the Law of the Iterated
Logarithm (LIL):
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Theorem 12.2 Let Yi, i = 1, ..., n be an i.i.d. sequence of random variables
with distribution P on R. Suppose µ(P ) = 0 and σ2(P ) = 1. Then,

lim sup
n→∞

Ȳn√
2 log logn

n

= 1 a.s. and lim inf
n→∞

Ȳn√
2 log logn

n

= −1 a.s.

Recall that for a sequence of real numbers an, n ≥ 1

lim sup
n→∞

an = a

if and only if for any ε > 0

an > a− ε i.o.

and
an < a+ ε

for all n sufficiently large. An implication of the LIL therefore is that for
any ε > 0,

Ȳn > (1− ε)
√

2 log log n

n
i.o. a.s.

In other words, for Wn = Ȳn/
√

2 log logn
n , the LIL says that infinitely many

of these sequences will come arbitrarily close to 1, but no more than a finite
number will exceed it, a.s.

Since (1− ε)
√

2 log log n > c for all n sufficiently large, it follows that

Ȳn >
c√
n

i.o. a.s.

In other words, there exists a set Ω with P{Ω} = 1 such that for all ω ∈ Ω,

X̄n(ω) >
c√
n

i.o.

Thus, for all ω ∈ Ω there exists a subsequence nk = nk(ω), k ≥ 1 of n ≥ 1
such that for all k ≥ 1

X̄n(ω) >
c
√
nk

.

It follows that P̂n satisfies the requirement on Pn, at least along a sub-
sequence, a.s. Thus, at least along the subsequence, Jn(x, P̂n) does not
converge to J(x, P ) a.s.

Remark 12.1 The LIL gives an interesting illustration of the difference
between almost sure and distributional statements. Under the assumptions
of the LIL Theorem, we know that

√
nȲn

d−→ N(0, 1) and

√
nȲn√
n

a.s.−−→ 0
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so the LIL is giving the rate representing the “knife-egde” between the de-

generate and non-degenerate asymptotic distribution (i.e.,
√
n

2 log logn). Note

that since
√
nȲn

d−→ N(0, 1), the sequence Wn = Ȳn/
√

2 log logn
n in is (−ε, ε)

eventually for any ε > 0. This does not contradict the LIL that says that
Wn reaches the interval (1− ε, 1 + ε) infinitely often with probability 1. The
explanation is that the set of ω such that Wn(ω) is in (−ε, ε) or (1− ε, 1 + ε)
fluctuates with n. For a given large value of n, the CLT asserts that a very
large fraction of ω have Wn(ω) ∈ (−ε, ε). For a given ω, the LIL says that
the sequence Wn(ω) drops in and out of the interval (1− ε, 1 + ε) infinitely
often.

12.2.2 Subsampling: pointwise behavior

Let’s see what happens if we use subsampling. The jth subsample estimator
based on a subsample of size bn = o(n) is θ̂bn,j = max{X̄bn,j , 0}, where X̄bn,j

is the sample average of the bn observations in the jth subsample. In this
case,

Tbn,j =
√
bn(θ̂bn,j − θ(P )) =

√
bn(max{X̄bn,j , 0} − θ(P ))

= max{
√
bn(X̄bn,j − θ(P )),−

√
bnθ(P )} .

(12.6)

It is immediate that for a fixed θ(P ) = 0, Tbn,j(θ(P ))
d→ J0. Also, if

θ(P ) > 0, we have Tbn,j
d−→ J∞ since bn → ∞. Thus, as opposed to the

bootstrap, subsampling provides the right limiting behavior under standard
asymptotics based on a fixed true probability distribution.

Andrews and Guggenberger show that if a sequence of test statistics has
an asymptotic null distribution that is discontinuous in a nuisance parameter
(as in the previous example), then a subsample test does not necessarily
yield the desired asymptotic level. Specifically, the limit of the finite-sample
size of the test can exceed its nominal level. The potential problem is not
just a small sample problem - it arises with all sample sizes. In particular,
subsample tests can have an asymptotic null rejection rate that equals its
nominal level under any fixed true distribution, but still the limit of its
finite-sample size can be greater than its nominal level. This is due to a lack
of uniformity in the pointwise asymptotics.

12.2.3 Subsampling: uniform behavior

We will now show, using the previous example, that there are two different
rates of drift such that over-rejection and under-rejection can occur. To this
end, let γn be a “localization sequence” that measures how “far” or “close”
we are from θ(P ) = 0. This is, we consider a sequence of null distributions Pn
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such that θn = θ(Pn) = γn and look at the behavior of Tn and Tbn,j along
the sequence. The complication arises from the fact that the asymptotic
distribution of Tn is discontinuous at γ = 0.

Remark 12.2 In this example θn and γn are the same parameter. The
reason we introduce the γn notation is to allow (in the generalization that
follows) for the possibility that the parameter introducing a discontinuity in
the asymptotic distribution of Tn is a nuisance parameter different from θ.

Let’s start by setting γn = h/
√
n. In this case,

Tn =
√
n(θ̂n − θn) = max{

√
n(X̄n − θn),−

√
nθn}

= max{
√
n(X̄n − θn),−h}

d→ Jh ≡ max{Z,−h} ,

under Pn and

Tbn,j =
√
bn(max{X̄bn,j , 0} − θn)

= max{
√
bn(X̄bn,j − θn),−

√
bnθn}

= max{
√
bn(X̄bn,j − θn),−(bn/n)1/2√nθn}

= max{
√
bn(X̄bn,j − θn),−(bn/n)1/2h}

d→ J0 = max{Z, 0} .

Thus, the full-sample test statistic has an asymptotic distribution that de-
pends on a “localization parameter”, h, and the subsample critical values
behave like the critical value from the asymptotic distribution of the statistic
under h = 0. Note that for Jh(x) = P{max{Z,−h} ≤ x},

Jh(x) = J0(x) for all x ≥ 0 while Jh(x) > J0(x) for all x ∈ [−h, 0) , (12.7)

so that Jh(x) ≥ J0(x) for all x. That is, the subsample distribution gives
a very good approximation of the full-sample distribution in the right tail,
but a poor one in the left-tail. Hence, an upper one-sided subsample CI for
θ(P ), which relies on a subsample critical value from the right tail of the
subsample distribution, will perform well. To see this, let ch(1− α) denote
the 1− α-quantile of Jh (i.e., 1− Jh(ch(1− α)) = α), we have

Pn{Tn > c0(1− α)} → 1− Jh(c0(1− α)) ,

and
1− Jh(c0(1− α)) ≤ 1− J0(c0(1− α)) = α .

Indeed, for α ∈ (0, 1/2) it follows that ch(1 − α) = c0(1 − α), while for
α < 1/2, ch(1 − α) < c0(1 − α). Thus, a subsample lower one-sided CI
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will perform poorly. Furthermore, equal-tailed and symmetric two-sided
subsample CIs will perform poorly. To see this, let c̄h(1− α) be such that

1− Jh(c̄h(1− α)) + Jh(−c̄h(1− α)) = α .

For this critical value, we have

Pn{|Tn| > c̄0(1− α)} → 1− Jh(c̄0(1− α)) + Jh(c̄0(1− α)) ,

and hence

1−Jh(c̄0(1−α))+Jh(−c̄0(1−α)) ≥ 1−J0(c̄0(1−α))+J0(−c̄0(1−α)) = α .

Thus, subsampling may lead to over-rejection. For example, for h = 3
the 95% quantile of the distribution of |max{Z, 0}| is 1.63, while the 95%
quantile of the distribution of |max{Z,−h}| is 1.96.

Now let’s consider the sequence γn = g/
√
bn. In this case,

Tn =
√
n(θ̂n − θn) = max{

√
n(X̄n − θn),−

√
nθn}

= max{
√
n(X̄n − θn),−(n/bn)1/2

√
bnθn}

= max{
√
n(X̄n − θn),−(n/bn)1/2g}

d→ J∞ ≡ Z

under Pn since (n/bn)1/2 →∞ and

Tbn,j =
√
bn(max{X̄bn,j , 0} − θn) = max{

√
bn(X̄bn,j − θn),−

√
bnθn}

= max{
√
bn(X̄bn,j − θn),−g}

d→ Jg = max{Z,−g} .

Thus, in this case the full-sample test statistic has an asymptotic dis-
tribution that is the same as for fixed γ 6= 0 and the subsample critical
values behave like the critical values from the asymptotic distribution of the
full-sample statistic under the drifting sequence with localization parameter
g. Thus, here again we might have over-rejection. It turns out that these
two sequences determine the limit of the finite-sample size of the test as
discussed next.

12.3 Asymptotic Size of Subsampling

Let’s consider a family of distributions P = {Pθ,γ : θ ∈ Θ, γ ∈ Γ}. Here
γ might be infinite dimensional. The exact size of a test that rejects H0 :
θ(P ) = θ0 when Tn(θ0) > c1−α, ExSzn, is the supremum over γ ∈ Γ (i.e.,
the supremum over P0) of the null rejection probability under γ:

ExSzn = sup
γ∈Γ

Pθ0,γ {Tn(θ0) > c1−α} ,
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and Pθ0,γ denotes the probability when the true parameters are (θ0, γ). The
asymptotic size of the test is defined by

AsySz = lim sup
n→∞

sup
γ∈Γ

Pθ0,γ {Tn(θ0) > c1−α} .

Recall that our interest is in the exact finite-sample size of the test; we just
use asymptotics to approximate this. Uniformity over γ ∈ Γ, which is built
into the definition of AsySzn, is necessary for the asymptotic size to give a
good approximation to the finite-sample size. If AsySz > α, the nominal
level α test has asymptotic size greater than α and the test does not have
correct asymptotic level.

What we learned from the example in the previous section is in fact a
general result. Let Jh denote the asymptotic distribution of Tn under a
sequence γn (i.e., a sequence of distributions Pn) such that

h = lim
n→∞

√
nγn and g = lim

n→∞

√
bnγn , (12.8)

for some h ∈ H = [0,∞] and g ∈ H = [0,∞]. Under the same sequence Pn,
let Jg denote the asymptotic distribution of Tbn,j for the g defined above.
The set of all possible pairs of localization parameters (g, h) is denoted by
GH and is defined by

GH = {(g, h) ∈ H ×H : g = 0 if h <∞& g ∈ [0,∞] if h =∞} .

Note that g ≤ h for all (g, h) ∈ GH. In the previous example, we got
(g, h) = (0, 0) and (g, h) = (∞,∞) by standard asymptotics; and (g, h) =
(0, h) and (g, h) = (g,∞) using different drifting sequences.

Lemma 12.1 Suppose that for all h ∈ H and all sequences {γn : n ≥ 1},
Tn

d→ Jh under {Pθ0,γn : n ≥ 1} for some distribution Jh. Then,

AsySz = sup
(g,h)∈GH

[1− Jh(cg(1− α))] ,

provided Assumption S in Andrews and Guggenberger (2010b) holds.

Therefore, AsySz ≤ α iff cg(1 − α) ≥ ch(1 − α). For the details of
Assumption S and additional discussion, see Andrews and Guggenberger
(2010b, Corollary 1). The general results can be used to show for example
that: (i) in an instrumental variables (IVs) regression model with potentially
weak IVs, all nominal level 1−α one-sided and two-sided subsampling tests
concerning the coefficient on an exogenous variable and based on the two-
stage least squares (2SLS) estimator have asymptotic size equal to one; (ii)
in models where (partially-identified) parameters are restricted by moment
inequalities, subsampling tests and CIs based on suitable test statistics have
correct asymptotic size.
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The approach given above is based on sequences of nuisance parameters
and it requires verifying certain assumptions for all possible sequences of
nuisance parameters. In particular, proving that a test controls asymptotic
size typically requires to argue that it is not possible to find a non-stochastic
(sub)sequence of parameters γn such that:

lim
n→∞

Pθ(P ),γn {Tn > c1−α} > α . (12.9)

Proving the latter typically involves deriving the asymptotic distribution of
the test statistic along all possible non-stochastic sequences γn ∈ Γ.

A different approach includes the one in Romano and Shaikh (2012). In
that paper the authors show that subsampling tests are valid whenever the
family P satisfies,

lim
n→∞

sup
P∈P

sup
x∈R
|Jb(x, P )− Jn(x, P )| = 0 , (12.10)

see Theorem 2.1 in Romano and Shaikh (2012). The authors also provide
uniform results for Bootstrap tests.
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Lecture 13

Moment Inequality Models I

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class. The two papers are Canay and
Shaikh (2017) and Ho and Rosen (2017).
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Lecture 14

Moment Inequality Models I

There are no lecture notes for this topic. You are supposed to read two
papers and the slides we used in class. The two papers are Canay and
Shaikh (2017) and Ho and Rosen (2017).
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